EP1189003B1 - Procédé et installation de séparation d'air par distillation cryogénique - Google Patents

Procédé et installation de séparation d'air par distillation cryogénique Download PDF

Info

Publication number
EP1189003B1
EP1189003B1 EP01402310A EP01402310A EP1189003B1 EP 1189003 B1 EP1189003 B1 EP 1189003B1 EP 01402310 A EP01402310 A EP 01402310A EP 01402310 A EP01402310 A EP 01402310A EP 1189003 B1 EP1189003 B1 EP 1189003B1
Authority
EP
European Patent Office
Prior art keywords
pressure column
low
column
pressure
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01402310A
Other languages
German (de)
English (en)
Other versions
EP1189003A1 (fr
Inventor
Benoit Davidian
Francois De Bussy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA a Directoire et Conseil de Surveillance pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP1189003A1 publication Critical patent/EP1189003A1/fr
Application granted granted Critical
Publication of EP1189003B1 publication Critical patent/EP1189003B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04387Details relating to the work expansion, e.g. process parameter etc. using liquid or hydraulic turbine expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04448Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system in a double column flowsheet with an intermediate pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/20Processes or apparatus using separation by rectification in an elevated pressure multiple column system wherein the lowest pressure column is at a pressure well above the minimum pressure needed to overcome pressure drop to reject the products to atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/10Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream the fluid being air

