WO2003038358A1 - Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sous deux pressions differentes - Google Patents

Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sous deux pressions differentes Download PDF

Info

Publication number
WO2003038358A1
WO2003038358A1 PCT/FR2002/003490 FR0203490W WO03038358A1 WO 2003038358 A1 WO2003038358 A1 WO 2003038358A1 FR 0203490 W FR0203490 W FR 0203490W WO 03038358 A1 WO03038358 A1 WO 03038358A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
head
expanded
cooled
distillation column
Prior art date
Application number
PCT/FR2002/003490
Other languages
English (en)
Inventor
Henri Paradowski
Original Assignee
Technip-France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip-France filed Critical Technip-France
Priority to EP02795307A priority Critical patent/EP1440283B1/fr
Priority to CA2464709A priority patent/CA2464709C/fr
Priority to DE60208588T priority patent/DE60208588T2/de
Priority to US10/494,116 priority patent/US7152429B2/en
Publication of WO2003038358A1 publication Critical patent/WO2003038358A1/fr
Priority to NO20041268A priority patent/NO331341B1/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons

Definitions

  • the present invention relates generally and according to a first aspect the methods of separation of a "dry feed gas comprising mainly methane, ethane and propane, typically natural gas, and in a second aspect the industrial installations and the equipment enabling these processes to be implemented.
  • the invention relates according to a first aspect to a process for the separation of a feed gas .sec, mainly comprising methane, ethane and propane, and a first product which is relatively more volatile, known as treated gas. , and a second relatively less volatile product called cut C2 plus, comprising: (i) an operation of cooling the supply gas into a cooled gas, (ii) an operation of separation and treatment of the cooled gas coming from the operation (i), this cooled gas being separated into a first essentially liquid foot flow 0 and a first essentially gaseous head flow, the first foot flow then being at least partially expanded to form a first cooled foot flow, the first head flow being separated into a main flow and a secondary flow, the main flow being expanded in a turbine to form a relaxed main flow, and the secondary flow being cooled in a changer then expanded to form a relaxed secondary flow, (iii) a distillation operation in a distillation device producing a second head flow and a second foot flow, the distillation device
  • the invention relates to an installation for separating a dry feed gas, mainly comprising methane, ethane and propane, into a first product, said treated gas, relatively more volatile, and a second product called cut C2 which is more relatively less volatile, comprising:
  • step (i) means for the cooling of the feed gas into a cooled gas
  • step (ii) means for separating and treating the cooled gas resulting from step (i), this cooled gas being separated into a first essentially liquid foot flow and a first essentially gaseous head flow, the. first foot flow then being at least partially relaxed to form a first cooled foot flow, the first head flow being separated into a main flow and u.
  • the main flow being expanded in a turbine to form a relaxed main flow
  • the secondary flow being cooled in an exchanger and then expanded to form a relaxed secondary flow
  • a distillation device producing a second flow of head and a second foot flow
  • the distillation device being supplied by at least part of the main expanded flow, by at least part of the cooled foot flow, and by at least part of the. expanded secondary flow
  • the cooled foot flow being at a relatively cooler temperature than the relaxed main flow and the relaxed secondary flow being at a relatively cooler temperature than the relaxed main flow
  • the second head flow cooling the secondary flow in 1 exchanger then, after reheating and a plurality of compression stages and cooling, constituting the first product, the second foot flow after compression and heating constituting the second product.
  • the distillation device used by these methods consists of a distillation column.
  • the secondary flow is introduced at the top of the column and plays the role of reflux and the main flow is introduced at an intermediate stage.
  • the first cooled foot flow is introduced on a stage lower than the main flow.
  • the top of the column plays the role of zone for extraction of hydrocarbons in C2 and more of the main flow
  • the bottom of the column acts as area of removing methane.
  • the ethane and propane extraction yields can be increased by lowering the temperature profile of the column. This is costly in energy if we simply increase the power of the cycle of refrigeration used to cool the feed gas.
  • US Pat. No. 4,157,904 proposes diagrams making it possible to lower this profile by optimizing the energy yield, mainly by mixing part of the first bottom stream with the secondary stream before cooling, expansion and supply in the distillation device, which, made of the physicochemical characteristics of these flows, makes it possible to reach lower supply temperatures of the distillation column, without penalizing the operating pressure.
  • the reflux constituted by the mixture of part of the first bottom flow and the secondary flow, is richer in C2 hydrocarbons and more than the secondary flow alone, which penalizes the extraction of hydrocarbons in C2 and more of the main flow in the upper zone of the column.
  • the present invention aims to optimize both the ethane and propane extraction yield and the energy yield of the process and the corresponding installation.
  • the invention is essentially characterized in that the device for distillation of the separation process comprises at least first and second distillation columns operating at different pressures.
  • the first and second columns to be distilled operate at respective pressures PI and
  • the operating pressure PI of the first column to be distilled can be between 30 and 45 bars. 3/038358
  • the operating pressure P2 of the second distillation column can be between 15 and 30 bars.
  • the second distillation column can produce a fourth head flow and a fourth foot flow, the fourth foot flow constituting the second foot flow produced by the distillation device, at the at least part of the fourth overhead flow supplying, after compression and at least partial liquefaction, a head stage of the first column to be distilled.
  • the first column to be distilled can produce a third head flow and a third foot flow, the third head flow constituting the second head flow produced by the distillation device, the first column to be distilled being supplied to a lower stage by at least a part of the expanded main stream and to an intermediate stage by at least a part of the expanded secondary stream.
  • the second distillation column can be fed to an upper stage by at least part of the third bottom stream produced by the first distillation column, and to an intermediate stage by at least part of the first bottom stream cooled.
  • the second column to be distilled can comprise at least one reboiler.
  • the fourth head flow can yield part of its refrigeration potential in the exchanger before compression.
  • the fourth flow of. head after compression can undergo a plurality of cooling stages, including at least one in the exchanger, then an expansion, before feeding the first column to be distilled.
  • the invention is essentially characterized in that the distillation device of the separation installation comprises at least first and second distillation columns operating at different pressures.
  • the first and second columns to be distilled operate at respective pressures PI and P2, the difference between PI and P2 being between 5 and 25 bars.
  • the operating pressure PI of the first column to be distilled can be between 30 and 45 bars.
  • the operating pressure P2 of the second distillation column can be between 15 and '30 bar.
  • the second distillation column can produce a fourth head flow and a fourth foot flow, the fourth foot flow constituting the second foot flow produced by the distillation device , at least part of the fourth overhead flow supplying, after compression and at least partial liquefaction, a head stage of the first column to be distilled.
  • the first distillation column can produce a third head flow and a third foot flow, the third head flow constituting the second head flow produced by the distillation device , the first column to be distilled being supplied to a lower stage by at least part of the main stream expanded and at an intermediate stage by at least part " of the expanded secondary flow.
  • the second distillation column 5 may be fed at an upper level by at least a portion of the third bottom flow produced by the first distillation column, and an intermediate stage by at least part of the first cooled foot flow.
  • the second distillation column can comprise at least one reboiler.
  • the fourth head flow can yield part of its refrigeration potential in the exchanger 15 before compression.
  • the fourth overhead flow after compression can undergo a plurality of cooling stages, at least one of which in the exchanger, then an expansion, before supplying the first column to be distilled.
  • FIG. 1 represents a block diagram of a gas separation installation according to the prior art
  • FIG. 2 represents a block diagram of a gas separation installation gas according to the invention.
  • This process is fed by a feed gas stream 1, typically natural gas, mainly containing methane, ethane and propane.
  • This gas arrives dry, and typically has the following characteristics: pressure 73 bar absolute, temperature 40 ° C., flow rate 30,000 kgmol / h.
  • the process generates two products: a first product 17, said treated gas, consisting mainly of methane and depleted in C2 hydrocarbons and more relative to the feed gas 1, in particular in ethane and propane, and a second product 34, called cut C2 plus, consisting mainly of ethane and propane, and containing most of the C2 and more hydrocarbons supplied by the feed gas 1.
