EP0529352B1 - Sensor controlled pyrolytic oven - Google Patents

Sensor controlled pyrolytic oven Download PDF

Info

Publication number
EP0529352B1
EP0529352B1 EP92113230A EP92113230A EP0529352B1 EP 0529352 B1 EP0529352 B1 EP 0529352B1 EP 92113230 A EP92113230 A EP 92113230A EP 92113230 A EP92113230 A EP 92113230A EP 0529352 B1 EP0529352 B1 EP 0529352B1
Authority
EP
European Patent Office
Prior art keywords
cleaning
pyrolysis
oven
pyrolytic
pyrolytic self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92113230A
Other languages
German (de)
French (fr)
Other versions
EP0529352A1 (en
Inventor
Uwe Dipl.-Ing. Has
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0529352A1 publication Critical patent/EP0529352A1/en
Application granted granted Critical
Publication of EP0529352B1 publication Critical patent/EP0529352B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C14/00Stoves or ranges having self-cleaning provisions, e.g. continuous catalytic cleaning or electrostatic cleaning
    • F24C14/02Stoves or ranges having self-cleaning provisions, e.g. continuous catalytic cleaning or electrostatic cleaning pyrolytic type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S706/00Data processing: artificial intelligence
    • Y10S706/90Fuzzy logic

Definitions

  • the invention relates to a stove with pyrolytic self-cleaning
  • the muffle can be operated by a heating element arranged in at least one wall area and, if appropriate, with additional circulating air heating, the muffle being ventilated by a circulating air blower and equipped with means for pyrolytic gas cleaning.
  • the muffle walls are heated to a temperature of 480 to 500 ° C during a given time-temperature profile and kept at a high temperature for a certain time, this time being an empirical value corresponds and does not reflect the actual conditions of the muffle contamination.
  • the relatively long-chain molecules of the dirt adhering to the walls of the muffle are subjected to a thermal cracking process due to the long-lasting heating to over 450 ° C.
  • the gaseous degradation products are removed from the stove with the vent during self-cleaning. After self-cleaning, the remaining residues can simply be removed from the stove as ash.
  • the stove is locked to prevent accidents and only after falling below a predetermined temperature threshold is released for use again.
  • the object of the invention is now to carry out the pyrolytic self-cleaning operation as a function of the real contamination rate.
  • the solution to this problem according to the invention is characterized in that a gas sensor connected to an evaluation unit for pyrolytic self-cleaning is arranged in the exhaust air path of the muffle, that the evaluation unit analyzes the sensor signals with a logic system adapted to the pyrolysis operation, that the evaluation unit from the sensor signals after a typical pyrolysis Operating time determines a pyrolysis minimum temperature due to the type of contamination and increases the sensor signal query frequency for peak temperatures of the muffle that are to be expected higher than 470 ° C before a temperature rise above 470 ° C takes place, whereby the evaluation unit, which is partly equipped with an unsharp logic system, does the necessary depending on the degree of contamination Total pyrolysis time predetermined, sensor signal-corrected and after these times the heating elements are switched off.
  • FIG. 1 and FIG. 2 represent diagrams which, in parametric assignment, show different contamination values with the associated sensor signal profiles.
  • the evaluation unit analyzes the sensor signals with a logic system adapted to the pyrolysis operation, which will expediently be a combination of sharp and unsharp logic, and that the evaluation unit determines a minimum pyrolysis temperature from the sensor signals after a typical pyrolysis operating time .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processing Of Solid Wastes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Cookers (AREA)
  • Looms (AREA)
  • Baking, Grill, Roasting (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

The invention relates to an oven having pyrolytic self-cleaning, whose muffle can be driven by a heating element arranged in at least one wall region and possibly having additional recirculted air heating, it being the case that the muffle can be ventilated by means of a recirculating air fan and is equipped with means for pyrolytic self-cleaning, and is characterised in that a gas sensor connected to an evaluation unit for pyrolytic self-cleaning is arranged in the exhaust air path of the muffle, in that the evaluation unit analyses the sensor signals by means of a logic system matched to the pyrolytic operation, and in that the evaluation unit uses the sensor signals after a typical pyrolysis operating time to determine a minimum pyrolysis temperature which is a function of the type of contamination, and an optimised total pyrolysis time. <IMAGE>

Description

Die Erfindung bezieht sich auf einen Herd mit pyrolytischer Selbstreinigung, dessen Muffel durch ein in wenigstens einem Wandbereich angeordnetem Heizelement und ggf. mit zusätzlicher Umluftheizung betreibbar ist, wobei die Muffel durch ein Umluftgebläse belüftbar und mit Mitteln zur pyrolytischen Seblstreinigung ausgerüstet ist.The invention relates to a stove with pyrolytic self-cleaning, the muffle can be operated by a heating element arranged in at least one wall area and, if appropriate, with additional circulating air heating, the muffle being ventilated by a circulating air blower and equipped with means for pyrolytic gas cleaning.