Definitions

  • the present invention relates to a method and an installation of air separation by cryogenic distillation according to the preamble of claims 1 and 9, respectively.
  • Such a process and such installation are known from US-A-5,657,644.
  • An object of the invention is to reduce the energy consumption of the process separation from the prior art methods.
  • Another object of the invention is to produce oxygen with a purity of minus 95 mol%, or even at least 98 mol%. with improved performance.
  • Figure 1 shows a conventional method with a low pressure column 103 operating at 1.3 bara to make oxygen at 99.5 mol%. with a 92% yield.
  • a flow rate of 1000 Nm 3 / h of air 1 at approximately 5 bara is divided in two to form a first flow 17 and a second flow 3 which is supercharged in a booster 5 at a higher pressure of the order of 75 bara. .
  • Both flow rates 3.17 cool through crossing a heat exchanger 100.
  • flow 17 is sent to the tank of the high pressure column 101 and the liquefied flow 3 in the exchanger 100 is expanded in a turbine 6 producing a flow at least partially liquid at its outlet, the fluid or mixture of fluids leaving the turbine 6 being sent at least in part to the high pressure column 101.
  • a flow of rich liquid 10 from the high pressure column 101 cools in the subcooler 83 before being relaxed and sent to an intermediate level of the low pressure column 103.
  • a liquid air flow 12 is withdrawn from the high pressure column 101, cooled in the subcooler 83, expanded and sent to the low pressure column 103.
  • a flow of residual nitrogen 72 is withdrawn at the top of the low pressure column 103, sent to the subcooler 83 and then to the exchanger 100 where it heats up.
  • a flow rate of 193 Nm 3 / h of oxygen at 99.5 mol%. is withdrawn in liquid form from the low pressure column 103, pumped into the pump 19 to 40 bara and vaporizes in the exchanger 100 to form a gas flow under pressure.
  • a flow rate of 200 Nm 3 / h of nitrogen gas 33 is withdrawn from the top of the high pressure column 101 and is partially heated in the exchanger 100. At an intermediate temperature, part of the gas is expanded in a turbine 35 before to be mixed with the waste gas 72.
  • a flow rate of 1000 Nm 3 / h of air 1 to about 14.3 bara is divided in two to form a first flow 17 and a second flow 3 which is supercharged in a booster 5 at a higher pressure of the order of 75 bara.
  • Both flow rates 3.17 cool through crossing a heat exchanger 100.
  • flow 17 is sent to the tank of the high pressure column 101 and the liquid flow 3 is expanded in a turbine 6 producing a flow at least rectally liquid at its outlet, the fluid or mixture of fluids leaving the turbine 6 being sent at least part of the high pressure column 101.
  • a flow of rich liquid 10 from the high pressure column 101 cools in the subrefroder 83 before being relaxed and sent to an intermediate level of the low pressure column 103.
  • a liquid air flow 12 is withdrawn from the high pressure column 101, cooled in the subcooler 83, expanded and sent to the low pressure column 103.
  • a flow of residual nitrogen 72 is withdrawn at the top of the low pressure column 103, sent to the subcooler 83 and then to the exchanger 100 where it heats up.
  • a flow 31 of 164 Nm 3 / h of oxygen at 99.5 mol%. is withdrawn in liquid form from the low pressure column, pumped into the pump 19 to 40 bara and vaporizes in the exchanger 100 to form a gas flow under pressure.
  • a separation installation of air by cryogenic distillation comprising a high pressure column, a column at intermediate pressure having a bottom reboiler and a low pressure column, the high pressure column and the low pressure column being thermally connected between them, means for sending a mixture of at least oxygen, nitrogen and argon at least to the high pressure column, means for sending a flow enriched with oxygen from the high pressure column to the intermediate pressure column, means for sending an oxygen-enriched fluid and / or a nitrogen-enriched fluid from the intermediate pressure column to the low pressure column, means for send a fluid from the low pressure column to the bottom reboiler of the column to intermediate pressure, means for withdrawing a nitrogen-enriched fluid and a fluid enriched with oxygen in the low pressure column, characterized in that it does not include means for enriching argon with a fluid containing between 3 and 20 mol% argon other than high pressure, low pressure and pressure columns intermediate.
  • the fluid sent to the reboiler is withdrawn from the column low pressure at a level lower than the level of the introduction of a fluid enriched in oxygen from the intermediate pressure column.
  • the intermediate pressure column has a head condenser.
  • the fluids known as 'enriched in oxygen' or 'enriched in nitrogen' are enriched in these components compared to air.
  • the apparatus operates with a low column pressure at 1.3 bara and in the case of Figure 4, the apparatus operates with a low pressure column at 4.8 bara.
  • the installation of Figure 3 includes a high pressure column 101 operating at 5 bara, an intermediate pressure column 102 operating at 2.7 bara and a low pressure column 103 operating at 1.3 bara.
  • Part of the nitrogen gas head of the high pressure column is used to heat the bottom reboiler of the column pressure but other means of heating can be envisaged, such as double reboiler systems, one heated by air.
  • a flow rate of 1000 Nm 3 / h of air 1 at approximately 5 bara is divided in two to form a first flow 17 and a second flow 3 which is supercharged in a booster 5 at a higher pressure of the order of 75 bara. .
  • Both flow rates 3.17 cool through crossing a heat exchanger 100.
  • flow 17 is sent to the tank of the high pressure column 101 without being relaxed or compressed and the liquid flow 3 is expanded in a turbine 6 producing a flow rate at less partially liquid at its outlet, the fluid or mixture of fluids leaving the turbine 6 being sent at least in part to the high pressure column 101.
  • a flow of rich liquid 10 from the high pressure column 101 cools in the subcooler 83 before being relaxed and sent to an intermediate level of the intermediate pressure column 102 between two sections, for example of structured packings of corrugated-cross type.
  • the liquid can be sent to another level of the column and the column can also receive a gaseous air flow or liquid.
  • This liquid is separated into a second oxygen-enriched liquid 20 and a nitrogen-enriched liquid 25.
  • the liquid 25 cools in the subcooler 83, before to be relaxed and sent to the top of the low pressure column 103, after being mixed with a poor liquid flow 15 from the top of the high pressure column 101 which was also cooled in the subcooler 83 and relaxed in a valve.
  • the bottom liquid of the intermediate pressure column is divided into two. Part is relaxed and sent to the low pressure column directly while the rest is expanded in a valve, sent to the head condenser 29 of the intermediate pressure column where it vaporizes at least partially before to be sent to the low pressure column 103.
  • a liquid air flow 12 is withdrawn from the high pressure column, cooled in the subcooler 83, expanded and sent to the low pressure column 103.
  • the reboiler 24 of the intermediate pressure column 102 is heated by means of an argon-enriched gas flow 233 containing about 5 to 15% mol., preferably between 8 and 10 mol%. argon from the lower column pressure 103. This flow condenses at least partially in the reboiler 24 before being returned to the low pressure column 103
  • a flow of residual nitrogen 72 is withdrawn at the top of the low pressure column 103, sent to the subcooler 83 and then to the exchanger 100 where it heats up.
  • a flow rate of 203 Nm 3 / h of oxygen at 99.5 mol%. is withdrawn in liquid form from the low pressure column 103, pumped into the pump 19 to 40 bara and vaporizes in the exchanger 100 to form a gas flow under pressure.
  • a flow rate of 200 Nm 3 / h of nitrogen gas is withdrawn at the top of the high pressure column 101 and is partially heated in the exchanger 100. At an intermediate temperature, part of the gas is expanded in a turbine 35 before mixed with the waste gas 72. The rest of the nitrogen continues its heating and is a product of the apparatus.
  • FIG. 4 The installation of Figure 4 includes a high pressure column 101 operating at 14.3 bara, an intermediate pressure column 102 operating at 8.5 bara and a low pressure column 103 operating at 4.8 bara. All the nitrogen gas in the head of the high pressure column is used to heat the bottom column reboiler pressure but other means of heating can be envisaged, such as double reboiler systems, one heated by air.
  • a flow rate of 1000 Nm 3 / h of air 1 to about 14.3 bara is divided in two to form a first flow 17 and a second flow 3 which is supercharged in a booster 5 at a higher pressure of the order of 75 bara.
  • Both flow rates 3.17 cool through crossing a heat exchanger 100.
  • flow 17 is sent to the tank of the high pressure column 101 and the liquid flow 3 is expanded in a turbine producing a flow at least partially liquid at its outlet, the fluid or mixture of fluids leaving the turbine being sent at least part of the high pressure column 101.
  • a flow of rich liquid 10 from the high pressure column 101 cools in the subcooler 83 before being relaxed and sent to an intermediate level of the intermediate pressure column 102 between two sections, for example of structured packings of corrugated-cross type.
  • the liquid can be sent to another level of the column and the column can also receive a gaseous air flow or liquid.
  • This liquid is separated into a second oxygen-enriched liquid 20 and a nitrogen-enriched liquid 25.
  • the liquid 25 cools in the subcooler 83, before to be relaxed and sent to the top of the low pressure column 103, after being mixed with a poor liquid flow 15 from the top of the high pressure column 101 which was also cooled in the subcooler 83 and relaxed in a valve.
  • the bottom liquid of the intermediate pressure column is divided into two. Part is relaxed and sent to the low pressure column directly while the rest is relaxed in a valve, sent to the head condenser 22 of the intermediate pressure column where it vaporizes at least partially before to be sent to the low pressure column 103.
  • a liquid air flow 12 is withdrawn from the high pressure column, cooled in the subcooler 83, expanded and sent to the low pressure column.
  • the reboiler 24 of the intermediate pressure column 102 is heated by means of an argon-enriched gas flow 233 containing about 5 to 15% mol., preferably 8 to 10 mol%. argon from the low pressure column 103. This flow is condensed at least partially in the reboiler 24 before being returned to the low pressure column 103.
  • a flow of residual nitrogen 72 is withdrawn at the top of the low pressure column 103, sent to the subcooler 83 and then to the exchanger 100 where it heats up.
  • a flow 31 of 177 Nm 3 / h of oxygen at 99.5 mol%. is withdrawn in liquid form from the low pressure column, pumped into the pump 19 to 40 bara and vaporizes in the exchanger 100 to form a gas flow under pressure.
  • the apparatus may receive all or a portion of its supply air from a compressor of a gas turbine, the residual nitrogen of the apparatus being returned to the gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