  • the feed gas 1 undergoes a first cooling operation at a temperature of minus 50 ° C. in a cryogenic exchanger El, to give a flow of cooled gas 2.
  • a fraction of the gas is condensed during this operation, approximately 10%, the less volatile components condensing in greater proportion than the most volatile components.
  • This cooled gas 2 then undergoes a second separation and treatment operation.
  • the cooled gas flow 2 is separated in a separator tank Bl into a / 038358
  • first head flow 3 relatively depleted in hydrocarbons in C2 and more
  • a first foot flow 4 relatively enriched in hydrocarbons in C2 and more.
  • the first head flow 3 is essentially gaseous, and the first foot flow is essentially liquid and their respective flow rates are approximately 27,000 and 3,000 kgmol / h.
  • the first foot flow 4 then undergoes expansion at a pressure of 25 bar absolute, which results in cooling to minus 80 ° C. and a partial vaporization of approximately 45% of the liquid, to form a first cooled foot flow 10.
  • the first head flow 3 is divided into a main flow 5 and a secondary flow 6, with respective flow rates 20,000 and 7,000 kgmol / h.
  • the main flow 5 is expanded to a pressure of 25 bar absolute in a turbine Tl coupled to a compressor Kl to form a relaxed main flow 7. This expansion is accompanied by cooling to minus 92 ° C and partial condensation about 20% of the gas.
  • the secondary flow 6 is cooled and liquefied in a second cryogenic exchanger E2 at minus 99 ° C to form a flow 8, this resulting flow 8 then being expanded to 25 bar absolute in a relaxed secondary flow 9. This expansion is accompanied by cooling to minus 103 ° C and partial vaporization of approximately 6% of the liquid.
  • the different streams produced by the separation and treatment operation are then distilled in a distillation device C3, typically a column to be distilled in the prior art.
  • the expanded main stream 7 feeds the distillation device C3 at an intermediate stage, the expanded secondary stream 9 feeding the distillation device C3 at a head stage and constituting a reflux.
  • the first cooled bottom flow 10 feeds the distillation device C3 at an intermediate stage situated under the supply stage of the expanded main flow 7.
  • the distillation device C3 operates at 25 bar absolute and is typically equipped with two reboilers , constituted by zones of the cryogenic exchanger El in the embodiment illustrated in FIG. 1.
  • the first reboiler is supplied by a flow 18 with a flow rate of approximately 7000 kgmol / h and a temperature minus 56 ° C, withdrawn from a stage SI located under the supply stage of the first cooled foot flow 10, the heated flow constituting a flow 19 of temperature minus 19 ° C. which feeds a stage .S2 situated at a level lower than the stage SI.
  • the second reboiler is supplied by a flow 20. of - flow rate 4000 kgmol / h and temperature 5 ° C., withdrawn from a stage S3 situated at a level lower than stage S2, the heated flow constituting a flow 21 of temperature 14 ° C which supplies a stage S4 located at a level lower than stage S3.
  • the device of. distillation C3 produces a second top flow 11 which is essentially gaseous and a second bottom flow 22 which is essentially liquid with respective flow rates 27200 kgmol / h and 2800 kgmol / h.
  • the second overhead stream 11 is relatively depleted in C2 hydrocarbons and more, and the second flux foot 22 is relatively enriched in C2 hydrocarbons and more.
  • the second bottom flow 22, of temperature 14 ° C and pressure 25 bar absolute, - after compression to 35 bar absolute by a pumped PI in a flow 33 and heating to 32 ° C in the exchanger El constitutes the second product 34
  • the subsequent processing operations of the second stream 34 not covered by the present invention and therefore not described, impose a relationship between the hydrocarbons in Cl and hydrocarbons in C2 close to 0.01 in moles in this. second ' current 34.
  • the second head flow 11 yields part of its heat potential to the secondary flow -6 in • 5 1 cryogenic exchanger E2 to form a flow 12 of temperature minus 73 ° C, then undergoes a second heating step at 33 ° C in the cryogenic exchanger El to form a flow 13.
  • This flow 13 is compressed to 30 bar absolute in the compressor K1 coupled to the turbine T1 in a flow 14, and cooled to 40 ° C. in a flow 15 by an exchanger E3.
  • This stream 15 undergoes a second compression at 75 bar absolute in a stream 16 by a compressor K2, which can for example be coupled to a gas turbine GT, then cooled
  • a refrigeration cycle provides the cryogenic exchanger El with the additional refrigerating power necessary to cool the feed gas 1.
  • a stream 51 of propane gas is compressed to 14 bars
  • the stream 55 is vaporized in the cryogenic exchanger El to form the stream 51, of temperature minus 6 ° C. 35
  • the flow rates per component of the main process flows are given in the table below, in kgmol / h: 12
  • the process is fed by a feed gas stream 1 having the same characteristics as that described above.
  • the first foot flow 4 is relaxed to 20 bar absolute, which brings the temperature of the first cooled foot flow 10 to minus 86 ° C.
  • the respective flow rates of the main 5 and secondary 6 flows are 26000 and 1000 kgmol / h.
  • the main flow 5 is expanded to 38.5 bar absolute, which brings the temperature of the expanded main flow 7 to minus 77 ° C.
  • the secondary flow 6 is cooled in the cryogenic exchanger E2 at least '91 ° C and expanded to 38.5 bars absolute, which brings the temperature of the secondary flow 9 in relaxed least 92 ° C.
  • the distillation device C3 comprises first and second distillation columns C1 and C2 operating under respective pressures PI and P2 of 38.5 and 20 bars absolute. / 038358
  • the first distillation column ci produces a third head flow 11 and a third foot flow
  • the second distillation column C2 is supplied by the first cooled bottom stream 10 at an intermediate stage, and by a third relaxed bottom stream 24 at one. upper floor.
  • the third relaxed bottom stream 24 is produced by expanding the third bottom stream 23, which exits at 38.5 bars absolute and minus 78 ° C from the first distillation column C1 to 20 bars and less 98 ° C.
  • the fourth stream of foot 22 comes out at 20 bars absolute and 5 ° C.
  • the fourth head flow 25 with a temperature minus 97 ° C and a pressure of 20 bar absolute, gives up part of its refrigeration potential in the cryogenic exchanger E2 to form a flow 26 at minus 60 ° C.
  • This flow 26 is then reheated in the cryogenic exchanger El in a flow 27 at 38 ° C then compressed to 50 bars and 128 ° C by a compressor K3 to form a flow
  • the compressor K3 is typically equipped with an electric motor.
  • the stream 28 is then cooled to 40 ° C by an exchanger E6 to give a stream 29, undergoes a second cooling step in the cryogenic exchanger El into a stream 30 at minus 50 ° C, this stream 30 undergoing a third step of cooling in the cryogenic exchanger E2 in a flow 31 at minus 91 ° C.
  • the first distillation column Cl is also supplied by the main expanded flow 7 on one floor lower, and by the relaxed secondary flow 9, to an intermediate stage.
  • the third overhead stream 11 leaves the first distillation column C1 at minus 89 ° C. and 38.5 bars absolute and undergoes a treatment identical to the treatment described for the prior art.
  • the stream 11 is heated to minus 69 ° C to form the stream 12, the stream 12 being heated to 38 ° C to form the stream 13.
  • This stream 13 is subjected to two successive compressions by the compressors Kl and K2 at 44 bar absolute and 51 ° C and 75 bar absolute and '96 ° C, each compression followed by cooling to 40 ° C and 45 ° C respectively.
  • the fourth bottom stream 22 is compressed and reheated to 35 ° C and 35 bars.
  • the first and second products 17 and 34 are produced under the same temperature and pressure conditions as for the process according to the prior art, which allows a comparison of the energy balances.
  • the second distillation column C2 is equipped with two reboilers, formed by zones of the cryogenic exchanger El in the embodiment illustrated in FIG. 2.
  • the first reboiler is supplied by the flow 18 with a flow rate of approximately 5700 kgmol / h ' and a temperature minus 55 ° C, withdrawn from a stage SI situated under the supply stage of the first cooled base flow 10, the heated flow constituting the flow 19 of temperature minus 20 ° C which feeds a stage S2 situated at a level lower than the stage SI.
  • the second reboiler is supplied by the flow 20 of flow rate 3600 kgmol / h and of temperature minus 3 ° C, withdrawn from a stage S3 situated at a level lower than the stage S2, the heated flow constituting the flow 21 of temperature 5 ° C which feeds a stage S4 situated at a level lower than the stage S3.
  • the flow rates by components of the main process flows are indicated in the table below, in kgmol / h:
  • the operating pressure P 1 of the first distillation column C1 always being 38.5 bars absolute and the operating pressure P 2 of the second distillation column C2 being of 25 'absolute bars.
  • the auxiliary refrigeration cycle is used, the propane flow rate being approximately 550 kgmol / h in the loop.
  • the operating pressure PI of the distillation column C1 can vary from 30 to 45 bars and the operating pressure P2 of the distillation column C2 can vary from 15 to 30 bars. Energy efficiency is better when the difference between PI and P2 is between 5 and 25 bars.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne un procédé de séparation d'un gaz d'alimentation (1) sec, comprenant majoritairement du méthane, de l'éthane et du propane, en un premier produit (17) relativement plus volatil, dit gaz traité, et un second produit (34) relativement moins volatil dénommé coupe C2 plus, comprenant: (i) une opération de refroidissement du gaz d'alimentation(1) en un gaz refroidi (2), (ii) une opération de séparation et de traitement du gaz refroidi (2) issu de l'opération (i), (iii) une opération de distillation dans un dispositif de distillation (C3), et l'installation correspondante. Selon l'invention, le dispositif de distillation (C3) comprend au moins des première et seconde colonnes à distiller (C1) et (C2) fonctionnant à des pressions différentes.

