EP0535752B1 - Procédé de liquéfaction de gaz naturel - Google Patents

Procédé de liquéfaction de gaz naturel Download PDF

Info

Publication number
EP0535752B1
EP0535752B1 EP92203009A EP92203009A EP0535752B1 EP 0535752 B1 EP0535752 B1 EP 0535752B1 EP 92203009 A EP92203009 A EP 92203009A EP 92203009 A EP92203009 A EP 92203009A EP 0535752 B1 EP0535752 B1 EP 0535752B1
Authority
EP
European Patent Office
Prior art keywords
pressure
zone
gas
phase
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92203009A
Other languages
German (de)
English (en)
Other versions
EP0535752A1 (fr
Inventor
Henri Paradowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Francaise dEtudes et de Construction Technip SA
Technip Energies France SAS
Original Assignee
Francaise dEtudes et de Construction Technip SA
Technip SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Francaise dEtudes et de Construction Technip SA, Technip SA filed Critical Francaise dEtudes et de Construction Technip SA
Publication of EP0535752A1 publication Critical patent/EP0535752A1/fr
Application granted granted Critical
Publication of EP0535752B1 publication Critical patent/EP0535752B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons

Definitions

  • the invention relates to a natural gas liquefaction process comprising the separation of hydrocarbons heavier than methane.
  • Natural gas and other methane-rich gas streams are commonly available at sites away from places of use, and it is therefore common to liquefy natural gas for transportation by land or sea. Liquefaction is widely practiced in the present day and the literature and patents describe numerous processes and apparatuses for liquefaction. US-A-3945 214, 4251 247, 4274 849, 4339 253 and 4539 028 are examples of such methods.
  • US Pat. No. 4,690,702 describes a process in which the charge of hydrocarbons under high pressure (P1) is cooled so as to cause the liquefaction of part of the hydrocarbons, a gas phase (G1) is separated from a liquid phase (L1), the gas phase is relaxed (G1) to lower its pressure to a value (P2) lower than (P1), the liquid phase (L1) and the gas phase (G1) are sent under pressure (P2) in a first fractionation zone, for example a purification column - contact refrigeration, a residual gas (G2) rich in methane is drawn off at the head, the pressure of which is then raised to a value (P3), it is withdrawn in melts a liquid phase (L2), the phase (L2) is sent to a second fractionation zone, for example a fractionation column, a liquid phase is drawn off at the bottom (L3), enriched in higher hydrocarbons, for example C3 +, a gas phase (G3) is drawn off at the head, at least part of the gas phase
  • the expansion of G1 takes place in a turboexpander which transmits at least part of the energy collected to a turbocharger which raises the pressure of G2 to the value P3.
  • the process of the invention is distinguished, for its fractionation part, from the process of US-A-4 690 702, in that the pressures used in the fractionation zones are higher than those previously used and in that the second fractionation zone operates at a lower pressure than the first fractionation zone.
  • US Pat. No. 4,657,571 discloses a process corresponding to the preamble of claim 1.
  • the gaseous charge of hydrocarbons containing methane and at least one hydrocarbon heavier than methane, under pressure P1 is cooled in one or more stages so as to form at least one gaseous phase G1, the gas phase G1 to lower its pressure from the value P1 to a value P2 lower than P1, the pressure reduction product P la is sent to a first contact fractionation zone, a residual gas G2 enriched in methane is drawn off at the head , a liquid phase L2 is drawn off at the bottom, the liquid phase L2 is sent to a second fractionation zone by distillation operating under a pressure P4 lower than the pressure P2 of the first fractionation zone, it is drawn off at the bottom thereof at least one liquid phase L3, enriched in hydrocarbons heavier than methane, a gas phase G3 is drawn off at the head and it is returned to the first fractionation zone as reflux.
  • At least part of the gas phase G3 is condensed, to produce a condensed phase L4 and the pressure of at least part of the condensed phase L4 is raised, which is sent to the first zone fractionation as reflux and the residual gas G2 is then further cooled under a pressure at least equal to P2; in a methane liquefaction zone, so as to obtain a methane-rich liquid.
  • the gas is initially available under a pressure P1 of at least 5 MPa, preferably at least 6 MPa.
  • P2 0.3 to 0.8 P1
  • P2 being chosen for example between 3.5 and 7 MPa, preferably between 4.5 and 6 MPa.
  • the expansion of G1 is done in one or more turboexpanders coupled (s) to one or more turbocharger (s) which recompresses (s) the waste gas G2 from the pressure P2 to a pressure P3.
  • At least one liquid phase L1 is formed in addition to the gas phase G1, and the liquid phase L1 is sent, after expansion, to said first fractionation zone by contact.
  • the gas phase G3 is completely condensed and a portion is sent to the second fractionation zone as internal reflux and the complement to the first fractionation zone as reflux.
  • the condensation can be completed by further compressing, with subsequent cooling of the said G3 phase.
  • the invention is illustrated by the attached figure.
  • the natural gas from line 1 passes through one or more exchangers 2, for example of the propane or C connection / C3 liquid mixture type, and advantageously one or more exchangers using cold process fluids.
  • the cold fluid comes from line 5 of the first contact column 7.
  • the gas which here is partially liquefied, is fractionated in the flask 4 into liquid conveyed to column 7 via line 6 equipped with a valve.
  • the expansion causes partial liquefaction of the gas and the product of the expansion is sent by line 10 to column 7.
  • This column is of a conventional type, for example at trays or filled. It includes a reboiling circuit 11.
  • the liquid effluent from the bottom of the column is expanded by the valve 12 and sent by line 13 to column 14.
  • This column which operates at a lower pressure than column 7, has a reboiler 15.
  • the vapors are partly or completely condensed in the condenser 17.
  • the phase resulting liquid is returned at least in part to column 14 as reflux by line 18.
  • the gas phase (line 19 and valve V2) is then condensed, preferably entirely, by cooling preferably in the exchanger 20 supplied by minus part of the residual gas at the top of column 7 (lines 21 and 22).
  • valve V2 is closed if all of the vapor phase has been condensed in 17.
  • the valve V3 is open and it is then the liquid phase which is sent to column 7 via line 19a. You can also open the 2 valves V2 and V3 and thus send a mixed phase.
  • the liquid phase resulting from the cooling in the exchanger 20 passes into the balloon 23, the recompression pump 24 and returns to column 7 via line 25 as reflux. If the condensation in the exchanger 20 is not total, which is less preferred, the residual gas can be evacuated by line 26.
  • the waste gas coming from the head of column 7 by line 21, in the form of the aforementioned embodiment, passes through the exchanger 20 before being sent to the turbocharger 27 via the lines 28 and 29.
  • the turbocharger is driven by the turboexpander 9.
  • At least part of the waste gas from line 21 is sent via line 30 to the exchanger 3 to cool the natural gas. It then joins the turbocharger 27 via lines 5 and 29.
  • the waste gas (line 21) passes successively through the exchangers 20 and 3, or vice versa, before joining the turbocharger 27.
  • the gas is sent via line 32, which may include one or more exchangers, not shown, to a conventional methane liquefaction unit, shown here in a simplified manner. It passes through a first cooling exchanger 33, then the expansion valve V4 and a second cooling exchanger 34 where the liquefaction and subcooling are completed.
  • the refrigerant circuit of conventional or improved type (one can for example use the circuit of US-A-4 274 849) is shown here by the use of a multi-component fluid for example a mixture of nitrogen, methane , ethane and propane, initially in the gaseous state (line 35), which is compressed by one or more compressors such as 36, cooled by the external medium, air or water, in one or more exchangers such as 37, further cooled in exchanger 38, for example with propane or a C2 / C3 liquid mixture.
  • a multi-component fluid for example a mixture of nitrogen, methane , ethane and propane, initially in the gaseous state (line 35), which is compressed by one or more compressors such as 36, cooled by the external medium, air or water, in one or more exchangers such as 37, further cooled in exchanger 38, for example with propane or a C2 / C3 liquid mixture.
  • the partially condensed mixture reaches the flask 40 through line 39.
  • the liquid phase passes through line 41 in the exchanger 33, is expanded by the valve 42 and returns to line 35 through the exchanger 33 where it heats up in cooling the streams 32 and 41.
  • the vapor phase of the tank 40 (line 43) passes through the exchangers 33 and 34, where it is condensed, then is expanded in the valve 44 and passes through the exchangers 34 and 33 via the lines 45 and 35.
  • the liquefaction of methane is carried out by indirect contact with one or more fractions of a multicomponent fluid during vaporization and circulating in a closed circuit comprising compression, cooling with liquefaction giving one or more condensates and vaporization. said condensates constituting said multicomponent fluid.
  • a natural gas having the following composition is treated, in mol%: Methane 90.03 Ethane 5.50 Propane 2.10 C4 - C6 2.34 Mercaptans 0.03 100.00 under a pressure of 8 MPa.
  • Reductory gas leaves column 7 at -63 ° C and it is directed partly towards the exchanger 3 and partly towards the exchanger 20. After recompression in 27 using only the energy of the turboexpander 9, the gas pressure is 5.93 MPa.
  • This gas the temperature of which is -28 ° C., has the following% molar composition: Methane 93.90 Ethane 5.51 Propane 0.53 C4 - C6 Mercaptans less than 10 ppm 0.06 100.00
  • This current represents 95.88 mol% of the load current of the installation.
  • Liquefaction takes place as follows: The gas is cooled and condensed to -126 ° C in a first bundle of the heat exchanger 33 then expanded to 1.4 MPa and sub-cooled in a second bundle of the heat exchanger 34 to at -160 ° C. From there it is sent to storage.
  • the refrigerant has the following molar composition: N2 7% Methane 38% Ethane 41% Propane 14%
  • This fluid is compressed to 4.97 MPa, cooled to 40 ° C in a water exchanger 37, then cooled to -25 ° C in the exchangers represented diagrammatically by 38 in indirect contact with a liquid mixture C2 / C3, then fractionated in the separator 40 giving the liquid 41 and gas 43 phases.
  • the gas phase is condensed and cooled to -126 ° C in a second bundle of the exchanger 33 then sub-cooled to -160 ° C in a bundle of the exchanger 34.
  • the pressure is 0.3 MPa and the temperature is -28 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Compounds Of Unknown Constitution (AREA)

