EP0520006A1 - Composition magnetique et ses applications - Google Patents

Composition magnetique et ses applications

Info

Publication number
EP0520006A1
EP0520006A1 EP19910906498 EP91906498A EP0520006A1 EP 0520006 A1 EP0520006 A1 EP 0520006A1 EP 19910906498 EP19910906498 EP 19910906498 EP 91906498 A EP91906498 A EP 91906498A EP 0520006 A1 EP0520006 A1 EP 0520006A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
suspension
composition according
nanoparticles
magnetic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19910906498
Other languages
German (de)
English (en)
Inventor
Pascale Escaffre
Joseph Dussaud
René Massart
Valérie CABUIL
Sophie Neveu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CIMENTS VICAT SA
Original Assignee
CIMENTS VICAT SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CIMENTS VICAT SA filed Critical CIMENTS VICAT SA
Publication of EP0520006A1 publication Critical patent/EP0520006A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/06187Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with magnetically detectable marking
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids

Definitions

  • composition • magnetic-and-its -applications.-
  • the present invention relates to a new magnetic composition and its applications. More specifically, it relates to a magnetic composition comprising an emulsion of microdroplets of a magnetic liquid.
  • a magnetic liquid is defined as a colloidal suspension in a solvent, of magnetic particles whose size is of the order of a nanometer, so that the whole of the fluid behaves like a paramagnetic body.
  • Magnetic liquids can thus be stabilized in different types of liquids: oils, organic solvents, but much more difficult, polar solvents.
  • the duration of the manufacturing process is, among other things, 'the origin of the high price of liquid obtained by this method.
  • Magnetic materials or substances and in particular those made up of magnetic microparticles are used very widely.
  • the magnetic sensitivity of the medium and the definition of the recorded data depend closely on the size, the polarization and the mobility of the magnetic particles.
  • the coding methods and authentication also use magnetic materials and improving their efficiency goes particularly through the development of new magnetic materials with "erasable or rewritable coding capabilities more important.
  • Magnetic filtering as well as the production of magnetic display supports are implemented from materials whose magnetic density is sought to be increased.
  • the purpose of the present invention is to provide a technical solution to the problems posed in the fields mentioned above.
  • This object is achieved in accordance with the object of the invention which is a magnetic composition comprising an emulsion of microdroplets of a magnetic liquid consisting of a suspension of magnetic nanoparticles.
  • the microdroplets are microencapsulated.
  • the nanoparticles in suspension in the magnetic liquid are surfactated or else ionized.
  • it is preferably carry out said 'suspension as a. crosslinkable or hot-melt composition.
  • said suspension is a photopolymerizable composition comprising ethylenically unsaturated organic compounds and a photosensitive system.
  • the magnetic composition of the invention can be used in a magnetic medium intended for recording and restoring information.
  • the magnetic composition of the invention can also be used in a magnetic support intended for coding and authentication.
  • Another object of the invention is therefore a method of manufacturing a magnetic support, characterized in that a substrate forming a base is formed, an emulsion of microdroplets of an agnetic liquid consisting of a suspension, of nanoparticles is prepared. magnetic, said emulsion is applied to said substrate and, if necessary, after drying, -a protective coating is applied covering at least one face of said substrate.
  • said magnetic recording or coding support comprises a substrate forming a base on which is disposed a layer consisting essentially of microcapsules containing a crosslinkable suspension of magnetic nanoparticles and, where appropriate, a protective coating allowing the crosslinking means to pass and covering the layer of microcapsules.
  • said magnetic support comprises a substrate forming a base in which are incorporated microcapsules containing a crosslinkable suspension of magnetic nanoparticles, and a transparent protective coating allowing the crosslinking means to pass and covering at least one face of said substrate.
  • a transparent protective coating allowing the crosslinking means to pass and covering at least one face of said substrate.
  • Yet another object of the invention is a magneto-geometrical coding method characterized in that the assembly of a support at least partially coated with a magnetic composition consisting of a plurality of microcapsules each containing a crosslinkable suspension of magnetic nanoparticles to an optionally alternating magnetic field so as to orient the nanoparticles in suspension in the microcapsules and the orientation of the nanoparticles is selectively frozen in the suspension by crosslinking of the suspension so as to that after suppression of the magnetic field, there is coexistence of fixed oriented zones and non-oriented zones.
  • Figure 1 shows a cross section of an embodiment of a magnetic support according to the invention.
  • Figure 2 shows a cross section of another embodiment.
  • Microencapsulation is a process by which an active agent in liquid or solid phase is coated by a coating or by a membrane forming the wall of the capsule.
  • the preparation of microcapsules is well known and the manufacturing methods well mastered.