Beim Braten, Garen und Backen werden die Innenseiten einer Herdmuffel in unterschiedlicher Weise verschmutzt. Diese Verschmutzung besteht im wesentlichen aus drei Komponenten: "Fettspritzer tierischer und pflanzlicher Art", "anklebende Gargutreste an den Muffelwänden" und "Kondensation von Wrasenbestandteilen an den Muffelwänden".When roasting, cooking and baking, the inside of a muffle is soiled in different ways. This contamination essentially consists of three components: "fat splashes of animal and vegetable type", "sticky cooking residue on the muffle walls" and "condensation of vapor components on the muffle walls".

Aus der EP-A-0 380 733 ist ein Herd mit einer automatischen pyrolytischen Selbstreinigung bekannt.From EP-A-0 380 733 a stove with an automatic pyrolytic self-cleaning is known.

Bei der konventionellen pyrolytischen Selbstreinigung von Herden, wie sie bisher betrieben wurde, weraen die Muffelwände beim Durchlauf eines vorgegebenen Zeit-Temperatur-Profils auf eine Temperatur von 480 bis 500°C aufgeheizt und für gewisse Zeit auf hoher Temperatur gehalten, wobei diese Zeit einem Erfahrungswert entspricht und nicht die tatsächlichen Verhältnisse der Muffelverschmutzung wiedergibt. Die relativ langkettigen Moleküle der an den Wänden der Muffel haftenden Verschmutzungen werden durch die lang andauernde Erhitzung auf über 450°C einem thermischen Kreckverfahren unterworfen und so zu relativ kurzkettigen Abbauprodukten, beispielsweise Wasser, kurze Kohlenwasserstoffe, Aromate und zu Ascherückständen umgesetzt. Die gasförmigen Abbauprodukte werden während der Selbstreinigung mit der Entlüftung aus dem Herd geführt. Nach der Selbstreinigung können die verbleibenden Rückstände als Asche einfach aus dem Herd genommen werden. Während der pyrolytischen Selbstreinigung wird der Herd zur Vermeidung von Unfällen verriegelt und erst nach dem Unterschreiten einer vorgegebenen Temperaturschwelle wieder für die Benutzung freigegeben.In the conventional pyrolytic self-cleaning of cookers, as has been used up to now, the muffle walls are heated to a temperature of 480 to 500 ° C during a given time-temperature profile and kept at a high temperature for a certain time, this time being an empirical value corresponds and does not reflect the actual conditions of the muffle contamination. The relatively long-chain molecules of the dirt adhering to the walls of the muffle are subjected to a thermal cracking process due to the long-lasting heating to over 450 ° C. The gaseous degradation products are removed from the stove with the vent during self-cleaning. After self-cleaning, the remaining residues can simply be removed from the stove as ash. During the pyrolytic self-cleaning, the stove is locked to prevent accidents and only after falling below a predetermined temperature threshold is released for use again.

Die Aufgabe der Erfindung besteht nunmehr darin, den pyrolytischen Selbstreinigungsbetrieb in Abhängigkeit von der realen Verschmutzungsrate durchzuführen.The object of the invention is now to carry out the pyrolytic self-cleaning operation as a function of the real contamination rate.