Description

PROCEDE ET INSTALLATION DE SEPARATION D'UN GAZ CONTENANT DU METHANE ET DE L'ETHANE A DEUX COLONNES FONCTIONNANT SUR DEUX PRESSIONS DIFFERENTES
La présente invention concerne de façon générale et selon un premier aspect les méthodes de séparation d'un gaz d'alimentation "sec comprenant majoritairement du méthane, de l'éthane et du propane, typiquement du gaz 5 naturel, et dans un second aspect les installations industrielles et les équipements permettant de mettre en œuvre ces procédés .
Plus précisément, l'invention concerne selon un premier aspect un procédé de séparation d'un gaz 0 d'alimentation .sec, comprenant majoritairement du méthane, de l'éthane et du propane, e un premier produit relativement plus volatil, dit gaz traité, et un second produit relativement moins volatil dénommé coupe C2 plus, comprenant : 5 (i) une opération de refroidissement du gaz d'alimentation en un gaz refroidi, (ii) une opération de séparation et de traitement du gaz refroidi issu de l'opération (i) , ce gaz refroidi étant séparé en un premier flux de pied essentiellement liquide 0 et un premier flux de tête essentiellement gazeux, le premier flux de pied étant ensuite au moins partiellement détendu pour former un premier flux de pied refroidi, le premier flux de tête étant séparé en un flux principal et un flux secondaire, le flux principal étant détendu dans 5 une turbine pour former un flux principal détendu, et le flux secondaire étant refroidi dans un échangeur puis détendu pour former un flux secondaire détendu, (iii) une opération de distillation dans un dispositif de distillation produisant un second flux de tête et un 0 second flux de pied, le dispositif de distillation étant alimenté par au moins une partie du flux principal détendu, par au moins une partie du flux de pied refroidi, et par au moins une partie du flux secondaire détendu, le flux de pied refroidi étant à une température 35 relativement moins froide que le flux principal détendu et le flux secondaire détendu étant à une température relativement plus froide que le flux principal détendu, le second flux de tête refroidissant le flux secondaire
• dans .1' échangeur puis, après réchauffage et une pluralité d'étapes de compression et de refroidissement,. constituant le premier produit, le second flux de pied après compression et réchauffage constituant le second
•produit.
Selon un second aspect, l'invention concerne une installation de séparation d'un gaz d'alimentation sec, comprenant majoritairement du méthane, de l'éthane et du propane, en un premier produit, dit gaz traité, relativement plus volatil, et un second produit dénommé coupe C2 plus relativement moins volatil, comprenant :
(i) des moyens pour le ' refroidissement du gaz d'alimentation en un gaz refroidi, (ii) des moyens pour la séparation et de traitement du gaz refroidi issu de l'étape (i) , ce gaz refroidi étant séparé en un premier flux de pied essentiellement liquide et un premier flux de tête essentiellement gazeux, le. premier flux -de pied étant ensuite au moins partiellement détendu pour former un premier flux de pied refroidi, le premier flux de tête étant séparé en un flux principal et u . flux secondaire, le flux principal étant détendu dans une turbine pour former un flux principal détendu, et le flux secondaire 'étant refroidi dans un échangeur puis détendu pour former un flux secondaire détendu,- (iii) un dispositif de distillation produisant un second flux de tête et un second flux de pied, le dispositif de distillation étant alimenté par au moins une partie du flux principal détendu, par au moins une partie du flux de pied refroidi, et par au moins une partie du. flux secondaire détendu, le flux de pied refroidi étant à une température relativement moins froide que le flux principal détendu et le flux secondaire détendu étant à une température relativement plus froide que le flux principal détendu, le second flux de tête refroidissant le flux secondaire dans 1 ' échangeur puis, après réchauffage et une pluralité d'étapes de compression et de refroidissement, constituant le premier produit, le second flux de pied après compression et réchauffage constituant le second produit.
Ce procédé et l'installation qui. le met en œuvre sont connus de l'art antérieur, en particulier par le brevet US 4 157 904. Ce brevet révèle plusieurs procédés et leurs installations correspondantes présentant les caractéristiques décrites ci-dessus, ces procédés prévoyants en plus de mélanger une partie du premier flux de pied au flux secondaire avant refroidissement, détente et alimentation dans le dispositif de distillation.
Le dispositif de distillation utilisé par ces procédés est constitué d'une colonne à distiller. Le flux secondaire est introduit en tête de -colonne et joue le rôle de reflux et le flux principal est introduit à un étage intermédiaire. Le premier flux de pied refroidi est introduit à un étage inférieur au flux principal.
Le haut de la colonne, entre l'étage d'introduction du flux principal et l'étage d'introduction du flux secondaire, joue lé rôle de zone d'extraction des hydrocarbures en C2 et plus du flux principal, et le bas de la colonne, en dessous de l'étage d'introduction du flux principal', joue le rôle de zone d'élimination du méthane . Les rendements d'extraction de l'éthane et du propane peuvent être augmentés en abaissant le profil de température de la colonne. Ceci est coûteux en énergie si on augmente simplement la puissance du cycle , de réfrigération utilisé pour refroidir le gaz d'alimentation.
Une autre façon d'abaisser ce profil est de détendre plus fortement les flux alimentant la colonne à distiller, ce qui refroidit ces flux mais diminue également la pression de fonctionnement de la colonne. La puissance nécessaire pour recomprimer le premier produit va donc augmenter. /038358
Le brevet US 4 157 904 propose des schémas permettant d'abaisser ce profil en optimisant le rendement énergétique, principalement en mélangeant une partie du premier flux de pied au flux secondaire avant refroidissement, détente et alimentation dans le dispositif de distillation, ce qui, du fait des caractéristiques physico-chimiques de ces flux, permet d'atteindre des températures d'alimentation de la colonne à distiller plus basses, sans pénaliser la pression de fonctionnement.
En revanche, le reflux, constitué par le mélange d'une partie du premier flux de pied et du flux secondaire, est plus riche en hydrocarbures C2 et plus que le flux secondaire seul, ce qui pénalise l'extraction des hydrocarbures en C2 et plus du flux principal dans la zone haute de la colonne.
Dans ce contexte, la présente invention vise à optimiser à la fois le rendement d'extraction de l'éthane et du propane et le rendement énergétique du procédé et de l'installation correspondante.
A cette fin, l'invention, selon un premier aspect, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est essentiellement caractérisé en ce que le dispositif de distillation du procédé de séparation comprend au moins des première et seconde colonnes à distiller fonctionnant à des pressions différentes .
Dans un mode de réalisation possible du procédé selon l'invention, les première et seconde colonnes à distiller fonctionnent à des pressions respectives PI et
P2, la différence entre PI et P2 étant comprise entre 5 et 25 bars.
Selon un des aspects avantageux du procédé selon l'invention, la pression de fonctionnement PI de la première colonne à distiller peut être comprise entre 30 et 45 bars . 3/038358
Selon un des aspects avantageux du procédé selon l'invention, la pression de fonctionnement P2 de la seconde col-onne à distiller peut être comprise entre 15 et 30 bars. Selon un des aspects avantageux du procédé selon l'invention, la seconde colonne à distiller peut produire un quatrième flux de tête et un quatrième flux de pied, le quatrième flux de pied constituant le second flux de pied produit par le dispositif de distillation, au moins une partie du quatrième flux de tête alimentant après compression et liquéfaction au moins partielle un étage de tête de la première colonne à distiller.
Selon un des aspects avantageux du procédé selon l'invention, la première colonne à distiller peut produire un troisième flux de tête et un troisième flux de pied, le troisième flux de tête constituant le second flux de tête produit par le dispositif de distillation, la première colonne à distiller étant alimentée à un étage inférieur par au moins une partie du flux principal détendu et à un étage intermédiaire par au moins une partie du flux secondaire détendu.
Selon un des aspects avantageux du procédé selon
- l'invention, la seconde colonne à distiller peut être alimentée à un étage supérieur par au moins une partie du troisième flux de pied produit par la première colonne à distiller, et à un étage intermédiaire par au moins une partie du premier flux de pied refroidi.