La présente invention est relative à un procédé et une installation de séparation d'air par distillation cryogénique selon le préambule des revendications 1 et 9, respectivement. Un tel procédé et une telle installation sont connus du US-A-5 657 644.
Il est connu de EP-A-0538118 d'utiliser un procédé de ce genre pour séparer de l'air, la colonne à pression intermédiaire ayant un rebouilleur de cuve chauffé par de l'azote de la colonne haute pression, réduisant ainsi le chauffage du rebouilleur de cuve de la colonne basse pression.
Un but de l'invention est de réduire la consommation en énergie du procédé de séparation par rapport aux procédés de l'art antérieur.
Un autre but de l'invention est de produire de l'oxygène avec une pureté d'au moins 95 % mol., voire au moins 98 % mol. avec un rendement amélioré.
La Figure 1 montre un procédé classique avec une colonne basse pression 103 opérant à 1,3 bara permettant de faire de l'oxygène à 99,5 % mol. avec un rendement de 92 %.
Un débit de 1000 Nm3/h d'air 1 à environ 5 bara est divisé en deux pour former un premier débit 17 et un deuxième débit 3 qui est surpressé dans un surpresseur 5 à une pression plus élevée de l'ordre de 75 bara.
Les deux débits 3,17 se refroidissent en traversant un échangeur 100. Le débit 17 est envoyé en cuve de la colonne haute pression 101 et le débit 3 liquéfié dans l'échangeur 100 est détendu dans une turbine 6 produisant un débit au moins partiellement liquide à sa sortie, le fluide ou mélange de fluides sortant de la turbine 6 étant envoyé au moins en partie à la colonne haute pression 101.
Un débit de liquide riche 10 de la colonne haute pression 101 se refroidit dans le sousrefroidisseur 83 avant d'être détendu et envoyé à un niveau intermédiaire de la colonne basse pression 103.
Un débit d'air liquide 12 est soutiré de la colonne haute pression 101, refroidi dans le sousrefroidisseur 83, détendu et envoyé à la colonne basse pression 103.
Un débit d'azote résiduaire 72 est soutiré en tête de la colonne basse pression 103, envoyé au sousrefroidisseur 83 et ensuite à l'échangeur 100 où il se réchauffe.
Un débit 31 de 193 Nm3/h d'oxygène à 99,5 % mol. est soutiré sous forme liquide de la colonne basse pression 103, pompé dans la pompe 19 à 40 bara et se vaporise dans l'échangeur 100 pour former un débit gazeux sous pression.
Un débit de 200 Nm3/h d'azote gazeux 33 est soutiré de la tête de la colonne haute pression 101 et se chauffe partiellement dans l'échangeur 100. A une température intermédiaire une partie du gaz est détendue dans une turbine 35 avant d'être mélangé avec le gaz résiduaire 72.
Dans un autre schéma classique illustré à la Figure 2, la colonne basse pression opère à 4,8 bara et la colonne haute pression 101 opère à 14,3 bara. Ce procédé produit de l'oxygène à 99,5 % mol. avec un rendement de 78%.
Un débit de 1000 Nm3/h d'air 1 à environ 14,3 bara est divisé en deux pour former un premier débit 17 et un deuxième débit 3 qui est surpressé dans un surpresseur 5 à une pression plus élevée de l'ordre de 75 bara.
Les deux débits 3,17 se refroidissent en traversant un échangeur 100. Le débit 17 est envoyé en cuve de la colonne haute pression 101 et le débit liquide 3 est détendu dans une turbine 6 produisant un débit au moins parliellement liquide à sa sortie, le fluide ou mélange de fluides sortant de la turbine 6 étant envoyé au moins en partie à la colonne haute pression 101.
Un débit de liquide riche 10 de la colonne haute pression 101 se refroidit dans le sousrefrodisseur 83 avant d'être détendu et envoyé à un niveau intermédiaire de la colonne basse pression 103.
Un débit d'air liquide 12 est soutiré de la colonne haute pression 101, refroidi dans le sousrefroidisseur 83, détendu et envoyé à la colonne basse pression 103.
Un débit d'azote résiduaire 72 est soutiré en tête de la colonne basse pression 103, envoyé au sousrefroidisseur 83 et ensuite à l'échangeur 100 où il se réchauffe.
Un débit 31 de 164 Nm3/h d'oxygène à 99,5 % mol. est soutiré sous forme liquide de la colonne basse pression, pompé dans la pompe 19 à 40 bara et se vaporise dans l'échangeur 100 pour former un débit gazeux sous pression.
Aucun débit d'azote gazeux n'est soutiré en tête de la colonne haute pression 101 (évidemment un débit d'azote gazeux haute pression se condense de manière classique dans un vaporiseur-condenseur associé à la colonne basse pression).
Il est connu de EP-A-0833118 et US-A-5657644 de chauffer une colonne à pression intermédiaire d'un système à triple colonne avec un gaz enrichi en argon qui sert également à alimenter une colonne de production d'argon.
Les inventeurs de la présente demande ont découvert que même sans utiliser une colonne de séparation d'argon, l'épuration de l'oxygène en cuve de la colonne basse pression reste satisfaisante pour la production d'oxygène à pureté élevée.
Selon un objet de l'invention, il est prévu un procédé de séparation d'air dans un appareil de séparation comprenant une colonne haute pression, une colonne à pression intermédiaire ayant un rebouilleur de cuve et une colonne basse pression dans lequel
  • a) on envoie au moins un mélange au moins d'oxygène, d'azote et d'argon au moins à la colonne haute pression où il se sépare en un premier débit enrichi en oxygène et un premier débit enrichi en azote
  • b) on envoie au moins une partie du premier débit enrichi en oxygène à la colonne opérant à pression intermédiaire où il se sépare en un deuxième débit enrichi en oxygène et un deuxième débit enrichi en azote
  • c) on envoie au moins une partie du deuxième débit enrichi en oxygène et/ou du deuxième débit enrichi en azote à la colonne basse pression
  • d) on envoie un gaz de la partie inférieure de la colonne basse pression au rebouilleur de cuve de la colonne à pression intermédiaire où il se condense au moins partiellement avant d'être renvoyé à la colonne basse pression
  • e) on soutire au moins un fluide enrichi en oxygène et au moins un fluide enrichi en azote de la colonne basse pression et
  • f) on condense au moins partiellement au moins une partie du premier fluide enrichi en azote dans un vaporiseur-condenseur associé à la colonne basse pression et on renvoie au moins une partie du fluide au moins partiellement condensé à la colonne haute pression