Die erfindungsgemäße Lösung dieser Aufgabe ist dadurch gekennzeichnet, daß ein mit einer Auswerteeinheit für pyrolytische Selbstreinigung verbundener Gassensor im Abluftweg der Muffel angeordnet ist, daß die Auswerteeinheit die Sensorsignale mit einem auf den Pyrolysebetrieb angepaßten Logiksystem analysiert, daß die Auswerteeinheit aus den Sensorsignalen nach einer typischen Pyrolyse-Betriebszeit eine verschmutzungsartbedingte Pyrolyse-Mindesttemperatur bestimmt und für höher zu erwartende Spitzentemperaturen der Muffel als 470°C die Sensorsignal-Abfragefrequenz erhöht, bevor eine Temperaturerhöhung über 470°C erfolgt, wobei die teilweise mit einem unscharfen Logiksystem ausgestattete Auswerteeinheit in Abhängigkeit vom Verschmutzungsgrad die notwendige Pyrolyse-Gesamtzeit vorbestimmt, sensorsignalbezogen nachkorrigiert und nach Ablauf dieser Zeiten die Heizelemente abschaltet.The solution to this problem according to the invention is characterized in that a gas sensor connected to an evaluation unit for pyrolytic self-cleaning is arranged in the exhaust air path of the muffle, that the evaluation unit analyzes the sensor signals with a logic system adapted to the pyrolysis operation, that the evaluation unit from the sensor signals after a typical pyrolysis Operating time determines a pyrolysis minimum temperature due to the type of contamination and increases the sensor signal query frequency for peak temperatures of the muffle that are to be expected higher than 470 ° C before a temperature rise above 470 ° C takes place, whereby the evaluation unit, which is partly equipped with an unsharp logic system, does the necessary depending on the degree of contamination Total pyrolysis time predetermined, sensor signal-corrected and after these times the heating elements are switched off.

Weitere, vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen dargestellt.Further advantageous embodiments of the invention are presented in the subclaims.

Ein Ausführungsbeispiel nach der Erfindung ist im folgenden anhand der Zeichnung näher beschrieben. Es zeigt:

Fig. 1
einen Sensor-Signalverlauf während der Pyrolysezeit bei verschiedenen Verschmutzungen
Fig. 2
Sensorsignale während des Anstieges der Pyrolysetemperatur bei verschiedenen Verschmutzungen.
An embodiment of the invention is described below with reference to the drawing. It shows:
Fig. 1
a sensor signal curve during the pyrolysis time with various contaminants
Fig. 2
Sensor signals during the rise in the pyrolysis temperature with various contaminants.

Fig. 1 und Fig. 2 stellen Diagramme dar, die in parametrischer Zuordnung verschiedene Verschmutzungswerte mit den dazugehörigen Sensor-Signalverläufen wiedergeben.FIG. 1 and FIG. 2 represent diagrams which, in parametric assignment, show different contamination values with the associated sensor signal profiles.

Gemäß Fig. 1 ist eine Kurvenschar erkennbar, die mit verschiedenen Verschmutzungsraten als Parameter den Verlauf des Sensorsignals über die Pyrolysezeit darstellt. Dabei können diese Kurven nur qualitative Aussagekraft besitzen, weil sich ständig ändernde Bedingungen beispielsweise Netz-Spannungsschwankungen, andere Garraum--Verschmutzungsarten, Garraumgröße, Beheizungsart des Garraums usw. auf quantitative Kurvenverläufe erheblich auswirken können. Für den gesteuerten Pyrolysebetrieb ist es daher unbedingt erforderlich, daß eine mit unscharfer Logik ausgerüstete Auswerteeinheit durch die ständige Abfrage der Sensorsignale die jeweils erforderlichen Regelschritte einleitet. Aus Fig. 1 ist dennoch entnehmbar, daß gleiche Verschmutzungstypen nach einer bestimmten Pyrolysedauer ihre Maxima fast gleichzeitig erreichen. Man kann davon ausgehen, daß mit Erreichen der notwendigen Pyrolyse-Temperatur, d.h. der Temperatur, die dem Verschmutzungsgrad entsprechend ausreichende Kreckkraft besitzt, keine längeren Aufheizzeiten als eine Stunde erforderlich sein werden. Das ist einmal davon abhängig, in welchem Maße die Verschmutzung komplizierte Zusammensetzungen bezüglich tierischer und pflanzlicher Fette, klebender Gargutreste und komplizierte Kondensationsprodukte von Wrasenbestandteilen vorhanden sind und von welcher Ausgangstemperatur her die Pyrolyse gestartet wird.1, a family of curves can be seen which, with different contamination rates as parameters, represents the course of the sensor signal over the pyrolysis time. These curves can only be qualitative because they are constantly changing Conditions, for example, mains voltage fluctuations, other cooking space - types of contamination, cooking space size, heating type of the cooking space, etc. can have a significant impact on quantitative curves. For the controlled pyrolysis operation it is therefore absolutely necessary that an evaluation unit equipped with fuzzy logic initiates the respectively required control steps by constantly querying the sensor signals. From Fig. 1 it can still be seen that the same types of pollution reach their maxima almost simultaneously after a certain pyrolysis time. It can be assumed that once the necessary pyrolysis temperature has been reached, ie the temperature which has a sufficient tensile strength corresponding to the degree of contamination, no heating-up times longer than one hour will be required. This depends on the extent to which the contamination of complicated compositions with regard to animal and vegetable fats, sticky cooking product residues and complicated condensation products of vapor components is present and from which starting temperature the pyrolysis is started.