Selon un des aspects avantageux du procédé selon l'invention, la seconde colonne à distiller peut comprendre au moins un rebouilleur.
Selon un des aspects avantageux du procédé selon l'invention, le quatrième flux de tête peut céder une partie de son potentiel frigorifique dans l' échangeur avant compression. Selon un des aspects avantageux du procédé selon l'invention, le quatrième flux de . tête après compression peut subir une pluralité d'étapes de refroidissement, dont au moins une dans l' échangeur, puis une détente, avant d'alimenter la première colonne à distiller.
L'invention, selon un second aspect, par ailleurs conforme à la définition, générique qu'en donne le préambule ci-dessus, est essentiellement caractérisée en ce que le dispositif de distillation de l'installation de séparation comprend au moins des première et seconde colonnes à distiller fonctionnant à des pressions différentes. Dans un mode de réalisation possible de l'installation selon' l' invention, les première et seconde colonnes à distiller fonctionnent à des pressions respectives PI et P2 , la différence entre PI et P2 étant comprise entre 5 et 25 bars. Selon un des aspects avantageux de l'installation selon l'invention, la pression de fonctionnement PI de la première colonne à distiller peut être comprise entre 30 et 45 bars.
Selon un des aspects avantageux de l'installation selon l'invention, la pression de fonctionnement P2 de la seconde colonne à distiller peut être comprise entre 15 et '30 bars.
Selon un des aspects avantageux de l'installation selon l'invention, la seconde colonne à distiller peut produire un quatrième flux de tête et un quatrième flux de pied, le quatrième flux de pied constituant le second flux de pied produit par le dispositif de distillation, au moins une partie du quatrième flux de tête alimentant après compression et liquéfaction au moins partielle un étage de tête de la première colonne à distiller.
Selon un des aspects avantageux de l'installation selon l'invention, la première colonne à distiller peut produire un troisième flux de tête et un troisième flux de pied, le troisième flux de tête constituant le second flux de tête produit par le dispositif de distillation, la première colonne à distiller étant alimentée à un étage inférieur par au moins une partie du flux principal détendu et à un étage intermédiaire par au moins une partie" du flux secondaire détendu.
Selon' un des aspects avantageux • -de l'installation selon l'invention, la seconde colonne à distiller peut 5 être alimentée à un étage supérieur par au moins une partie du troisième flux de pied produit par la première colonne à distiller, et à un étage intermédiaire par au moins une partie du premier flux de pied refroidi .
Selon un des aspects avantageux de l'installation 10 selon l'invention, la seconde colonne à distiller peut comprendre au moins un rebouilleur.
Selon un des aspects avantageux de l'installation selon l'invention, le quatrième flux de tête peut céder une partie de son potentiel frigorifique dans l' échangeur 15 avant compression.
Selon un des aspects avantageux de l'installation selon l'invention, le quatrième flux de tête après compression peut subir une pluralité d'étapes de refroidissement, dont au moins une dans l' échangeur, puis 20 une détente, avant d'alimenter la première colonne à distiller.
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement
25 limitatif, en références aux figures annexées, parmi lesquelles : la figure 1 représente un schéma de principe d'une installation de séparation de gaz selon l'art antérieur 30 - la figure 2 représente un schéma de principe d'une installation de séparation de gaz selon l'invention.
On décrira d'abord un procédé de séparation classique selon l'art antérieur, en référence à la figure .35 1.
Les valeurs de débits, de températures, de pressions et de compositions indiquées dans la 038358
description ci-dessous sont des valeurs obtenues par simulation - numérique du procédé dans un mode de réalisation représenté à la figure 1.
Ce procédé est alimenté par un flux de gaz d'alimentation 1, typiquement du gaz naturel, contenant majoritairement du méthane, de l'éthane et du propane. Ce gaz arrive sec, et présente typiquement les caractéristiques suivantes : pression 73 bars absolus, température 40°C, débit 30000 kgmol/h.
Les débits molaires approximatifs en kgmol/h des principaux composants du gaz d'alimentations sont indiqués dans le tableau ci-dessous.
Figure imgf000010_0001
Le procédé génère deux produits : un premier produit 17, dit gaz traité, constitué principalement de méthane et appauvri en hydrocarbures en C2 et plus relativement au gaz d'alimentation 1, notamment en éthane et en propane, et un second produit 34, dénommé coupe C2 plus, constitué principalement d' éthane et de propane, et contenant la plus grande partie des hydrocarbures en C2 et plus apportés par le gaz d'alimentation 1.-
Le gaz d'alimentation 1 subit une première opération de refroidissement à une température de moins 50 °C dans un échangeur cryogénique El, pour donner un flux de gaz refroidi 2. Une fraction du gaz est condensé pendant cette opération, environ 10%, les composants les moins volatils se condensant en plus grande proportion que les composants les plus volatils.
Ce gaz refroidi 2 subit ensuite une deuxième opération de séparation et de traitement. Le flux de gaz refroidi 2 est séparé dans un ballon séparateur Bl en un /038358
premier flux de tête 3 relativement appauvri en hydrocarbures en C2 et plus, et un premier flux de pied 4 relativement enrichi en hydrocarbures en C2 et plus.
Le premier flux de tête 3 est essentiellement gazeux, et le premier flux de pied est essentiellement liquide et leurs débits respectifs sont d'environ 27000 et 3000 kgmol/h.
Le premier flux de pied 4 subit ensuite une détente à une pression de 25 bars absolus, qui entraîne un refroidissement à moins 80°C et une vaporisation partielle d'environ 45% du liquide, pour former un premier flux de pied refroidi 10.
Le premier flux de tête 3 est divisé en un flux principal 5 et un flux secondaire 6, de débits respectifs 20000 et 7000 kgmol/h. Le flux principal 5 est détendu à une pression de 25 bars absolus dans une turbine Tl couplée a un compresseur Kl pour former un flux principal détendu 7. Cette détente s'accompagne d'un refroidissement à moins 92 °C et d'une condensation partielle de 20% environ du gaz.
Le flux secondaire 6 est refroidi et liquéfié dans un second échangeur cryogénique E2 à moins 99°C pour former un flux 8, ce flux 8 résultant étant ensuite détendu à 25 bars absolus en un flux secondaire détendu 9. Cette détente s'accompagne d'un refroidissement à moins 103°C et d'une vaporisation partielle de 6% environ du liquide.
Les différents flux produits par l'opération de séparation et de traitement subissent ensuite une distillation dans un dispositif de distillation C3 , typiquement une colonne à distiller dans l'art antérieur.
Le flux principal détendu 7 alimente le dispositif de distillation C3 à un étage intermédiaire, le flux secondaire détendu 9 alimentant le dispositif de distillation C3 à un étage de tête et constituant un reflux. "Le premier flux de pied refroidi 10 alimente le- dispositif de distillation C3 à un étage intermédiaire situé sous l'étage d'alimentation du flux principal détendu 7. Le dispositif de distillation C3 fonctionne sous 25 bars absolus et est typiquement équipé de deux rebouilleurs, constitués par des zones de l' échangeur cryogénique El dans le mode de réalisation illustré sur la figure 1. Le premier rebouilleur est alimenté par un flux 18 de débit 7000 kgmol/h environ et de température moins 56°C, soutiré à un étage SI situé sous l'étage d'alimentation du premier flux de pied refroidi 10, le flux réchauffé constituant un flux 19 de température moins 19°C qui alimente un étage .S2 situé à un niveau inférieur à l'étage SI.
Le second rebouilleur est alimenté par un flux 20. de - débit 4000 kgmol/h et de température 5°C, soutiré à un étage S3 situé à un niveau inférieur à l'étage S2 , le flux réchauffé constituant un flux 21 de température 14°C qui alimente un étage S4 situé à un niveau inférieur à l'étage S3.
Le dispositif de. distillation C3 produit un second flux de tête 11 essentiellement gazeux et un second flux de pied 22 essentiellement liquide de débits respectifs 27200 kgmol/h et 2800 kgmol/h.
Le second flux de tête 11 est relativement appauvri en hydrocarbures en C2 et plus, et le second flux' de pied 22 est relativement enrichi en hydrocarbures en C2 et plus.
Le second flux de pied 22, de température 14°C et de pression 25 bars absolus, -après compression à 35 bars absolus par une pompé PI en un flux 33 et réchauffement à 32 °C dans l' échangeur El constitue le second produit 34. Les opérations de traitement subséquentes du second courant 34, non couvertes par la présente invention et donc non décrites, imposent un rapport entre les hydrocarbures en Cl et les hydrocarbures en C2 voisin de 0.01 en moles dans ce . second' courant 34.