  •    caractérisé en ce qu'aucun fluide contenant entre 3 et 20 % mol. d'argon ne s'enrichit en argon dans une colonne de l'appareil autre que les colonnes haute pression, basse pression et pression intermédiaire.
    Selon d'autres objets facultatifs de l'invention, il est prévu que :
    • le fluide enrichi en oxygène soutiré de la colonne basse pression contient au moins 95 % mol. d'oxygène, éventuellement au moins 98 % mol. d'oxygène.
    • aucun débit gazeux enrichi en azote n'est soutiré en tête de la colonne haute pression ou un débit gazeux enrichi en azote est soutiré en tête de la colonne haute pression.
    • la colonne basse pression opère à au moins 1,3 bara, éventuellement au moins 2 bara, de préférence au moins 4 bara.
    • on envoie un (des) débit(s) d'air gazeux et/ou liquide à la colonne à pression intermédiaire et/ou à la colonne basse pression et/ou à la colonne haute pression.
    • le gaz provenant de la partie inférieure de la colonne basse pression envoyé au rebouilleur de cuve contient entre 1 et 20 % mol. d'argon, de préférence entre 5 et 15% mol . d'argon, encore plus préférablement entre 8 et 10 % mol. d'argon.
    • au moins une partie du deuxième débit enrichi en azote se condense, éventuellement dans un condenseur de tête de la colonne à pression intermédiaire.
    Selon un autre objet de l'invention, il est prévu une installation de séparation d'air par distillation cryogénique comprenant une colonne haute pression, une colonne à pression intermédiaire ayant un rebouilleur de cuve et une colonne basse pression, la colonne haute pression et la colonne basse pression étant reliées thermiquement entre elles, des moyens pour envoyer un mélange au moins d'oxygène, d'azote et d'argon au moins à la colonne haute pression, des moyens pour envoyer un débit enrichi en oxygène de la colonne haute pression à la colonne à pression intermédiaire, des moyens pour envoyer un fluide enrichi en oxygène et/ou un fluide enrichi en azote de la colonne à pression intermédiaire à la colonne basse pression, des moyens pour envoyer un fluide de la colonne basse pression au rebouilleur de cuve de la colonne à pression intermédiaire, des moyens pour soutirer un fluide enrichi en azote et un fluide enrichi en oxygène de la colonne basse pression caractérisée en ce qu'elle ne comprend pas de moyens d'enrichissement en argon d'un fluide contenant entre 3 et 20 % mol. d'argon autre que les colonnes haute pression, basse pression et pression intermédiaire.
    Selon d'autres objets facultatifs de l'invention, l'installation comprend :
    • une turbine de détente et des moyens pour amener un débit de la colonne basse pression à cette turbine sans le comprimer.
    • des moyens pour amener un débit d'air à la colonne à pression intermédiaire et/ou basse pression et/ou haute pression.
    Eventuellement, le fluide envoyé au rebouilleur est soutiré de la colonne basse pression à un niveau inférieur au niveau de l'introduction d'un fluide enrichi en oxygène provenant de la colonne à pression intermédiaire.
    De préférence, la colonne à pression intermédiaire a un condenseur de tête.
    Les fluides dits 'enrichi en oxygène' ou 'enrichi en azote' sont enrichi en ces composants par rapport à de l'air.
    Des exemples de mise en oeuvre de l'invention seront maintenant décrits par rapport aux Figures 3 et 4, qui montrent des dessins schématiques d'une installation selon l'invention.
    Dans le cas de la Figure 3, l'appareil fonctionne avec une colonne basse pression à 1,3 bara et dans le cas de la Figure 4, l'appareil fonctionne avec une colonne basse pression à 4,8 bara.
    L'installation de la Figure 3 comprend une colonne haute pression 101 opérant à 5 bara, une colonne pression intermédiaire 102 opérant à 2,7 bara et une colonne basse pression 103 opérant à 1,3 bara. Une partie de l'azote gazeux de tête de la colonne haute pression sert à chauffer le rebouilleur de cuve de la colonne basse pression mais d'autres moyens de chauffage peuvent être envisagés, tel que des systèmes à doubles rebouilleurs, dont un chauffé par de l'air.
    Un débit de 1000 Nm3/h d'air 1 à environ 5 bara est divisé en deux pour former un premier débit 17 et un deuxième débit 3 qui est surpressé dans un surpresseur 5 à une pression plus élevée de l'ordre de 75 bara.
    Les deux débits 3,17 se refroidissent en traversant un échangeur 100. Le débit 17 est envoyé en cuve de la colonne haute pression 101 sans avoir été détendu ou comprimé et le débit liquide 3 est détendu dans une turbine 6 produisant un débit au moins partiellement liquide à sa sortie, le fluide ou mélange de fluides sortant de la turbine 6 étant envoyé au moins en partie à la colonne haute pression 101.
    Un débit de liquide riche 10 de la colonne haute pression 101 se refroidit dans le sousrefroidisseur 83 avant d'être détendu et envoyé à un niveau intermédiaire de la colonne à pression intermédiaire 102 entre deux sections, par exemple de garnissages structurés de type ondulé-croisé. Le liquide peut être envoyé à un autre niveau de la colonne et la colonne peut également recevoir un débit d'air gazeux ou liquide.
    Ce liquide est séparé en un deuxième liquide enrichi en oxygène 20 et un liquide enrichi en azote 25. Le liquide 25 se refroidit dans le sousrefroidisseur 83, avant d'être détendu et envoyé en tête de la colonne basse pression 103, après être mélangé avec un débit de liquide pauvre 15 de la tête de la colonne haute pression 101 qui a également été refroidi dans le sousrefroidisseur 83 et détendu dans une vanne.
    Le liquide de cuve 20 de la colonne à pression intermédiaire est divisé en deux. Une partie est détendue et envoyée à la colonne basse pression directement tandis que le reste est détendu dans une vanne, envoyé au condenseur de tête 29 de la colonne à pression intermédiaire où il se vaporise au moins partiellement avant d'être envoyé à la colonne basse pression 103.
    Un débit d'air liquide 12 est soutiré de la colonne haute pression, refroidi dans le sousrefroidisseur 83, détendu et envoyé à la colonne basse pression 103.