Es ist natürlich auch möglich, daß für eine pyrolytische Selbstreinigungsvorgang mehrere Kurven mit unterschiedlichen Maxima durchfahren werden müssen, bis eine eindeutige, der Pyrolysedauer entsprechende, sich gegen asymptotisch Null nähernde Sensorsignalentwicklung erkennbar ist. Es ist daher notwendig, daß die Auswerteeinheit die Sensorsignale mit einem auf den Pyrolysebetrieb angepaßtem Logiksystem, das zweckmäßigerweise eine Kombination aus scharfer und unscharfer Logik sein wird, analysiert und daß die Auswerteeinheit aus den Sensorsignalen nach einer typischen Pyrolyse--Betriebszeit eine Pyrolyse-Mindesttemperatur bestimmt.It is of course also possible that for a pyrolytic self-cleaning process, several curves with different maxima have to be traversed until a clear sensor signal development corresponding to the pyrolysis duration and approaching asymptotically zero can be recognized. It is therefore necessary that the evaluation unit analyzes the sensor signals with a logic system adapted to the pyrolysis operation, which will expediently be a combination of sharp and unsharp logic, and that the evaluation unit determines a minimum pyrolysis temperature from the sensor signals after a typical pyrolysis operating time .

Die Sensorsignale, bezogen auf den Temperaturverlauf, sind gemäß Fig. 2 dargestellt. Es ist ersichtlich, daß die Maxima der Sensorsignale bei Temperaturen auftreten, die für die entsprechende Garraumverschmutzung typische Reinigungstemperaturen sind. Im allgemeinen werden Temperaturen der pyrolytischen Selbsstreinigung oberhalb 470° notwendig sein. Aus den Kurvenscharen gemäß Fig. 2 ist aber immerhin erkennbar, daß nicht jede Verschmutzung diese Temperatur erfordert. Diesbezüglich gilt auch, das unter Fig. 1 Gesagte, daß eine unscharfe Logik für die Auswerteeinheit vorteilhaft ist, um eine optimale Pyrolysetemperatur, bezogen auf die jeweilige Verschmutzung im Garraum, zu ermitteln. Durch die Verwendung zweckmäßiger Sensortechnik im Abluftkanal der Herdmuffel können Aussagen zu folgenden Punkten, die Pyrolyse betreffend, gemacht werden.

  • Höhe der notwendigen Pyrolyse-Temperatur,
  • Angabe zur notwendigen Pyrolysedauer,
  • Vorgaben für Be- und Entlüftung der Ofenmuffel,
  • Angaben zur Menge und Geschwindigkeit der Umluft,
  • mögliche Erkennung von zufällig im Brat- und Backrohr vorhandeen Fremdgegenständen.
The sensor signals, based on the temperature profile, are shown in FIG. 2. It can be seen that the maxima of the sensor signals occur at temperatures which are typical cleaning temperatures for the corresponding cooking chamber contamination. In general, temperatures of pyrolytic self-cleaning above 470 ° will be necessary. From the family of curves according to FIG. 2, it can nevertheless be seen that not every contamination requires this temperature. In this regard, what has been said under FIG. 1 also applies that unsharp logic is advantageous for the evaluation unit in order to determine an optimal pyrolysis temperature, based on the respective contamination in the cooking space. By using appropriate sensor technology in the exhaust duct of the muffle, statements can be made on the following points regarding pyrolysis.
  • Level of the necessary pyrolysis temperature,
  • Information on the necessary pyrolysis time,
  • Specifications for ventilation of the furnace muffle,
  • Information on the quantity and speed of the circulating air,
  • Possible detection of foreign objects accidentally present in the roasting and baking oven.