Le second flux de tête 11 cède une partie de son potentiel calorifique au flux secondaire -6 dans • 5 1 ' échangeur cryogénique E2 pour former un flux 12 de température moins 73°C, puis subit une seconde étape de réchauffement à 33 °C dans l' échangeur cryogénique El pour former un flux 13.
Ce flux 13 est comprimé à 30 bars absolus dans le 10 compresseur Kl couplé à la turbine Tl en un flux 14, et refroidi à 40°C en un flux 15 par un échangeur E3.
Ce flux 15 subit une seconde compression à 75 bars absolus en un flux 16 par un compresseur K2 , qui peut par exemple être couplé à une turbine à gaz GT, puis refroidi
15 à 45°C par 1 ' échangeur E4 et constitue le premier produit
17.
Suivant les conditions de fonctionnement, un cycle de réfrigération apporte à l' échangeur cryogénique El la puissance frigorifique complémentaire nécessaire pour 20 refroidir le gaz d'alimentation 1.
Ce cycle n'est pas utile dans les conditions de fonctionnement décrites ci-dessus, mais on en donne néanmoins ci-après la description.
Un flux 51 de propane gazeux est comprimé à 14 bars
25 absolus par un compresseur K4, typiquement équipé d'un moteur .électrique, pour produire un flux 52, puis refroidi à 40°C par un échangeur E5' en en flux 53 liquide.
Le flux 53 est refroidi à moins 20°C dans
30 l' échangeur cryogénique El et pour former le flux 54 puis détendu à 4 bars absolus en un flux 55.
Le flux 55 est vaporisé dans l' échangeur cryogénique El pour former le flux 51, de température moins 6°C. 35 Les débits par composants des principaux flux du procédé sont indiqués dans le tableau ci-dessous, en kgmol/h : 12
Figure imgf000014_0001
Le procédé selon l'invention va maintenant être décrit en référence à la figure 2. Seules les parties qui se différencient de l'art antérieur seront détaillées.
Les flux jouant un rôle identique à celui joué dans le procédé selon l'art antérieur gardent la -même référence.
Le procédé est alimenté par un flux de gaz d'alimentation 1 présentant les mêmes caractéristiques que celui décrit 'plus haut.
Les opérations de refroidissement du gaz d'alimentation 1 et de séparation et de traitement du gaz refroidi 2 sont identiques à celles de l'art antérieur.
Seules les conditions opératoires changent, comme on le décrira ci-dessous.
Le premier flux de pied 4 est détendu à 20 bars absolus, ce qui amène la température du premier flux de pied refroidi 10 à moins 86°C.
Les débits respectifs des flux principal 5 et secondaire 6 sont de 26000 et 1000 kgmol/h. Le flux principal 5 est détendu à 38.5 bars absolus, ce qui amène la température du flux principal détendu 7 à moins 77°C.
Le flux secondaire 6 est refroidi dans l' échangeur cryogénique E2 à moins ' 91°C et détendu à 38.5 bars absolus, ce qui amène la température du flux secondaire détendu 9 à moins 92°C.
Le dispositif de distillation C3 comprend des premières et secondes colonnes à distiller Cl et C2 fonctionnant sous des pressions respectives PI et P2 de 38.5 et 20 bars absolus. /038358
La première colonne à distiller ci produit un troisième flux de tête 11 et un troisième flux de pied
- 23, de débits respectifs 27300 et 8000 kgmol/h, et la
-seconde colonne à distiller C2 produit un quatrième flux de tête 25 et un quatrième flux de pied 22, de débits respectifs 8310 et 2730 kgmol/h.
La seconde colonne à distiller C2 est alimentée par le premier flux de pied refroidi 10 à un étage intermédiaire, et par un troisième flux de pied détendu 24 à un . étage supérieur. Le troisième flux de pied détendu 24 est produit en détendant à 20 bars absolus et moins 98 °C le troisième flux de pied 23, qui sort à 38.5 bars absolus et moins 78°C de la première colonne à distiller Cl. Le quatrième flux de pied 22 sort à 20 bars absolus et 5°C.
Le quatrième flux de tête 25, de température moins 97°C et de pression 20 bars absolus, cède une partie de son potentiel frigorifique dans l' échangeur cryogénique E2 pour former un flux 26 à moins 60°C.
Ce flux 26 est ensuite réchauffé dans 1 ' échangeur cryogénique El en un flux 27 à 38°C puis comprimé à 50 bars et 128°C par un compresseur K3 pour former un flux
28. Le compresseur K3 est typiquement équipé d'un moteur électrique.
Le flux 28 est ensuite refroidi à 40°C par un échangeur E6 pour donner un flux 29, subit une deuxième étape de refroidissement dans 1 ' échangeur cryogénique El en un flux 30 à moins 50 °C, ce flux 30 subissant une troisième étape de refroidissement dans l' échangeur cryogénique E2 en un flux 31 à moins 91 °C.
Le flux 31, après détente à 38.5 bars absolus et moins 92 °C, forme un flux 32 qui alimente un étage de tête de la première colonne à distiller Cl. • La première colonne à distiller Cl est également alimentée par le flux principal détendu 7 à un étage inférieur, et par le flux secondaire détendu 9, à un étage intermédiaire .
Le troisième flux de tête 11 sort de la première • colonne de distillation Cl à moins 89°C et 38.5 bars absolus et subit un traitement identique au traitement décrit pour l'art antérieur-.
Le flux 11 est réchauffé à moins 69°C pour former -le flux 12, le flux 12 étant réchauffé à 38°C pour former le flux 13. Ce flux 13 subit deux compressions successives par les compresseurs Kl et K2 à 44 bars absolus et 51°C puis 75 bars absolus et' 96°C, chaque compression étant suivie d'un refroidissement respectivement à 40°C et 45°C.
Le quatrième flux de pied 22 est comprimé et réchauffé à 35°C et 35 bars.
On notera que les premier et second produits 17 et 34 sont produits dans les mêmes conditions de température et de pression que pour le procédé selon l'art antérieur, ce qui autorise une comparaison des bilans énergétiques. La seconde colonne à distiller C2 est équipée de deux rebouilleurs, constitués par dès zones de l' échangeur cryogénique El dans le mode de réalisation illustré sur la figure 2.
Le premier rebouilleur est alimenté par le flux 18 de débit 5700 kgmol/h environ' et de température moins 55°C, soutiré à un étage SI situé sous l'étage d'alimentation du premier flux de pied refroidi 10, le flux réchauffé constituant le flux 19 de température moins 20°C qui alimente un étage S2 situé à un niveau inférieur à l'étage SI.
Le second rebouilleur est alimenté par le flux 20 de débit 3600 kgmol/h et de température moins 3°C, soutiré à un étage S3 situé à un niveau inférieur à l'étage S2, le flux réchauffé constituant le flux 21 de température 5°C qui alimente un étage S4 situé à un niveau inférieur à l'étage S3. Les débits par composants des principaux flux du procédé sont indiqués dans le tableau ci-dessous, en kgmol/h :
Figure imgf000017_0001
Un autre cas de fonctionnement du procédé selon l'invention va être décrit ci-dessous, la pression de fonctionnement PI de la première colonne de distillation Cl étant toujours de 38.5 bars absolus et la pression de fonctionnement P2 de la seconde colonne de distillation C2 étant de 25 'bars absolus.
Les caractéristiques des principaux flux sont rassemblés dans le tableau ci-dessous.
Figure imgf000017_0002
Figure imgf000018_0001
Dans ce cas de fonctionnement, le cycle de réfrigération annexe est utilisé, le débit de propane étant de 550 kgmol/h environ dans la' boucle.
La comparaison des principales caractéristiques du procédé selon 1 '- art antérieur et des deux cas de fonctionnement du procédé selon l'invention montre que, pour des taux d'extraction d' éthane et de propane similaire, le procédé selon l'invention permet un gain de puissance considérable, et donc des économies.
Figure imgf000018_0002
* Pression du dispositif de distillation C3 L'économie de puissance réalisée avec le procédé selon l'invention est de l'ordre de 5000 kW par rapport à l'art antérieur pour les débits considérés . D'autres variantes de réalisation sont inclues dans la présente invention.
La pression de fonctionnement PI de la colonne à distiller Cl peut varier de 30 à 45 bars et la pression de fonctionnement P2 de la colonne à distiller C2 peut varier de 15 à 30 bars. Le rendement énergétique est meilleur quand la différence entre PI et P2 est comprise entre 5 et 25 bars.
Le fait d'utiliser une première colonne à distiller
Cl à une pression PI plus élevée permet de faire des économies pour la compression finale du premier produit
17, ces économies contrebalançant largement le coût de la compression intermédiaire du quatrième flux de tête 25.
Par ailleurs, le procédé bénéficie pour ses performances de séparation du fait que le quatrième flux de tête 25, utilisé comme reflux dans la première colonne à distiller Cl, est très appauvri en hydrocarbures en C2 et plus, comme le montre le tableau suivant :
Figure imgf000019_0001
* utilisé comme reflux de tête