    Le rebouilleur de cuve 24 de la colonne à pression intermédiaire 102 est chauffé au moyen d'un débit gazeux enrichi en argon 233 contenant environ 5 à 15 % mol., préférablement entre 8 et 10 % mol. d'argon provenant de la colonne basse pression 103. Ce débit se condense au moins partiellement dans le rebouilleur 24 avant d'être renvoyé à la colonne basse pression 103
    Un débit d'azote résiduaire 72 est soutiré en tête de la colonne basse pression 103, envoyé au sousrefroidisseur 83 et ensuite à l'échangeur 100 où il se réchauffe.
    Un débit 31 de 203 Nm3/h d'oxygène à 99,5 % mol. est soutiré sous forme liquide de la colonne basse pression 103, pompé dans la pompe 19 à 40 bara et se vaporise dans l'échangeur 100 pour former un débit gazeux sous pression.
    Un débit 33 de 200 Nm3/h d'azote gazeux est soutiré en tête de la colonne haute pression 101 et se chauffe partiellement dans l'échangeur 100. A une température intermédiaire une partie du gaz est détendue dans une turbine 35 avant d'être mélangé avec le gaz résiduaire 72. Le reste de l'azote poursuit son réchauffement et constitue un produit de l'appareil.
    Il est possible de soutirer des produits liquides de l'appareil mais l'appareil ne produit aucun fluide riche en argon.
    L'installation de la Figure 4 comprend une colonne haute pression 101 opérant à 14,3 bara, une colonne pression intermédiaire 102 opérant à 8,5 bara et une colonne basse pression 103 opérant à 4,8 bara. Tout l'azote gazeux de tête de la colonne haute pression sert à chauffer le rebouilleur de cuve de la colonne basse pression mais d'autres moyens de chauffage peuvent être envisagés, tel que des systèmes à doubles rebouilleurs, dont un chauffé par de l'air.
    Un débit de 1000 Nm3/h d'air 1 à environ 14,3 bara est divisé en deux pour former un premier débit 17 et un deuxième débit 3 qui est surpressé dans un surpresseur 5 à une pression plus élevée de l'ordre de 75 bara.
    Les deux débits 3,17 se refroidissent en traversant un échangeur 100. Le débit 17 est envoyé en cuve de la colonne haute pression 101 et le débit liquide 3 est détendu dans une turbine produisant un débit au moins partiellement liquide à sa sortie, le fluide ou mélange de fluides sortant de la turbine étant envoyé au moins en partie à la colonne haute pression 101.
    Un débit de liquide riche 10 de la colonne haute pression 101 se refroidit dans le sousrefroidisseur 83 avant d'être détendu et envoyé à un niveau intermédiaire de la colonne à pression intermédiaire 102 entre deux sections, par exemple de garnissages structurés de type ondulé-croisé. Le liquide peut être envoyé à un autre niveau de la colonne et la colonne peut également recevoir un débit d'air gazeux ou liquide.
    Ce liquide est séparé en un deuxième liquide enrichi en oxygène 20 et un liquide enrichi en azote 25. Le liquide 25 se refroidit dans le sousrefroidisseur 83, avant d'être détendu et envoyé en tête de la colonne basse pression 103, après être mélangé avec un débit de liquide pauvre 15 de la tête de la colonne haute pression 101 qui a également été refroidi dans le sousrefroidisseur 83 et détendu dans une vanne.
    Le liquide de cuve 20 de la colonne à pression intermédiaire est divisé en deux. Une partie est détendue et envoyée à la colonne basse pression directement tandis que le reste est détendu dans une vanne, envoyé au condenseur de tête 22 de la colonne à pression intermédiaire où il se vaporise au moins partiellement avant d'être envoyé à la colonne basse pression 103.
    Un débit d'air liquide 12 est soutiré de la colonne haute pression, refroidi dans le sousrefroidisseur 83, détendu et envoyé à la colonne basse pression.
    Le rebouilleur de cuve 24 de la colonne à pression intermédiaire 102 est chauffé au moyen d'un débit gazeux enrichi en argon 233 contenant environ 5 à 15 % mol., préférablement 8 à 10 % mol. d'argon provenant de la colonne basse pression 103. Ce débit se condense au moins partiellement dans le rebouilleur 24 avant d'être renvoyé à la colonne basse pression 103.
    Un débit d'azote résiduaire 72 est soutiré en tête de la colonne basse pression 103, envoyé au sousrefroidisseur 83 et ensuite à l'échangeur 100 où il se réchauffe.
    Un débit 31 de 177 Nm3/h d'oxygène à 99,5% mol. est soutiré sous forme liquide de la colonne basse pression, pompé dans la pompe 19 à 40 bara et se vaporise dans l'échangeur 100 pour former un débit gazeux sous pression.
    II est possible de soutirer des produits liquides de l'appareil mais l'appareil ne produit aucun fluide enrichi en argon.
    Les avantages de invention apparaítront clairement à l'étude des tableaux ci-dessus.
    D'autres moyens de production de froid alternatifs ou supplémentaires peuvent être envisagés, tel qu'une turbine d'insufflation, une turbine Claude ou une autre turbine qui n'est pas alimentée par un débit liquide ou une turbine de gaz provenant de la colonne basse pression.
    L'appareil peut recevoir tout ou une partie de son air d'alimentation d'un compresseur d'une turbine à gaz, l'azote résiduaire de l'appareil étant renvoyé à la turbine à gaz.
    Procédé de la Figure 1 Procédé de la Figure 3 (invention)
    Pression de la colonne haute pression 5 bara 5 bara
    Pression de la colonne basse pression 1.3 bara 1.3 bara
    Pression de la colonne à pression intermédiaire 2.7 bara
    Débit total d'air traité 1000 Nm3/h 1000 Nm3/h
    Teneur en oxygène du produit gazeux 99.5% 02 99.5% 02
    Production d'oxygène, compté pur 193 Nm3/h 203 Nm3/h
    Production d'azote gazeux haute pression 200 Nm3/h 200 Nm3/h
    Rendement d'extraction d'oxygène 92% 97%
    Energie de séparation Base : 100 95
    Procédé de la Figure 2 Procédé de la Figure 4 (invention)
    Pression de la colonne haute pression 14.3 bara 14.3 bara
    Pression de la colonne basse pression 4.8 bara 4.8 bara
    Pression de la colonne à pression intermédiaire 8.5 bara
    Débit d'air total 1000 Nm3/h 1000 Nm3/h
    Teneur en oxygène du produit gazeux 99.5% 02 99.5% 02
    Production d'oxygène, compté pur 164 Nm3/h 177 Nm3/h
    Production d'azote gazeux haute pression 0 Nm3/h 0 Nm3/h
    Rendement d'extraction d'oxygène 78% 85%
    Energie de séparation Base : 100 90