Description

  • L'invention concerne un procédé de liquéfaction de gaz naturel comportant la séparation d'hydrocarbures plus lourds que le méthane.
  • Le gaz naturel et les autres courants gazeux riches en méthane sont couramment disponibles en des sites éloignés des lieux d'utilisation, et il est donc courant de liquéfier le gaz naturel afin de le transporter par terre ou par mer. La liquéfaction est largement pratiquée à l'heure actuelle et la littérature et les brevets décrivent de nombreux procédés et appareils de liquéfaction. Les brevets US-A-3945 214, 4251 247, 4274 849, 4339 253 et 4539 028 sont des exemples de tels procédés.
  • Il est également connu de fractionner les courants d'hydrocarbures légers, renfermant par exemple du méthane et au moins un hydrocarbure supérieur tel que éthane à hexane ou supérieur, par cryogénie.
  • Ainsi le brevet US-A-4690 702 décrit un procédé dans lequel la charge d'hydrocarbures sous pression élevée (P₁) est refroidie de manière à provoquer la liquéfaction d'une partie des hydrocarbures, on sépare une phase gazeuse (G₁) d'une phase liquide (L₁), on détend la phase gazeuse (G₁) pour abaisser sa pression à une valeur (P₂) plus basse que (P₁), on envoie la phase liquide (L₁) et la phase gazeuse (G₁) sous la pression (P₂) dans une première zone de fractionnement, par exemple une colonne de purification - réfrigération par contact, on soutire en tête un gaz résiduaire (G₂) riche en méthane dont on élève ensuite la pression à une valeur (P₃), on soutire en fond une phase liquide (L₂), on envoie la phase (L₂) dans une seconde zone de fractionnement, par exemple une colonne de fractionnement, on soutire en fond une phase liquide (L₃), enrichie en hydrocarbures supérieurs par exemple C₃+, on soutire en tête une phase gazeuse (G₃), on condense au moins une partie de la phase gazeuse (G₃) et on envoie au moins une partie de la phase liquide condensée résultante (L₄) comme alimentation supplémentaire en tête de la première zone de fractionnement. Dans ce procédé, la seconde zone de fractionnement fonctionne à une pression (P₄) supérieure à la pression de la première zone de fractionnement, par exemple 0,5 MPa pour la première zone et 0,66 MPa pour la seconde zone.
  • Avantageusement, dans le procédé précité, la détente de G₁ se fait dans un turbodétendeur qui transmet au moins une partie de l'énergie recueillie à un turbocompresseur qui élève la pression de G₂ jusqu'à la valeur P₃.
  • L'intérêt d'un tel procédé est de recueillir, avec un rendement élevé, des condensats tels que C₃, C₄, essence, etc... qui sont des produits de valeur.
  • On a déjà proposé d'associer une unité de fractionnement de gaz naturel à une unité de liquéfaction, de manière à pouvoir recueillir à la fois du méthane liquide et des condensats tels que C₃, C₄ et/ou supérieurs. De telles propositions sont faites par exemple dans US-A-3 763 658 et US-A-4 065 278, l'unité de liquéfaction pouvant être d'un type conventionnel.
  • La difficulté à surmonter, dans ce type d'installation, est d'obtenir un coût de fonctionnement réduit. En particulier, il est inévitable de recueillir le gaz recomprimé sous une pression (P₃) plus faible que celle (P₁) sous laquelle il se trouvait initialement, à moins de consommer de l'énergie supplémentaire. Or la liquéfaction ultérieure du méthane est d'autant plus aisée que sa pression est plus élevée.
  • Il y a donc place dans la technique pour un procédé économique de fractionnement d'hydrocarbures du gaz naturel et liquéfaction subséquente du méthane.
  • Le procédé de l'invention se distingue, pour sa partie fractionnement, du procédé de US-A-4 690 702, en ce que les pressions mises en oeuvre dans les zones de fractionnement sont plus élevées que celles précédemment utilisées et en ce que la seconde zone de fractionnement opère sous une pression plus faible que la première zone de fractionnement.
  • Par ailleurs, le brevet US-A-4 657 571 révèle un procédé correspondant au préambule de la revendication 1.
  • Selon l'invention, la charge gazeuse d'hydrocarbures renfermant du méthane et au moins un hydrocarbure plus lourd que le méthane, sous pression P₁, est refroidie en une ou plusieurs étapes de manière à former au moins une phase gazeuse G₁, on détend la phase gazeuse G₁ pour abaisser sa pression de la valeur P₁ à une valeur P₂ plus basse que P₁, on envoie le produit de la détente sous pression P₂ dans une première zone de fractionnement par contact, on soutire en tête un gaz résiduaire G₂ enrichi en méthane, on soutire en fond une phase liquide L₂, on envoie la phase liquide L₂ dans une seconde zone de fractionnement par distillation opérant sous une pression P₄ plus basse que la pression P₂ de la première zone de fractionnement, on soutire en fond de celle-ci au moins une phase liquide L₃, enrichie en hydrocarbures plus lourds que le méthane, on soutire en tête une phase gazeuse G₃ et on le renvoie à la première zone de fractionnement comme reflux.
  • Selon la caractéristique de l'invention, on condense au moins une partie de la phase gazeuse G₃, pour produire une phase condensée L₄ et on élève la pression d'au moins une partie de la phase condensée L₄ qu'on envoie à la première zone de fractionnement comme reflux et on refroidit ensuite davantage le gaz résiduaire G₂ sous une pression au moins égale à P₂; dans une zone de liquéfaction du méthane, de manière à obtenir un liquide riche en méthane.
  • A titre d'exemple, le gaz est initialement disponible sous une pression P₁ d'au moins 5 MPa, de préférence au moins 6 MPa.
  • Lors de la détente, on amène utilement sa pression à une valeur P₂ telle que P₂ = 0,3 à 0,8 P₁, P₂ étant choisi par exemple entre 3,5 et 7 MPa, de préférence entre 4,5 et 6 MPa. La pression P₄ de la seconde zone de fractionnement est avantageusement telle que P₄ = 0,3 à 0,9 P₂, P₄ ayant une valeur comprise par exemple entre 0,5 et 4,5 MPa, de préférence entre 2,5 et 3,5 MPa.
  • Plusieurs modes de réalisation peuvent être mis en oeuvre.
  • Selon un mode de réalisation préféré, la détente de G₁ se fait dans un ou plusieurs turbodétendeurs accouplé(s) à un ou plusieurs turbocompresseur(s) qui recomprime(nt) le gaz résiduaire G₂ de la pression P₂ à une pression P₃.