Claims

REVENDICATIONS
1. Procédé de séparation d'un gaz d'alimentation (1 ) sec, comprenant majoritairement du méthane, de l'éthane et du propane, en un premier produit (17) relativement plus volatil, dit gaz traité, et un second produit (34) relativement moins volatil dénommé coupe C2 plus, comprenant : (i) une opération de refroidissement du gaz d'alimentation (1) en un gaz refroidi (2), (ii) une opération de séparation et de traitement du gaz refroidi (2) issu de l'opération (i), ce gaz refroidi (2) étant séparé en un premier flux de pied (4) essentiellement liquide et un premier flux de tête (3) essentiellement gazeux, le premier flux de pied (4) étant ensuite au moins partiellement détendu pour former un premier flux de pied refroidi (10), le premier flux de tête (3) étant séparé en un flux principal (5) et un flux secondaire (6), le flux principal (5) étant détendu dans une turbine (T1) pour former un flux principal détendu (7), et le flux secondaire (6) étant refroidi dans un échangeur (E2) puis détendu pour former un flux secondaire détendu (9), (iii) une opération de distillation dans un dispositif de distillation (C3) produisant un second flux de tête (11) et un second flux de pied (22), le dispositif de distillation (C3) étant alimenté par au moins une partie du flux principal détendu (7), par au moins une partie du flux de pied refroidi (10), et par au moins une partie du flux secondaire détendu (9) et comprenant une première colonne à distiller (C1) fonc- tionnant à une pression P1 , le flux de pied refroidi (10) étant à une température relativement moins froide que le flux principal détendu (7) et le flux secondaire détendu (9) étant à une température relativement plus froide que le flux principal détendu (7), le second flux de tête (11 ) refroidissant le flux secondaire (6) dans l'échangeur (E2) puis, après réchauffage et une pluralité d'étapes de compres- sion et de refroidissement, constituant le premier produit (17), le second flux de pied (22) après compression et réchauffage constituant le second produit (34), caractérisé en ce que, le dispositif de distillation (C3) comprend au moins une seconde colonne à distiller (C2) fonctionnant à une pression P2, la différence entre P1 et P2 étant comprise entre 5 et 25 bars ; en ce que la seconde colonne à distiller (C2) produit un quatrième flux de tête (25) et un quatrième flux de pied (22), le quatrième flux de pied (22) constituant le second flux de pied produit par le dispositif de distillation (C3), au moins une partie du quatrième flux de tête (25) alimentant après compression et liquéfaction au moins partielle un étage de tête de la première colonne à distiller (C1 ) ; et en ce que la première colonne à distiller (C1) produit un troisième flux de tête (11 ) et un troisième flux de pied (23), le troisième flux de tête (1 1 ) constituant le second flux de tête produit par le dispositif de distillation (C3), la première colonne à distiller (C1 ) étant alimentée à un étage inférieur par au moins une partie du flux principal détendu (7) et à un étage intermédiaire par au moins une partie du flux secondaire détendu (9).
2. Procédé de séparation suivant la revendication 1 , caractérisé en ce que la pression de fonctionnement P1 de la première colonne à distiller (C1) est comprise entre 30 et 45 bars.
3. Procédé de séparation suivant la revendication 1 , caractérisé en ce que la pression de fonctionnement P2 de la seconde colonne à distiller (C2) est comprise entre 15 et 30 bars.
4. Procédé de séparation suivant la revendication 1 , caractérisé en ce que la seconde colonne à distiller (C2) est alimentée à un étage supérieur par au moins une partie du troisième flux de pied (23) produit par la première colonne à distiller (C1 ), et à un étage intermédiaire par au moins une partie du premier flux de pied refroidi (10).
5. Procédé de séparation suivant l'une quelconque des revendications précédentes, caractérisé en ce que la seconde colonne à distiller (C2) comprend au moins un rebouilleur.
6. Procédé de séparation suivant la revendication 1 , caractérisé en ce que le quatrième flux de tête (25) cède une partie de son potentiel frigorifique dans l'échangeur (E2) avant compression.
7. Procédé de séparation suivant la revendication 1 , caractérisé en ce que le quatrième flux de tête (25) après compression subit une pluralité d'étapes de refroidissement, dont au moins une dans l'échangeur (E2), puis une détente, avant d'alimenter la première colonne à distiller (C1 ).
8. Installation de séparation d'un gaz d'alimentation (1 ) sec, comprenant majoritairement du méthane, de l'éthane et du propane, en un premier produit (17) relativement plus volatil, dit gaz traité, et un second produit (34) relativement moins volatil dénommé coupe C2 plus, comprenant : (i) des moyens pour le refroidissement du gaz d'alimentation (1) en un gaz refroidi (2), (ii) des moyens pour la séparation et de traitement du gaz refroidi (2) issu de l'étape (i), ce gaz refroidi (2) étant séparé en un premier flux de pied (4) essentiellement liquide et un premier flux de tête (3) essentiellement gazeux, le premier flux de pied (4) étant ensuite au moins partiellement détendu pour former un premier flux de pied refroidi (10), le premier flux de tête (3) étant séparé en un flux principal (5) et un flux secondaire (6), le flux principal (5) étant détendu dans une turbine (T1 ) pour former un flux principal détendu (7), et le flux secondaire (6) étant refroidi