    Claims (13)

    1. Procédé de séparation d'air dans un appareil de séparation comprenant une colonne haute pression (101), une colonne à pression intermédiaire (102) ayant un rebouilleur de cuve (24) et une colonne basse pression (103) dans lequel
      a) on envoie au moins un mélange (1) au moins d'oxygène, d'azote et d'argon au moins à la colonne haute pression où il se sépare en un premier débit enrichi en oxygène et un premier débit enrichi en azote
      b) on envoie au moins une partie du premier débit (10) enrichi en oxygène à la colonne opérant à pression intermédiaire où il se sépare en un deuxième débit enrichi en oxygène (20) et un deuxième débit enrichi en azote (25)
      c) on envoie au moins une partie du deuxième débit enrichi en oxygène et/ou du deuxième débit enrichi en azote à la colonne basse pression
      d) on envoie un gaz (233) de la partie inférieure de la colonne basse pression au rebouilleur de cuve de la colonne à pression intermédiaire où il se condense au moins partiellement avant d'être renvoyé à la colonne basse pression
      e) on soutire au moins un fluide enrichi en oxygène (31) et au moins un fluide (72) enrichi en azote de la colonne basse pression et
      f) on condense au moins partiellement au moins une partie du premier fluide enrichi en azote dans un vaporiseur-condenseur associé à la colonne basse pression et on renvoie au moins une partie du fluide au moins partiellement condensé à la colonne haute pression
         caractérisé en ce qu'aucun fluide contenant entre 3 et 20 % mol. d'argon ne s'enrichit en argon dans une colonne de l'appareil autre que les colonnes haute pression, basse pression et pression intermédiaire.
    2. Procédé selon la revendication 1 dans lequel le fluide (31) enrichi en oxygène soutiré de la colonne basse pression contient au moins 95 % mol. d'oxygène, éventuellement au moins 98 % mol. d'oxygène.
    3. Procédé selon la revendication 1 ou 2 dans lequel aucun débit gazeux enrichi en azote n'est soutiré en tête de la colonne haute pression (101).
    4. Procédé selon la revendication 1 ou 2 dans lequel un débit gazeux (33) enrichi en azote est soutiré en tête de la colonne haute pression (101).
    5. Procédé selon la revendication 1,2,3 ou 4 dans lequel la colonne basse pression (103) opère à au moins 1,3 bara, éventuellement au moins 2 bara, de préférence au moins 4 bara.
    6. Procédé selon une des revendications précédentes dans lequel on envoie un (des) débit(s) d'air gazeux et/ou liquide à la colonne à pression intermédiaire et/ou à la colonne basse pression et/ou à la colonne haute pression.
    7. Procédé selon une des revendications précédentes dans lequel le gaz (233) provenant de la partie inférieure de la colonne basse pression envoyé au rebouilleur de cuve contient entre 1 et 20 % mol. d'argon.
    8. Procédé selon une des revendications précédentes dans lequel au moins une partie du deuxième débit enrichi en azote se condense, éventuellement dans un condenseur de tête (29) de la colonne à pression intermédiaire.
    9. Installation de séparation d'air par distillation cryogénique comprenant une colonne haute pression (101), une colonne à pression intermédiaire (102) ayant un rebouilleur de cuve (24) et une colonne basse pression (103), la colonne haute pression et la colonne basse pression étant reliées thermiquement entre elles, des moyens pour envoyer un mélange (1) au moins d'oxygène, d'azote et d'argon au moins à la colonne haute pression, des moyens pour envoyer un débit enrichi en oxygène (10) de la colonne haute pression à la colonne à pression intermédiaire, des moyens pour envoyer un fluide enrichi en oxygène (20) et/ou un fluide enrichi en azote (25) de la colonne à pression intermédiaire à la colonne basse pression, des moyens pour envoyer un fluide (233) de la colonne basse pression au rebouilleur de cuve de la colonne à pression intermédiaire, des moyens pour soutirer un fluide enrichi en azote (72) et un fluide enrichi en oxygène (31) de la colonne basse pression
         caractérisée en ce qu'elle ne comprend pas de moyens d'enrichissement en argon d'un fluide contenant entre 3 et 20 % mol. d'argon autre que les colonnes haute pression, basse pression et pression intermédiaire.
    10. Installation selon la revendication 9 comprenant une turbine de détente et des moyens pour amener un débit de la colonne basse pression à cette turbine sans le comprimer.
    11. Installation selon la revendication 9 ou 10 comprenant des moyens pour amener un débit d'air à la colonne à pression intermédiaire et/ou basse pression et/ou haute pression (101,102,103).
    12. Installation selon l'une des revendications 9 à 11 dans laquelle le fluide (233) envoyé au rebouilleur est soutiré de la colonne basse pression à un niveau inférieur au niveau de l'introduction d'un fluide enrichi en oxygène provenant de la colonne à pression intermédiaire.
    13. Installation selon l'une des revendications 9 à 12 dans laquelle la colonne à pression intermédiaire (102) a un condenseur de tête (29).
    EP01402310A 2000-09-19 2001-09-06 Procédé et installation de séparation d'air par distillation cryogénique Expired - Lifetime EP1189003B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0011932 2000-09-19
    FR0011932A FR2814229B1 (fr) 2000-09-19 2000-09-19 Procede et installation de separation d'air par distillation cryogenique