  • Selon un autre mode de réalisation préféré, au cours du refroidissement initial du gaz, on forme au moins une phase liquide L₁ en plus de la phase gazeuse G₁, et on envoie la phase liquide L₁, après détente, dans ladite première zone de fractionnement par contact.
  • Selon une autre variante, on condense en totalité la phase gazeuse G₃ et on envoie une partie à la seconde zone de fractionnement comme reflux interne et le complément à la première zone de fractionnement comme reflux. Pour arriver à ce résultat, on peut agir sur le rebouilleur de la première zone de fractionnement, de manière à contrôler le rapport C₁/C₂ de la phase liquide L₃.
  • Si le refroidissement de la phase G₃ n'est pas suffisant pour condenser totalement cette phase, ce qui est préféré, on peut compléter la condensation en comprimant davantage, avec refroidissement subséquent ladite phase G₃.
  • L'invention est illustrée par la figure jointe. Le gaz naturel de la conduite 1 traverse un ou plusieurs échangeurs 2, par exemple du type à propane ou mélange liquide C₂/C₃, et avantageusement un ou plusieurs échangeurs utilisant des fluides froids du procédé. De préférence, le fluide froid provient par la ligne 5 de la première colonne de contact 7. Le gaz, qui est ici partiellement liquéfié, est fractionné dans le ballon 4 en liquide acheminé à la colonne 7 par la ligne 6 équipée d'une vanne V₁ et en gaz acheminé par la ligne 8 au turbodétendeur 9. La détente provoque une liquéfaction partielle du gaz et le produit de la détente est envoyé par la ligne 10 à la colonne 7. Cette colonne est d'un type classique, par exemple à plateaux ou à garnissage. Elle comporte un circuit de rebouillage 11. L'effluent liquide du fond de colonne est détendu par la vanne 12 et envoyé par la ligne 13 à la colonne 14. Cette colonne, qui fonctionne à pression plus basse que la colonne 7, possède un rebouilleur 15. L'effluent liquide, enrichi en hydrocarbures supérieurs au méthane, par exemple C₃+, sort par la ligne 16. En tête, les vapeurs sont condensées en partie ou totalité dans le condensateur 17. La phase liquide résultante est renvoyée au moins en partie à la colonne 14 comme reflux par la ligne 18. La phase gazeuse (ligne 19 et vanne V₂) est condensée ensuite, de préférence en totalité, par refroidissement de préférence dans l'échangeur 20 alimenté par au moins une partie du gaz résiduaire de tête de la colonne 7 (lignes 21 et 22).
  • En variante, la vanne V₂ est fermée si la totalité de la phase vapeur a été condensée dans 17. La vanne V₃ est ouverte et c'est alors la phase liquide qui est envoyée vers la colonne 7 par la ligne 19a. On peut aussi ouvrir les 2 vannes V₂ et V₃ et envoyer ainsi une phase mixte.
  • La phase liquide résultant du refroidissement dans l'échangeur 20 passe dans le ballon 23, la pompe de recompression 24 et retourne à la colonne 7 par la ligne 25 comme reflux. Si la condensation dans l'échangeur 20 n'est pas totale, ce qui est moins préféré, le gaz résiduel peut être évacué par la ligne 26. Le gaz résiduaire issu de la tête de la colonne 7 par la ligne 21, dans la forme de réalisation précitée, passe par l'échangeur 20 avant d'être envoyé au turbocompresseur 27 par les lignes 28 et 29. Le turbocompresseur est entraîné par le turbodétendeur 9.
  • Selon une variante, une partie au moins du gaz résiduaire de la ligne 21 est envoyé par la ligne 30 à l'échangeur 3 pour refroidir le gaz naturel. Il rejoint alors le turbocompresseur 27 par les lignes 5 et 29.
  • Dans une autre variante non-représentée, le gaz résiduaire (ligne 21) passe successivement dans les échangeurs 20 et 3, ou inversement, avant de rejoindre le turbocompresseur 27.
  • D'autres arrangements peuvent être prévus, ainsi que le comprendront les spécialistes, permettant d'assurer le refroidissement nécessaire au gaz des lignes 1 et 19. On peut par exemple envoyer directement le gaz de la ligne 21 au compresseur 27 par la ligne 31 et assurer différemment le refroidissement des échangeurs 3 et 20.
  • Après recompression dans le turbocompresseur 27, le gaz est envoyé par la ligne 32, pouvant comporter un ou plusieurs échangeurs non-représentés, à une unité conventionnelle de liquéfaction du méthane, représentée ici de façon simplifiée. Il traverse un premier échangeur de refroidissement 33, puis la vanne de détente V₄ et un second échangeur de refroidissement 34 où s'achèvent la liquéfaction et le sous-refroidissement. Le circuit frigorigène, de type conventionnel ou perfectionné (on peut par exemple utiliser le circuit de US-A-4 274 849) est schématisé ici par l'emploi d'un fluide multi-composants par exemple un mélange d'azote, de méthane, éthane et propane, initialement à l'état gazeux (ligne 35), qui est comprimé par un ou plusieurs compresseurs tels que 36, refroidi par le milieu extérieur, air ou eau, dans un ou plusieurs échangeurs tels que 37, refroidi davantage dans l'échangeur 38, par exemple par du propane ou un mélange C₂/C₃ liquide. Le mélange partiellement condensé parvient au ballon 40 par la ligne 39. La phase liquide passe par la ligne 41 dans l'échangeur 33, est détendue par la vanne 42 et retourne vers la ligne 35 en traversant l'échangeur 33 où elle se réchauffe en refroidissant les courants 32 et 41. La phase vapeur du ballon 40 (ligne 43) traverse les échangeurs 33 et 34, où elle est condensée, puis est détendue dans la vanne 44 et traverse les échangeurs 34 et 33 par les lignes 45 et 35.
  • Sous forme résumée, la liquéfaction du méthane est réalisée par mise en contact indirect avec une ou plusieurs fractions d'un fluide multicomposants en cours de vaporisation et circulant en circuit fermé comprenant une compression, un refroidissement avec liquéfaction donnant un ou plusieurs condensats et la vaporisation desdits condensats constituant ledit fluide multicomposants.
  • A titre d'exemple non limitatif, on traite un gaz naturel ayant la composition suivante, en % molaire :
    Méthane 90,03
    Ethane 5,50
    Propane 2,10
    C₄ - C₆ 2,34
    Mercaptans 0,03
    100,00