Gegenüber den bisherigen Verfahrensweisen bei pyrolytischer Selbstreinigung, die darin bestanden, daß ein starres Zeit-Temperaturprofil durchfahren wurde, d.h. der Herd wurde eine bestimmte empirisch ermittelte Zeit lang mit hoher Temperatur betrieben, ergibt die sensorgesteuerte Pyrolyse folgende Vorteile:

  • Der Energieverbrauch wird stark verringert, da die vorhandene Verschmutzung nur sehr selten den Maximalwert erreicht, für den das Zeit-Temperatur-Profil früher ausgelegt war.
  • Der Herd wird weit weniger belastet, dadurch vergrößert sich die Lebensdauer der Email der Muffel.
  • Die Brandgefahr im Fall von Bedienungsfehlern wird verringert, da die Sensorik Fehlbeschickung im Garraum analysiert.
  • Ggf. kann die Geruchsentwicklung minimierbar gestaltet sein.
Compared to the previous procedures for pyrolytic self-cleaning, which consisted in a rigid time-temperature profile being run through, ie the stove was operated at a high temperature for a certain empirically determined time, sensor-controlled pyrolysis has the following advantages:
  • Energy consumption is greatly reduced since the existing pollution very rarely reaches the maximum value for which the time-temperature profile was previously designed.
  • The stove is stressed far less, which increases the lifespan of the enamel of the muffle.
  • The risk of fire in the event of operating errors is reduced because the sensors analyze incorrect loading in the cooking space.
  • Possibly. the development of odors can be minimized.

Diese Erkennungsmöglichkeiten und Vorteile der sensorgsesteuerten Pyrolyse, verbunden mit einer Auswerteeinheit, die scharfe und unscharfe Logik problemorientiert einsetzt, geben den damit ausgerüsteten Herden einen zweckentsprechenden Komfort.These detection options and advantages of sensor-controlled pyrolysis, combined with an evaluation unit that uses sharp and fuzzy logic in a problem-oriented manner, give the stoves equipped with them a convenience that is appropriate for the purpose.

Claims (3)

  1. Oven with pyrolytic self-cleaning, the oven chamber of which is operable by a heating element arranged in at least one wall region and in a given case with additional circulating air heating, wherein the oven chamber is loadable with air by a circulating air blower and is equipped with means for pyrolytic self-cleaning, characterised thereby that a gas sensor connected with an evaluating unit for pyrolytic self-cleaning is arranged in the exhaust air path of the oven chamber, that the evaluating unit analyses the sensor signals by a logic system adapted to the pyrolysis operation, that the evaluating unit determines from the sensor signals a pyrolysis minimum temperature, which is dependent on kind of contamination, according to a typical pyrolytic operating time and, for peak temperatures of the oven chamber expected to be higher than 470°C, increases the sensor signal interrogation frequency before a temperature increase above 470°C takes place, wherein the evaluating unit, which is equipped in part with a fuzzy logic system, predetermines the necessary pyrolysis total time in dependence on degree of contamination, subsequently corrects this by reference to sensor signal and switches off the heating element after elapsing of these times.
  2. Oven with pyrolytic self-cleaning according to claim 1, characterised thereby that the gas sensor reacts to short-chain hydrocarbons and hydrogen molecules by an electrical resistance change able to be evaluated.
  3. Oven with pyrolytic self-cleaning according to claims 1 to 3, characterised thereby that the evaluating unit terminates the air loading of the oven chamber after switching-off of the heating power.
EP92113230A 1991-08-19 1992-08-03 Sensor controlled pyrolytic oven Expired - Lifetime EP0529352B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4127389A DE4127389A1 (en) 1991-08-19 1991-08-19 COOKER WITH SENSOR CONTROLLED PYROLYSIS
DE4127389 1991-08-19

Publications (2)

Publication Number Publication Date
EP0529352A1 EP0529352A1 (en) 1993-03-03
EP0529352B1 true EP0529352B1 (en) 1997-07-16

Family

ID=6438610

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92113230A Expired - Lifetime EP0529352B1 (en) 1991-08-19 1992-08-03 Sensor controlled pyrolytic oven

Country Status (5)