    Publications (2)

    Publication Number Publication Date
    EP1189003A1 EP1189003A1 (fr) 2002-03-20
    EP1189003B1 true EP1189003B1 (fr) 2005-01-26

    Family

    ID=8854455

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01402310A Expired - Lifetime EP1189003B1 (fr) 2000-09-19 2001-09-06 Procédé et installation de séparation d'air par distillation cryogénique

    Country Status (7)

    Country Link
    US (1) US6536232B2 (fr)
    EP (1) EP1189003B1 (fr)
    AT (1) ATE288064T1 (fr)
    CA (1) CA2357302A1 (fr)
    DE (1) DE60108579T2 (fr)
    FR (1) FR2814229B1 (fr)
    ZA (1) ZA200107210B (fr)

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    ATE356326T1 (de) * 2001-12-04 2007-03-15 Air Prod & Chem Verfahren und vorrichtung zur kryogenischen luftzerlegung
    FR2875588B1 (fr) * 2004-09-21 2007-04-27 Air Liquide Procede de separation d'air par distillation cryogenique
    DE102004047961A1 (de) * 2004-10-01 2006-05-18 Siemens Ag Vorrichtung und Verfahren zum Ansteuern eines Piezoaktors
    EP2597409B1 (fr) * 2011-11-24 2015-01-14 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et installation pour la séparation de l'air par distillation cryogénique
    EP2634517B1 (fr) * 2012-02-29 2018-04-04 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé et appareil pour la séparation d'air par distillation cryogénique
    FR3017698B1 (fr) * 2014-02-14 2019-03-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Colonne de separation d'air par distillation cryogenique, appareil de separation d'air comportant une telle colonne et procede de fabrication d'une telle colonne
    EP3620739A1 (fr) 2018-09-05 2020-03-11 Linde Aktiengesellschaft Procédé de décomposition à basse température de l'air et installation de décomposition de l'air
    US20240035741A1 (en) 2022-07-28 2024-02-01 Neil M. Prosser Air separation unit and method for cryogenic separation of air using a distillation column system including an intermediate pressure kettle column
    US20240035744A1 (en) 2022-07-28 2024-02-01 Neil M. Prosser Air separation unit and method for production of nitrogen and argon using a distillation column system with an intermediate pressure kettle column
    US20240035745A1 (en) 2022-07-28 2024-02-01 Neil M. Prosser System and method for cryogenic air separation using four distillation columns including an intermediate pressure column
    US11959701B2 (en) 2022-07-28 2024-04-16 Praxair Technology, Inc. Air separation unit and method for production of high purity nitrogen product using a distillation column system with an intermediate pressure kettle column