       sous une pression de 8 MPa.
  • Après refroidissement par du propane liquide et par l'effluent de tête de la colonne 7, le gaz parvient au ballon 4 à la température de -42°C. La phase liquide est envoyée par la ligne 6 à la colonne 7, et la phase gazeuse détendue par le turbodétendeur jusqu'à 5 MPa. La phase liquide collectée (ligne 13) à la température de + 25°C est détendue jusqu'à 3,4 MPa dans la vanne 12 puis fractionnée dans la colonne 14 qui reçoit le reflux de la ligne 18. Cette colonne 14 a une température de fond de 130°C et une température tête de -13°C.
  • Le gaz rédisuaire sort de la colonne 7 à -63°C et il est dirigé en partie vers l'échangeur 3 et en partie vers l'échangeur 20. Après recompression dans 27 utilisant uniquement l'énergie du turbodétendeur 9, la pression du gaz est de 5,93 MPa. Ce gaz, dont la température est de -28°C, présente la composition molaire % suivante :
    Méthane 93,90
    Ethane 5,51
    Propane 0,53
    C₄ - C₆ Mercaptans inférieur à 10 ppm 0,06
    100,00
  • Ce courant représente 95,88% molaire du courant de charge de l'installation.
  • On constate que l'installation a permis d'éliminer la quasi-totalité des mercaptans du gaz à liquéfier.
  • La liquéfaction a lieu comme suit :
       Le gaz est refroidi et condensé jusqu'à -126°C dans un premier faisceau de l'échangeur de chaleur 33 puis détendu jusqu'à 1,4 MPa et sous-refroidi dans un second faisceau de l'échangeur de chaleur 34 jusqu'à -160°C. De là il est envoyé au stockage.
  • Le fluide réfrigérant a la composition molaire suivante :
    N2 7%
    Méthane 38%
    Ethane 41%
    Propane 14%
  • Ce fluide est comprimé jusqu'à 4,97 MPa, refroidi à 40°C dans un échangeur à eau 37, puis refroidi jusqu'à -25°C dans les échangeurs représentés schématiquement par 38 au contact indirect d'un mélange liquide C₂/C₃, puis fractionné dans le séparateur 40 en donnant les phases liquide 41 et gazeuse 43. La phase gazeuse est condensée et refroidie à -126°C dans un second faisceau de l'échangeur 33 puis sous-refroidie jusqu'à -160°C dans un faisceau de l'échangeur 34. Après détente à 0,34 MPa, elle sert à refroidir le gaz naturel et revient au compresseur 36 après avoir traversé la calandre de chacun des échangeurs 34 et 33 et avoir reçu le courant liquide de la ligne 41 qui a traversé la vanne 42 après avoir été sous-refroidi à -126°C dans 33.
  • A l'entrée du compresseur (ligne 35), la pression est de 0,3 MPa et la température de -28°C.
  • A titre de comparaison, toutes choses sensiblement égales par ailleurs, quand on fait fonctionner la colonne 7 à 3,3 MPa avec une température de +1°C en fond et -64°C en tête et la colonne 14 à 3,5 MPa, avec une température de 131°C en fond et -11,7°C en tête, c'est-à-dire dans des conditions qui se déduisent de l'enseignement du brevet US-A-4 690 702, déjà nommé, la pression du gaz à la sortie du turbocompresseur 27 atteint seulement 5,33 MPa, et la température -24°C, ce qui est beaucoup moins avantageux pour la liquéfaction subséquente et nécessitera une dépense d'énergie nettement plus importante.