Country Link
US (1) US5286943A (en)
EP (1) EP0529352B1 (en)
AT (1) ATE155569T1 (en)
DE (2) DE4127389A1 (en)
ES (1) ES2106802T3 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4223656A1 (en) * 1992-07-17 1994-01-20 Bosch Siemens Hausgeraete Pyrolytic self-cleaning method for oven - Has sensor in cooking space to ascertain degree of contamination and fuzzy logic to control pyrolytic process
JPH06317532A (en) * 1993-04-30 1994-11-15 Kazumi Haga Inspection device
DE4321952B4 (en) * 1993-07-01 2004-05-27 BSH Bosch und Siemens Hausgeräte GmbH Stove with pyrolytic self-cleaning
JP3404134B2 (en) * 1994-06-21 2003-05-06 株式会社ニュークリエイション Inspection device
US5964211A (en) * 1996-11-20 1999-10-12 Maytag Corporation Pyrolytic self-cleaning gas oven
FR2777345B1 (en) * 1998-04-10 2000-06-30 Europ Equip Menager SYSTEM FOR ASSESSING THE SOIL CONDITION OF THE OVEN CAVITY
FR2791127B1 (en) * 1999-03-16 2001-07-06 Cepem SYSTEM FOR ASSESSING THE SOIL CONDITION OF THE OVEN CAVITY
US6417493B1 (en) 1999-09-13 2002-07-09 Maytag Corporation Self-cleaning method for a cooking appliance
US6316749B1 (en) 2000-08-29 2001-11-13 Maytag Corporation Self-cleaning system for a cooking appliance
US6232584B1 (en) 1999-12-15 2001-05-15 Whirlpool Corporation System for controlling a self cleaning oven having catalyst temperature control
DE10019853A1 (en) * 2000-04-13 2001-10-25 Auergesellschaft Gmbh Gas sensor arrangement
US6784404B2 (en) 2000-07-12 2004-08-31 Whirlpool Corporation System for controlling the duration of a self-clean cycle in an oven
US6392204B2 (en) 2000-07-12 2002-05-21 Whirlpool Corporation System for controlling the duration of a self-clean cycle in an oven
DE20017525U1 (en) * 2000-10-12 2001-01-11 Taiwan Sakura Corp Self-controlling circuit of a smoke extractor for cooking
DE10128024B4 (en) * 2001-06-08 2006-07-06 BSH Bosch und Siemens Hausgeräte GmbH Cooking appliance
US6787738B2 (en) * 2003-01-27 2004-09-07 General Electric Company Carbon monoxide sensed oven cleaning apparatus and method
WO2004081456A1 (en) * 2003-03-10 2004-09-23 Gunkol Gunes Enerjisi Ve Klima San. A.S. Oven and sensor thereof having pyrolytic function
DE10340146A1 (en) * 2003-08-25 2005-03-24 E.G.O. Elektro-Gerätebau GmbH Process for evaluating a gas for controlling an oven with respect to its gas content comprises subtracting the measured actual signal pattern from a stored final signal pattern and plotting a curve from the results
DE102007005501B4 (en) * 2007-01-30 2012-06-21 Rational Ag Method for cleaning a food processing device, in particular by determining a degree of purification, and food processing device therefor
US9182296B2 (en) 2012-05-16 2015-11-10 General Electric Company Oven air sampling system
US9731333B2 (en) 2013-01-07 2017-08-15 Electrolux Home Products, Inc. Self-cleaning top burner for a stove
DE102013209469A1 (en) * 2013-05-22 2014-11-27 Siemens Aktiengesellschaft Apparatus and method for generating a gas flow from a room to a gas sensor
FR3035482B1 (en) * 2015-04-21 2018-09-14 Groupe Brandt COOKING APPARATUS EMPLOYING A PYROLYTIC CLEANING CYCLE
TWI699166B (en) * 2019-01-02 2020-07-21 愛利奧有限公司 Bean body temperature detecting element and its temperature measuring method
CA3148795A1 (en) 2019-09-27 2021-04-01 Ecolab Usa Inc. Validation of addition of cleaning chemistry to self-clean oven
EP3862634A1 (en) 2020-02-05 2021-08-11 Vestel Elektronik Sanayi ve Ticaret A.S. Self-cleaning oven for cooking food, and cleaning method for a self-cleaning oven
EP3872403A1 (en) * 2020-02-27 2021-09-01 Miele & Cie. KG Method for the determination of a cleaning cycle duration