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4605427A (en) * 1983-03-31 1986-08-12 Erickson Donald C Cryogenic triple-pressure air separation with LP-to-MP latent-heat-exchange
    US5341646A (en) * 1993-07-15 1994-08-30 Air Products And Chemicals, Inc. Triple column distillation system for oxygen and pressurized nitrogen production
    GB9412182D0 (en) * 1994-06-17 1994-08-10 Boc Group Plc Air separation
    US5682764A (en) * 1996-10-25 1997-11-04 Air Products And Chemicals, Inc. Three column cryogenic cycle for the production of impure oxygen and pure nitrogen
    GB9726954D0 (en) * 1997-12-19 1998-02-18 Wickham Michael Air separation
    US5881570A (en) * 1998-04-06 1999-03-16 Praxair Technology, Inc. Cryogenic rectification apparatus for producing high purity oxygen or low purity oxygen
    US6347534B1 (en) * 1999-05-25 2002-02-19 Air Liquide Process And Construction Cryogenic distillation system for air separation
    US6196024B1 (en) * 1999-05-25 2001-03-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic distillation system for air separation
    US6318120B1 (en) * 2000-08-11 2001-11-20 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic distillation system for air separation

    Also Published As

    Publication number Publication date
    ZA200107210B (en) 2002-03-04
    DE60108579D1 (de) 2005-03-03
    CA2357302A1 (fr) 2002-03-19
    US20020053219A1 (en) 2002-05-09
    DE60108579T2 (de) 2005-12-22
    FR2814229A1 (fr) 2002-03-22
    EP1189003A1 (fr) 2002-03-20
    FR2814229B1 (fr) 2002-10-25
    ATE288064T1 (de) 2005-02-15
    US6536232B2 (en) 2003-03-25

    Similar Documents

    Publication Publication Date Title
    FR2685459A1 (fr) Procede et installation de production d'oxygene impur.
    EP1623172A1 (fr) Procede et installation de production de gaz de l`air sous pression par distillation cryogenique d`air
    EP1189003B1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
    FR3010778A1 (fr) Procede et appareil de production d'oxygene gazeux par distillation cryogenique de l'air
    FR3062197A3 (fr) Procede et appareil pour la separation de l'air par distillation cryogenique
    EP1143216B1 (fr) Procédé et appareil de production d'un fluide enrichi en oxygène par distillation cryogénique
    FR2942869A1 (fr) Procede et appareil de separation cryogenique d'un melange d'hydrogene, d'azote et de monoxyde de carbone avec colonne de deazotation
    US20110041552A1 (en) Apparatus And Method For Separating Air By Cryogenic Distillation
    EP3069091A2 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
    EP3058297B1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
    EP1132700B1 (fr) Procédé et installation de séparation d'air par distillation cryogénique
    FR2831249A1 (fr) Procede et installation de separation d'air par distillation cryogenique
    FR2724011A1 (fr) Procede et installation de production d'oxygene par distillation cryogenique
    FR2830928A1 (fr) Procede de separation d'air par distillation cryogenique et une installation pour la mise en oeuvre de ce procede
    EP1063485B1 (fr) Appareil et procédé de séparation d'air par distillation cryogénique
    FR2787559A1 (fr) Procede et installation de separation d'air par distillation cryogenique
    FR2819046A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
    FR2973485A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
    FR2837564A1 (fr) Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur
    FR2862004A1 (fr) Procede et installation d'enrichissement d'un flux gazeux en l'un de ses constituants
    FR2787561A1 (fr) Procede de separation d'air par distillation cryogenique
    FR2861841A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
    FR3135134A1 (fr) Procédé d’augmentation de la capacité d’un appareil de séparation d’air par distillation cryogénique existant et appareil de séparation d’air
    FR3110685A1 (fr) Procédé et appareil de séparation d’air par distillation cryogénique
    FR2839548A1 (fr) Procede et installation de separation d'air par distillation cryogenique

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: L'AIR LIQUIDE, S.A. A DIRECTOIRE ET CONSEIL DE SUR

    17P Request for examination filed

    Effective date: 20020920

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050126

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050126

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050126

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050126

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050126

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 60108579

    Country of ref document: DE

    Date of ref document: 20050303

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050426

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050426

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050426

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050412

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050507

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050906

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050930

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20051027

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050626

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080811

    Year of fee payment: 8

    Ref country code: IT

    Payment date: 20080814

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20080822

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080829

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20080829

    Year of fee payment: 8

    BERE Be: lapsed

    Owner name: S.A. L'*AIR LIQUIDE A DIRECTOIRE ET CONSEIL DE SUR

    Effective date: 20090930

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20090906

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090930

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090906

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090906