Claims (9)

  1. Procédé de liquéfaction de gaz naturel, dans lequel on refroidit ledit gaz renfermant du méthane et un hydrocarbure plus lourd que le méthane sous une pression P₁, de manière à former au moins une phase gazeuse G₁, on détend la phase gazeuse G₁ pour abaisser sa pression et amener celle-ci à une valeur P₂ plus basse que P₁, on envoie le produit de la détente sous pression P₂ dans une première zone de fractionnement par contact, on soutire en tête un gaz résiduaire G₂ enrichi en méthane, on soutire en fond une phase liquide L₂, on envoie la phase liquide L₂ dans une seconde zone de fractionnement par distillation opérant sous une pression P₄ plus basse que la pression P₂ de la première zone de fractionnement, on soutire en fond de ladite seconde zone du fractionnement au moins une phase liquide L₃, enrichie en hydrocarbures plus lourds que le méthane, on soutire en tête de ladite seconde zone de fractionnement une phase gazeuse G₃ et on la renvoie à la première zone de fractionnement comme reflux, caractérisé en ce qu'on effectue ledit renvoi en condensant au moins une partie de la phase gazeuse G₃ pour produire une phase condensée L₄ et en élevant la pression d'au moins une partie de la phase condensée L₄ qu'on envoie à la première zone de fractionnement comme reflux, et en ce qu'on refroidit ensuite davantage le gaz résiduaire G₂ sous une pression au moins égale à P₂, dans une zone de liquéfaction du méthane, de manière à obtenir un liquide riche en méthane.
  2. Procédé selon la revendication 1, dans lequel on effectue la détente de la phase gazeuse G₁ dans un turbodétendeur et on effectue une élévation de pression du gaz résiduaire de la valeur P₂ à une valeur P₃ dans un turbocompresseur et on utilise l'énergie fournie par la détente pour actionner le turbocompresseur.
  3. Procédé selon la revendication 1 ou 2, dans lequel la pression P₁ est d'au moins 5 MPa, la pression P₂ est telle que P₂ = 0,3 à 0,8 P₁ avec P₂ entre 3,5 et 7 MPa, et la pression P₄ est telle que P₄ = 0,3 à 0,9 P₂, avec P₄ entre 0,5 et 4,5 MPa.
  4. Procédé selon la revendication 3, dans lequel P₁ est au moins égal à 6 MPa, P₂ est entre 4,5 et 6 MPa et P₄ est entre 2,5 et 3,5 MPa.
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel au moins une partie du gaz résiduaire G₂ échange de la chaleur avec le gaz naturel pour contribuer au refroidissement de celui-ci, avant élévation de la pression dudit gaz G₂ de P₂ à P₃.
  6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel au moins une partie du gaz résiduaire G₂ échange de la chaleur avec au moins une partie de la phase gazeuse G₃ pour refroidir celle-ci et produire la phase condensée L₄.
  7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la liquéfaction du méthane est réalisée par mise en contact indirect avec une ou plusieurs fractions d'un fluide multicomposants en cours de vaporisation et circulant en circuit fermé comprenant une zone de compression, une zone de refroidissement avec liquéfaction donnant un ou plusieurs condensats, et une zone de vaporisation desdits condensats pour reconstituer ledit fluide multicomposants.
  8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel, au cours du refroidissement initial du gaz, on forme au moins une phase liquide L₁ en plus de la phase gazeuse G₁, et on envoie la phase liquide L₁, après détente, dans ladite première zone de fractionnement.
  9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel on condense en totalité la phase gazeuse G₃ et on en envoie une partie à la seconde zone de fractionnement comme reflux interne et le complément à la première zone de fractionnement comme reflux.
EP92203009A 1991-09-30 1992-09-30 Procédé de liquéfaction de gaz naturel Expired - Lifetime EP0535752B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9112007A FR2681859B1 (fr) 1991-09-30 1991-09-30 Procede de liquefaction de gaz naturel.
FR9112007 1991-09-30