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066867A (en) * 1976-10-19 1978-01-03 Robertshaw Controls Company Temperature control circuit with two independent switch outputs
US4481404A (en) * 1982-12-22 1984-11-06 General Electric Company Turn-off control circuit for self-cleaning ovens
US4493976A (en) * 1983-05-02 1985-01-15 General Electric Company Pyrolytic oven cleaning system
JP2525829B2 (en) * 1987-09-14 1996-08-21 株式会社東芝 Cooking device
US4908760A (en) * 1987-12-31 1990-03-13 Whirlpool Corporation Self-cleaning oven temperature control having multiple stored temperature tables
JPH01319619A (en) * 1988-06-17 1989-12-25 Ishikawajima Harima Heavy Ind Co Ltd Method of controlling hot stove
US4904849A (en) * 1988-11-07 1990-02-27 Whirlpool Corporation Self-cleaning oven temperature control with adaptive clean mode recalibration
JPH0637651B2 (en) * 1988-12-21 1994-05-18 川崎製鉄株式会社 Hot stove operation method
US4954694A (en) * 1989-01-31 1990-09-04 Matsushita Electric Industrial Co., Ltd. Cooking oven having function to automatically clean soils attached to inner walls thereof
WO1991003589A1 (en) * 1989-09-07 1991-03-21 Matsushita Electric Industrial Co., Ltd. Washing machine
JP2748613B2 (en) * 1989-11-16 1998-05-13 松下電器産業株式会社 Clothes dryer
DE4017628A1 (en) * 1990-05-31 1991-12-05 Bosch Siemens Hausgeraete STOVE WITH PYROLYTIC SELF-CLEANING
JPH04284809A (en) * 1991-03-15 1992-10-09 Matsushita Electric Ind Co Ltd Air cleaner
DE9112786U1 (en) * 1991-10-14 1991-12-12 Bosch-Siemens Hausgeräte GmbH, 8000 München Display of the degree of stove contamination

Also Published As

Publication number Publication date
US5286943A (en) 1994-02-15
EP0529352A1 (en) 1993-03-03
DE4127389A1 (en) 1993-02-25
DE59208704D1 (en) 1997-08-21
ES2106802T3 (en) 1997-11-16
ATE155569T1 (en) 1997-08-15

Similar Documents

Publication Publication Date Title
EP0529352B1 (en) Sensor controlled pyrolytic oven
DE69635892T2 (en) OVEN FOR COOKING FOODSTUFFS
EP0900985B1 (en) Method for cooling of an oven door and oven with cooling system
EP0459131A1 (en) Pyrolitically cleaned cooking oven
DE19758860B4 (en) Method for controlling a pyrolysis cleaning process
EP1212570A1 (en) Control device for a cooker
EP0528250B1 (en) Automatable process of pyrolytic self-cleaning
DE4223656A1 (en) Pyrolytic self-cleaning method for oven - Has sensor in cooking space to ascertain degree of contamination and fuzzy logic to control pyrolytic process
DE102008014268A1 (en) Method and device for controlling a hob
DE2657929B2 (en) Oven, in particular with means for pyrolytic self-cleaning
DE19857932A1 (en) Combination comprising a cooking device and an extractor hood, as well as cooking device and extractor hood, as well as cooking device and extractor hood and method for operating a combination, comprising a cooking device and an extractor hood
DE1565816B2 (en) CONTROL DEVICE FOR COOKING, FRYING AND BAKING
EP0115838B1 (en) Gas-operated multi-function baking oven
EP0658067A1 (en) Control for evaluating sensor signals of domestic appliances
DE102010039280B4 (en) Method for carrying out a pyrolysis process in a domestic appliance
CH694894A5 (en) Method for operating a cooking oven and cooking oven.
EP0632232B1 (en) Stove having a pyrolytic self-cleaning provision
DE10039444C2 (en) Cooking appliance
DE3715598A1 (en) Cooking stove with heat self-cleaning - has main and auxiliary fume flues with shutter and afterburner
DE19936418A1 (en) Cooking apparatus such as oven or hob limits displaying temperature to set temperature when switching from heating phase to residual heating phase
DE9302841U1 (en) Stove with pyrolytic self-cleaning of the muffle
EP2444738B1 (en) Cooking device with an oven
DE1565816C (en) Control device for cooking, frying, baking
DE2257795C3 (en) Process for roasting meat or fish and a roasting oven for carrying out the process
DE2829365A1 (en) Baking oven with temperature control - has thermostat which cuts cooling air fan in and out at predetermined temperatures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB IT

17P Request for examination filed

Effective date: 19930817

17Q First examination report despatched

Effective date: 19940405

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT

REF Corresponds to:

Ref document number: 155569

Country of ref document: AT

Date of ref document: 19970815

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970717

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59208704

Country of ref document: DE

Date of ref document: 19970821

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2106802

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030729

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030826

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040804

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050803

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040804

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070831

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070822

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070821

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303