dans un échangeur (E2) puis détendu pour former un flux secondaire détendu (9), (iii) un dispositif de distillation (C3) produisant un second flux de tête (11) et un second flux de pied (22), le dispositif de distillation (C3) étant alimenté par au moins une partie du flux principal détendu (7), par au moins une partie du flux de pied refroidi (10), et par au moins une partie du flux secondaire détendu (9) et comprenant une première colonne à distiller (C1) fonctionnant à une pression P1 , le flux de pied refroidi (10) étant à une température relativement moins froide que le flux principal détendu (7) et le flux secondaire détendu (9) étant à une température relativement plus froide que le flux principal détendu (7), le second flux de tête (11) refroidissant le flux secondaire (6) dans l'échangeur (E2) puis, après réchauffage et une pluralité d'étapes de compression et de refroidissement, constituant le premier produit (17), le second flux de pied (22) après compression et réchauffage constituant le second produit (34) caractérisée en ce que : le dispositif de distillation (C3) comprend au moins une seconde colonne à distiller (C2) fonctionnant à une pression P2, la différence entre P1 et P2 étant comprise entre 5 et 25 bars ; en ce que la seconde colonne à distiller (C2) produit un quatrième flux de tête (25) et un quatrième flux de pied (22), le quatrième flux de pied (22) constituant le second flux de pied produit par le dispositif de distillation (C3), au moins une partie du quatrième flux de tête (25) alimentant après compression et liquéfaction au moins partielle un étage de tête de la première colonne à distiller (C1) ; et en ce que la première colonne à distiller (C1 ) produit un troisième flux de tête (11 ) et un troisième flux de pied (23), le troisième flux de tête (11 ) constituant le second flux de tête produit par le dispositif de distillation (C3), la première colonne à distiller (C1) étant alimentée à un étage inférieur par au moins une partie du flux principal détendu (7) et à un étage intermédiaire par au moins une partie du flux secondaire détendu (9).
9. Installation de séparation suivant la revendication 8, caractérisée en ce que la pression de fonctionnement P1 de la première colonne à distiller (C1) est comprise entre 30 et 45 bars.
10. Installation de séparation suivant la revendication 8, caractérisée en ce que la pression de fonctionnement P2 de la seconde colonne à distiller
(C2) est comprise entre 15 et 30 bars.
11. Installation de séparation suivant la revendication 8, caractérisée en ce que la seconde colonne à distiller (C2) est alimentée à un étage supérieur par au moins une partie du troisième flux de pied (23) produit par la première co- lonne à distiller (C1), et à un étage intermédiaire par au moins une partie du premier flux de pied refroidi (10).
12. Installation de séparation suivant l'une quelconque des revendications 8 à 11 , caractérisée en ce que la seconde colonne à distiller (C2) comprend au moins un rebouilleur.
13. Installation de séparation suivant la revendication 8, caractérisée en ce que le quatrième flux de tête (25) cède une partie de son potentiel frigorifique dans l'échangeur (E2) avant compression.
14. Installation de séparation suivant la revendication 8, caractérisée en ce que le quatrième flux de tête (25) après compression subi une pluralité d'étapes de refroidissement, dont au moins une dans l'échangeur (E2), puis une détente, avant d'alimenter la première colonne à distiller (C1 ).
PCT/FR2002/003490 2001-10-31 2002-10-11 Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sous deux pressions differentes WO2003038358A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP02795307A EP1440283B1 (fr) 2001-10-31 2002-10-11 Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sous deux pressions differentes
CA2464709A CA2464709C (fr) 2001-10-31 2002-10-11 Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sur deux pressions differentes
DE60208588T DE60208588T2 (de) 2001-10-31 2002-10-11 Verfahren und anlage zur trennung eines methan und ethan enthaltenden gases mit zwei auf zwei verschiedenen drücken arbeitenden säulen
US10/494,116 US7152429B2 (en) 2001-10-31 2002-10-11 Method and installation for separating a gas containing methane and ethane with two columns operating at two different pressures
NO20041268A NO331341B1 (no) 2001-10-31 2004-03-26 Fremgangsmate og anlegg for a separere en gass inneholdende metan og etan, ved hjelp av to tarn som arbeider ved to ulike trykk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/14141 2001-10-31
FR0114141A FR2831656B1 (fr) 2001-10-31 2001-10-31 Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sous deux pressions differentes

Publications (1)

Publication Number Publication Date
WO2003038358A1 true WO2003038358A1 (fr) 2003-05-08

Family

ID=8868965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003490 WO2003038358A1 (fr) 2001-10-31 2002-10-11 Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sous deux pressions differentes

Country Status (11)

Country Link
US (1) US7152429B2 (fr)
EP (1) EP1440283B1 (fr)
CN (1) CN1578897A (fr)
CA (1) CA2464709C (fr)
DE (1) DE60208588T2 (fr)
EG (1) EG23326A (fr)
FR (1) FR2831656B1 (fr)
MY (1) MY128706A (fr)
NO (1) NO331341B1 (fr)
RU (1) RU2295680C2 (fr)
WO (1) WO2003038358A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100011810A1 (en) * 2005-07-07 2010-01-21 Fluor Technologies Corporation NGL Recovery Methods and Configurations