Publications (2)

Publication Number Publication Date
EP0535752A1 EP0535752A1 (fr) 1993-04-07
EP0535752B1 true EP0535752B1 (fr) 1995-11-22

Family

ID=9417426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92203009A Expired - Lifetime EP0535752B1 (fr) 1991-09-30 1992-09-30 Procédé de liquéfaction de gaz naturel

Country Status (16)

Country Link
US (1) US5291736A (fr)
EP (1) EP0535752B1 (fr)
JP (1) JP3187160B2 (fr)
AR (1) AR247945A1 (fr)
AU (1) AU648695B2 (fr)
CA (1) CA2079407C (fr)
DE (1) DE69206232T2 (fr)
DZ (1) DZ1625A1 (fr)
EG (1) EG20248A (fr)
ES (1) ES2089373T3 (fr)
FR (1) FR2681859B1 (fr)
MY (1) MY107837A (fr)
NO (1) NO177840C (fr)
NZ (1) NZ244542A (fr)
RU (1) RU2093765C1 (fr)
SA (1) SA92130161B1 (fr)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5473900A (en) * 1994-04-29 1995-12-12 Phillips Petroleum Company Method and apparatus for liquefaction of natural gas
US5537827A (en) * 1995-06-07 1996-07-23 Low; William R. Method for liquefaction of natural gas
TR199801906T2 (xx) * 1996-03-26 1999-01-18 Phillips Petroleum Company Metan bazl� bir besleme maddesinden kondensasyon ve s�y�rma sureti ile aromatik maddelerin ve/veya a��r maddelerin bertaraf edilmesi.
TW366411B (en) * 1997-06-20 1999-08-11 Exxon Production Research Co Improved process for liquefaction of natural gas
TW368596B (en) * 1997-06-20 1999-09-01 Exxon Production Research Co Improved multi-component refrigeration process for liquefaction of natural gas
TW366410B (en) * 1997-06-20 1999-08-11 Exxon Production Research Co Improved cascade refrigeration process for liquefaction of natural gas
FR2772896B1 (fr) * 1997-12-22 2000-01-28 Inst Francais Du Petrole Procede de liquefaction d'un gaz notamment un gaz naturel ou air comportant une purge a moyenne pression et son application
US6401486B1 (en) * 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
WO2001088447A1 (fr) * 2000-05-18 2001-11-22 Phillips Petroleum Company Recuperation amelioree de liquides de gaz naturels (ngl) au moyen de refrigeration et de reflux provenant des installations de gaz naturel liquefie (lng)
DE10027903A1 (de) * 2000-06-06 2001-12-13 Linde Ag Verfahren zum Gewinnen einer C¶2¶¶+¶-reichen Fraktion
AU7158701A (en) * 2000-08-11 2002-02-25 Fluor Corp High propane recovery process and configurations
FR2821351B1 (fr) * 2001-02-26 2003-05-16 Technip Cie Procede de recuperation d'ethane, mettant en oeuvre un cycle de refrigeration utilisant un melange d'au moins deux fluides refrigerants, gaz obtenus par ce procede, et installation de mise en oeuvre
US7591150B2 (en) * 2001-05-04 2009-09-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US7594414B2 (en) * 2001-05-04 2009-09-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
US7637122B2 (en) * 2001-05-04 2009-12-29 Battelle Energy Alliance, Llc Apparatus for the liquefaction of a gas and methods relating to same
US6581409B2 (en) * 2001-05-04 2003-06-24 Bechtel Bwxt Idaho, Llc Apparatus for the liquefaction of natural gas and methods related to same
US20070137246A1 (en) * 2001-05-04 2007-06-21 Battelle Energy Alliance, Llc Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium
US7219512B1 (en) 2001-05-04 2007-05-22 Battelle Energy Alliance, Llc Apparatus for the liquefaction of natural gas and methods relating to same
UA76750C2 (uk) * 2001-06-08 2006-09-15 Елккорп Спосіб зрідження природного газу (варіанти)
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
MXPA03011495A (es) * 2001-06-29 2004-03-19 Exxonmobil Upstream Res Co Proceso para recuperar etano e hidrocarburos mas pesados de una mezcla liquida presurizada rica en metano.
CN100422675C (zh) * 2001-09-11 2008-10-01 中国石油化工股份有限公司 一种改进的轻烃深冷分离方法
US6823692B1 (en) 2002-02-11 2004-11-30 Abb Lummus Global Inc. Carbon dioxide reduction scheme for NGL processes
EA007771B1 (ru) * 2002-05-20 2007-02-27 Флуор Корпорейшн Установка для получения газового бензина и способ работы этой установки
US6945075B2 (en) * 2002-10-23 2005-09-20 Elkcorp Natural gas liquefaction
US6793712B2 (en) * 2002-11-01 2004-09-21 Conocophillips Company Heat integration system for natural gas liquefaction
JP4571934B2 (ja) * 2003-02-25 2010-10-27 オートロフ・エンジニアーズ・リミテッド 炭化水素ガス処理
US6889523B2 (en) 2003-03-07 2005-05-10 Elkcorp LNG production in cryogenic natural gas processing plants
US6662589B1 (en) 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas
FR2855526B1 (fr) * 2003-06-02 2007-01-26 Technip France Procede et installation de production simultanee d'un gaz naturel apte a etre liquefie et d'une coupe de liquides du gaz naturel
US7155931B2 (en) * 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
CA2543195C (fr) * 2003-10-30 2009-02-10 Fluor Technologies Corporation Procedes et traitement de lgn souples
US7159417B2 (en) * 2004-03-18 2007-01-09 Abb Lummus Global, Inc. Hydrocarbon recovery process utilizing enhanced reflux streams
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
DE05856782T1 (de) * 2004-07-01 2007-10-18 Ortloff Engineers, Ltd., Dallas Verarbeitung von flüssigerdgas
US20060260355A1 (en) * 2005-05-19 2006-11-23 Roberts Mark J Integrated NGL recovery and liquefied natural gas production
US9080810B2 (en) * 2005-06-20 2015-07-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US20070056318A1 (en) * 2005-09-12 2007-03-15 Ransbarger Weldon L Enhanced heavies removal/LPG recovery process for LNG facilities
AU2007235921B2 (en) * 2006-04-12 2010-05-27 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a natural gas stream
NZ572587A (en) * 2006-06-02 2011-11-25 Ortloff Engineers Ltd Method and apparatus for separating methane and heavier hydrocarbon components from liquefied natural gas
US20090188279A1 (en) * 2006-06-16 2009-07-30 Eduard Coenraad Bras Method and apparatus for treating a hydrocarbon stream
CN101529187A (zh) * 2006-10-24 2009-09-09 国际壳牌研究有限公司 从液化天然气中脱除硫醇的方法
US8590340B2 (en) * 2007-02-09 2013-11-26 Ortoff Engineers, Ltd. Hydrocarbon gas processing
US8820096B2 (en) 2007-02-12 2014-09-02 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US9869510B2 (en) * 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US9574713B2 (en) 2007-09-13 2017-02-21 Battelle Energy Alliance, Llc Vaporization chambers and associated methods
US9254448B2 (en) 2007-09-13 2016-02-09 Battelle Energy Alliance, Llc Sublimation systems and associated methods
US8555672B2 (en) * 2009-10-22 2013-10-15 Battelle Energy Alliance, Llc Complete liquefaction methods and apparatus
US9217603B2 (en) 2007-09-13 2015-12-22 Battelle Energy Alliance, Llc Heat exchanger and related methods
US8899074B2 (en) 2009-10-22 2014-12-02 Battelle Energy Alliance, Llc Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams
US8061413B2 (en) 2007-09-13 2011-11-22 Battelle Energy Alliance, Llc Heat exchangers comprising at least one porous member positioned within a casing
US8919148B2 (en) * 2007-10-18 2014-12-30 Ortloff Engineers, Ltd. Hydrocarbon gas processing
FR2923000B1 (fr) * 2007-10-26 2015-12-11 Inst Francais Du Petrole Procede de liquefaction d'un gaz naturel avec recuperation amelioree de propane.
US20090199591A1 (en) 2008-02-11 2009-08-13 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied natural gas with butane and method of storing and processing the same
KR20090107805A (ko) 2008-04-10 2009-10-14 대우조선해양 주식회사 천연가스 발열량 저감방법 및 장치
US20090282865A1 (en) 2008-05-16 2009-11-19 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
FR2943683B1 (fr) * 2009-03-25 2012-12-14 Technip France Procede de traitement d'un gaz naturel de charge pour obtenir un gaz naturel traite et une coupe d'hydrocarbures en c5+, et installation associee
US20100287982A1 (en) * 2009-05-15 2010-11-18 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
US8434325B2 (en) 2009-05-15 2013-05-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
US9021832B2 (en) * 2010-01-14 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
CN102933273B (zh) 2010-06-03 2015-05-13 奥特洛夫工程有限公司 碳氢化合物气体处理
US10451344B2 (en) 2010-12-23 2019-10-22 Fluor Technologies Corporation Ethane recovery and ethane rejection methods and configurations
US10852060B2 (en) 2011-04-08 2020-12-01 Pilot Energy Solutions, Llc Single-unit gas separation process having expanded, post-separation vent stream
US10655911B2 (en) 2012-06-20 2020-05-19 Battelle Energy Alliance, Llc Natural gas liquefaction employing independent refrigerant path
RU2534832C2 (ru) * 2012-12-11 2014-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Способ раздачи природного газа с одновременной выработкой сжиженного газа при транспортировании потребителю из магистрального трубопровода высокого давления в трубопровод низкого давления
US10006701B2 (en) 2016-01-05 2018-06-26 Fluor Technologies Corporation Ethane recovery or ethane rejection operation
FR3047552A1 (fr) * 2016-02-05 2017-08-11 Air Liquide Introduction optimisee d'un courant refrigerant mixte diphasique dans un procede de liquefaction de gaz naturel
US10330382B2 (en) 2016-05-18 2019-06-25 Fluor Technologies Corporation Systems and methods for LNG production with propane and ethane recovery
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
MX2019001888A (es) 2016-09-09 2019-06-03 Fluor Tech Corp Metodos y configuracion para readaptacion de planta liquidos de gas (ngl) para alta recuperacion de etano.
FR3056223B1 (fr) * 2016-09-20 2020-05-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de purification de gaz naturel a liquefier
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
WO2019078892A1 (fr) 2017-10-20 2019-04-25 Fluor Technologies Corporation Mise en œuvre par phases d'usines de récupération de liquides de gaz naturels
EP4045859A4 (fr) * 2019-10-17 2023-11-15 ConocoPhillips Company Unité autonome d'élimination de produits lourds haute pression pour traitement de gnl
DE102020004821A1 (de) * 2020-08-07 2022-02-10 Linde Gmbh Verfahren und Anlage zur Herstellung eines Flüssigerdgasprodukts