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005000634A1 (de) * 2005-01-03 2006-07-13 Linde Ag Verfahren zum Abtrennen einer C2+-reichen Fraktion aus LNG
US9243842B2 (en) 2008-02-15 2016-01-26 Black & Veatch Corporation Combined synthesis gas separation and LNG production method and system
US10113127B2 (en) 2010-04-16 2018-10-30 Black & Veatch Holding Company Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas
DE102010020282A1 (de) * 2010-05-12 2011-11-17 Linde Aktiengesellschaft Stickstoff-Abtrennung aus Erdgas
CA2819128C (fr) 2010-12-01 2018-11-13 Black & Veatch Corporation Recuperation de ngl a partir de gaz naturel a l'aide d'un melange de refrigerants
US10139157B2 (en) * 2012-02-22 2018-11-27 Black & Veatch Holding Company NGL recovery from natural gas using a mixed refrigerant
US10563913B2 (en) 2013-11-15 2020-02-18 Black & Veatch Holding Company Systems and methods for hydrocarbon refrigeration with a mixed refrigerant cycle
US9574822B2 (en) 2014-03-17 2017-02-21 Black & Veatch Corporation Liquefied natural gas facility employing an optimized mixed refrigerant system
FR3042983B1 (fr) * 2015-11-03 2017-10-27 Air Liquide Reflux de colonnes de demethanisation
RU2615092C9 (ru) * 2016-03-24 2017-07-18 Игорь Анатольевич Мнушкин Способ переработки магистрального природного газа с низкой теплотворной способностью
US10381165B2 (en) 2016-05-20 2019-08-13 Avx Corporation Solid electrolytic capacitor for use at high temperatures
US10475591B2 (en) 2016-11-15 2019-11-12 Avx Corporation Solid electrolytic capacitor for use in a humid atmosphere
US10504657B2 (en) 2016-11-15 2019-12-10 Avx Corporation Lead wire configuration for a solid electrolytic capacitor
US10643797B2 (en) 2016-11-15 2020-05-05 Avx Corporation Casing material for a solid electrolytic capacitor
US11004615B2 (en) 2017-12-05 2021-05-11 Avx Corporation Solid electrolytic capacitor for use at high temperatures
JP2021528851A (ja) 2018-06-21 2021-10-21 エイブイエックス コーポレイション 高温において安定した電気特性を有する固体電解キャパシタ
DE112020002422T5 (de) 2019-05-17 2022-02-17 Avx Corporation Delaminierungsresistenter festelektrolytkondensator
JP7417714B2 (ja) 2019-09-18 2024-01-18 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション バリヤ被覆を含む固体電解キャパシタ
US20230375263A1 (en) * 2022-05-17 2023-11-23 Gas Liquids Engineering Ltd. Gas processing methodology utilizing reflux and additionally synthesized stream optimization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578637A1 (fr) * 1985-03-05 1986-09-12 Technip Cie Procede de fractionnement de charges gazeuses et installation pour l'execution de ce procede
US4702819A (en) * 1986-12-22 1987-10-27 The M. W. Kellogg Company Process for separation of hydrocarbon mixtures
US5953935A (en) * 1997-11-04 1999-09-21 Mcdermott Engineers & Constructors (Canada) Ltd. Ethane recovery process
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
US6244070B1 (en) * 1999-12-03 2001-06-12 Ipsi, L.L.C. Lean reflux process for high recovery of ethane and heavier components

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578637A1 (fr) * 1985-03-05 1986-09-12 Technip Cie Procede de fractionnement de charges gazeuses et installation pour l'execution de ce procede
US4702819A (en) * 1986-12-22 1987-10-27 The M. W. Kellogg Company Process for separation of hydrocarbon mixtures
US5953935A (en) * 1997-11-04 1999-09-21 Mcdermott Engineers & Constructors (Canada) Ltd. Ethane recovery process
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
US6244070B1 (en) * 1999-12-03 2001-06-12 Ipsi, L.L.C. Lean reflux process for high recovery of ethane and heavier components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100011810A1 (en) * 2005-07-07 2010-01-21 Fluor Technologies Corporation NGL Recovery Methods and Configurations

Also Published As

Publication number Publication date
MY128706A (en) 2007-02-28
EG23326A (en) 2004-12-29
DE60208588D1 (de) 2006-03-30
FR2831656A1 (fr) 2003-05-02
RU2004116317A (ru) 2005-03-27
NO20041268D0 (no) 2004-03-26
EP1440283B1 (fr) 2006-01-04
FR2831656B1 (fr) 2004-04-30
CA2464709C (fr) 2010-06-08
NO331341B1 (no) 2011-12-05
CA2464709A1 (fr) 2003-05-08
US20050000245A1 (en) 2005-01-06
US7152429B2 (en) 2006-12-26
DE60208588T2 (de) 2006-11-16
RU2295680C2 (ru) 2007-03-20
CN1578897A (zh) 2005-02-09
NO20041268L (no) 2004-06-02
EP1440283A1 (fr) 2004-07-28

Similar Documents

Publication Publication Date Title
WO2003038358A1 (fr) Procede et installation de separation d'un gaz contenant du methane et de l'ethane a deux colonnes fonctionnant sous deux pressions differentes
EP0689019B1 (fr) Procédé et installation de production d'oxygène gazeux sous pression
US4372764A (en) Method of producing gaseous oxygen and a cryogenic plant in which said method can be performed
US6244070B1 (en) Lean reflux process for high recovery of ethane and heavier components
EP0576314B2 (fr) Procédé et installation de production d'oxygène gazeux sous pression
EP1743129B1 (fr) Procede de recuperation d'hydrocarbures au moyen de courants de reflux ameliores
US4715873A (en) Liquefied gases using an air recycle liquefier
CA1227123A (fr) Rejet de l'azote du gaz naturel, integre avec la recuperation de lgn
EP0547946B1 (fr) Procédé et installation de production d'oxygène impur
FR2681859A1 (fr) Procede de liquefaction de gaz naturel.
NL8304118A (nl) Werkwijze voor de produktie van stikstofgas.
FR2817766A1 (fr) Procede et installation de separation d'un melange gazeux contenant du methane par distillation,et gaz obtenus par cette separation
RU2001113729A (ru) Способ разделения потока многокомпонентного исходного материала под давлением путем использования дистилляции
FR2829401A1 (fr) Procede et installation de fractionnement de gaz de la pyrolyse d'hydrocarbures
EP1167294B1 (fr) Préparation cryogénique d'hydrogène et de monoxyde de carbone avec une chambre d'expansion de monoxyde de carbone impur
US5129932A (en) Cryogenic process for the separation of air to produce moderate pressure nitrogen
EP0968959A1 (fr) Procédé de production de monoxyde de carbone
KR100191950B1 (ko) 저온 공기분리 플랜트로부터 초고순도 산소를 분리하는 방법
KR100236384B1 (ko) 1 개의 고압 컬럼 및 1 개 이상의 저압 컬럼을 사용하여 고압질소를 생산하는 방법
JPH06219713A (ja) 高圧高純度窒素ガスを製造するための単一塔式極低温精留系
JP2000310481A (ja) 極低温空気分離方法及び設備
EP1189003B1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
KR100207890B1 (ko) 공기 분리 방법 및 장치
JPS63251782A (ja) アルゴンの回収方法
CA2146831A1 (fr) Procede et installation pour la production de l'oxygene par distillation de l'air

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE CA CN DZ ID NO RU TT US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002795307

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: DZP2004000086

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 2464709

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20028214757

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10494116

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002795307

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002795307

Country of ref document: EP