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763658A (en) * 1970-01-12 1973-10-09 Air Prod & Chem Combined cascade and multicomponent refrigeration system and method
DE2110417A1 (de) * 1971-03-04 1972-09-21 Linde Ag Verfahren zum Verfluessigen und Unterkuehlen von Erdgas
FR2237147B1 (fr) * 1973-07-03 1976-04-30 Teal Procedes Air Liquide Tech
FR2280041A1 (fr) * 1974-05-31 1976-02-20 Teal Technip Liquefaction Gaz Procede et installation pour le refroidissement d'un melange gazeux
FR2292203A1 (fr) * 1974-11-21 1976-06-18 Technip Cie Procede et installation pour la liquefaction d'un gaz a bas point d'ebullition
US4065278A (en) * 1976-04-02 1977-12-27 Air Products And Chemicals, Inc. Process for manufacturing liquefied methane
US4140504A (en) * 1976-08-09 1979-02-20 The Ortloff Corporation Hydrocarbon gas processing
US4185978A (en) * 1977-03-01 1980-01-29 Standard Oil Company (Indiana) Method for cryogenic separation of carbon dioxide from hydrocarbons
US4155729A (en) * 1977-10-20 1979-05-22 Phillips Petroleum Company Liquid flash between expanders in gas separation
US4203741A (en) * 1978-06-14 1980-05-20 Phillips Petroleum Company Separate feed entry to separator-contactor in gas separation
US4203742A (en) * 1978-10-31 1980-05-20 Stone & Webster Engineering Corporation Process for the recovery of ethane and heavier hydrocarbon components from methane-rich gases
FR2471566B1 (fr) * 1979-12-12 1986-09-05 Technip Cie Procede et systeme de liquefaction d'un gaz a bas point d'ebullition
FR2545589B1 (fr) * 1983-05-06 1985-08-30 Technip Cie Procede et appareil de refroidissement et liquefaction d'au moins un gaz a bas point d'ebullition, tel que par exemple du gaz naturel
US4657571A (en) * 1984-06-29 1987-04-14 Snamprogetti S.P.A. Process for the recovery of heavy constituents from hydrocarbon gaseous mixtures
FR2571129B1 (fr) * 1984-09-28 1988-01-29 Technip Cie Procede et installation de fractionnement cryogenique de charges gazeuses
US4707170A (en) * 1986-07-23 1987-11-17 Air Products And Chemicals, Inc. Staged multicomponent refrigerant cycle for a process for recovery of C+ hydrocarbons

Also Published As

Publication number Publication date
NO923783D0 (no) 1992-09-29
NO177840B (no) 1995-08-21
EG20248A (en) 1998-05-31
DE69206232T2 (de) 1996-07-18
SA92130161B1 (ar) 2004-05-29
JP3187160B2 (ja) 2001-07-11
RU2093765C1 (ru) 1997-10-20
AU2612792A (en) 1993-04-01
NZ244542A (en) 1994-07-26
JPH05240576A (ja) 1993-09-17
AR247945A1 (es) 1995-04-28
DZ1625A1 (fr) 2002-02-17
CA2079407A1 (fr) 1993-03-31
MY107837A (en) 1996-06-29
FR2681859A1 (fr) 1993-04-02
CA2079407C (fr) 2001-05-15
FR2681859B1 (fr) 1994-02-11
NO177840C (no) 1995-11-29
US5291736A (en) 1994-03-08
EP0535752A1 (fr) 1993-04-07
AU648695B2 (en) 1994-04-28
ES2089373T3 (es) 1996-10-01
NO923783L (no) 1993-03-31
DE69206232D1 (de) 1996-01-04

Similar Documents

Publication Publication Date Title
EP0535752B1 (fr) Procédé de liquéfaction de gaz naturel
US6526777B1 (en) LNG production in cryogenic natural gas processing plants
RU2298743C2 (ru) Система и способ для сжижения природного газа при высоком давлении
CA2035620C (fr) Methode de liquefaction de gaz
EP0572590B1 (fr) Procede de deazotation d'une charge d'un melange d'hydrocarbures consistant principalement en methane et renfermant au moins 2 % molaire d'azote
US6889523B2 (en) LNG production in cryogenic natural gas processing plants
US4065278A (en) Process for manufacturing liquefied methane
CA2562907C (fr) Liquefaction de gaz naturel
EP0504029B1 (fr) Procédé de production d'oxygène gazeux sous pression
EP0768502B1 (fr) Procédé et dispositif de liquéfaction et de traitement d'un gaz naturel
FR2703762A1 (fr) Procédé et installation de refroidissement d'un fluide, notamment pour la liquéfaction de gaz naturel.
FR2675891A1 (fr) Procede de production d'azote liquide en utilisant un gaz naturel liquefie comme seul refrigerant.
ZA200607240B (en) Natural gas liquefaction
MXPA97003373A (es) Produccion de gas natural liquido en plantas deprocesamiento de gas natural criogenico
EP0731900B1 (fr) Procede et installation de liquefaction du gaz naturel
EP0618415B1 (fr) Procédé et installation de production d'oxygène gazeux et/ou d'azote gazeux sous pression par distillation d'air
WO2003038358A1 (fr) Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sous deux pressions differentes
EA000800B1 (ru) Способ извлечения конденсацией и отгонкой ароматических и/или высокомолекулярных углеводородов из сырья на основе метана и устройство для его осуществления
EP0641983B1 (fr) Procédé et installation de production d'oxygène et/ou d'azote gazeux sous pression
FR2832213A1 (fr) Procede et installation de production d'helium
EP0612967B1 (fr) Procédé de production d'oxygène et/ou d'azote sous pression
EP0641982B1 (fr) Procédé et installation de production d'au moins un gaz de l'air sous pression
NZ273885A (en) Thermodynamic separation, method for separating gases using separation towers, third tower acts as recycle fractionator vessel
AU2004219688A1 (en) LNG production in cryogenic natural gas processing plants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

17P Request for examination filed

Effective date: 19930918

17Q First examination report despatched

Effective date: 19940513

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 69206232

Country of ref document: DE

Date of ref document: 19960104

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2089373

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960320

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2089373

Country of ref document: ES

Kind code of ref document: T3

26N No opposition filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2089373

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070928

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110824

Year of fee payment: 20

Ref country code: ES

Payment date: 20110926

Year of fee payment: 20

Ref country code: FR

Payment date: 20110914

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110926

Year of fee payment: 20

Ref country code: NL

Payment date: 20110822

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110923

Year of fee payment: 20

BE20 Be: patent expired

Owner name: CIE FRANCAISE D'*ETUDES ET DE *CONSTRUCTION TECHNI

Effective date: 20120930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120930

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20121001