  • the potential applications of microencapsulation know practically no limits.
  • the chemical encapsulation processes differ in terms of the formation of the wall of the microcapsule, which can be done either by coacervation or by interfacial polymerization. It is therefore possible to use different procedures for micro-encapsulation of magnetic liquids.
  • the magnetic liquid containing the nanoparticles in suspension is prepared in a solvent with a high boiling point.
  • the solution thus obtained is dispersed with stirring in a non-miscible secondary solvent (water for example) and possibly stabilized in the presence of a surfactant thus forming an emulsion or a microemulsion.
  • a surfactant thus forming an emulsion or a microemulsion.
  • the chemical composition of the various elements of the emulsion is suitable, chemical agents which will come, by reaction at the interface, to form an insoluble macromolecular film around the microdroplets forming the emulsion.
  • the magnetic composition can be used directly in the form of an emulsion of microdroplets of magnetic liquid or else in the form of microcapsules obtained by the above method.
  • the microcapsules themselves can be used as such or separated by physical means from the secondary solvent and dried.
  • the encapsulation of the magnetic liquid makes it possible to preserve all the properties of the magnetic liquid, namely: fluid and magnetic liquid.
  • microcapsules require a point of solvent of one high boiling, low vapor pressure, in close enough density of a "low -d'absorption in the ultraviolet and visible (max 320 nm) immiscible in polar solvents such as water, alcohols, etc. Mention may be made, without limitation, of aromatic derivatives, hydrogenated or not (for example hydrogenated terphenyl, cymene, tetralin, decalin • • •) ⁇ esters which are sometimes used as plasticizers for plastics (for example dioctyl phthalate, butyl laurate, butyl stearate ...), ethers (for example diglyme, diethylene glycol dibutyl ether ).
  • the magnetic nanoparticles in suspension are chosen from the group consisting of magnetic oxides based on ferrite such as, for example, ferrite ferrite, magite ite ( or manganese ferrite (MnFe ? 0 4 ).
  • the particle size is generally between '3 and 500 nm and is preferably 10 nm and the volume concentration of magnetic nanoparticles in the magnetic liquid varies between 1 and 33%.
  • Example -1- A magnetic liquid is used which consists of a suspension of magnetic nanoparticles in hydrogenated terphenyl (SANT0S0L - registered trademark - from the company MONSANTO).
  • the mixture is rapidly cooled to 10 ° C. in the presence of 10 ml of 25% aqueous glutaraldehyde solution.
  • a mixture A consists of:
  • the magnetic liquid can also be an aqueous suspension of magnetic particles.
  • microcapsules can then be applied to the substrate serving as a base for the support or else be incorporated directly into the material of the substrate either from its manufacture, or subsequently by impregnation. This can be achieved for example by intimately mixing the microcapsules and the substrate material before the manufacture of the support, in particular in the case of a paper-type substrate made of fibers. It is also possible to envisage making the magnetic liquid in a very specific medium such as for example a photosensitive composition crosslinkable under radiation (UV or IR) or by electron beam or even a gelable formulation. With regard to the photosensitive composition, any encapsulable erisable photopoly composition can be used provided that the magnetic liquid can be produced in one of the components of the formulation.
  • a photosensitive composition crosslinkable under radiation UV or IR
  • any encapsulable erisable photopoly composition can be used provided that the magnetic liquid can be produced in one of the components of the formulation.
  • the photosensitive composition comprises one or more compounds which polymerize by exposure to radiation.
  • the "compound” may be inherently sensitive to actinic radiation or may require a radical or ionic photoinitiator.
  • Photopolymerizable compositions which include ethylenically unsaturated organic compounds having at least one terminal ethylene group per molecule and a photosensitive system.
  • the photosensitive system can contain prepolymers (oligomers) and reactive diluents (polyfunctional monomers).
  • the reactive prepolymers are preferably resins epoxyacrylates, urethane acrylate, polyester acrylate, polyether acrylate.
  • the diluents are polyols _ acrylates (hexanedioldiacrylate (HDPA), tripolylene glycol diacrylate (TPGD)) Pentaerythitol triacrylate (PETIA), trimethylolpropane triacrylate.
  • HDPA hexanedioldiacrylate
  • TPGD tripolylene glycol diacrylate
  • PETIA Pentaerythitol triacrylate
  • the photopolymerization induced by visible radiation or IR can bring into play a phenomenon of photosensitization of the photoinitiators of the radical polymerization reaction (originally in UV).
  • Example * 3 * Crosslinkable formulation under UV (UCB)
  • Ebecryl 1608 epoxyacrylate resin
  • TPGDA tripolylene glycûl triacrylate
  • OTA 480 oligotriacrylate
  • the magnetic liquid then consists of a suspension of magnetic nanoparticles (10 nm) of cobalt ferrite volume of 6% in ebecryl 1608 or TPGDA or OTA 480 or in all of the acrylate derivatives.
  • Anti UV agents can be added to this formulation, such as IRGACURE 651 from CIBA or DAROCURE 1173 from Merck in an amount of 2 parts.
  • Example * 4-
  • Another advantageous formulation is the following: Ebecryl 586 60 P TMPTA 40 P benzophenone 2 P Irgacure 4 P
  • the magnetic liquid then consists of magnetic nanoparticles suspended in the Ebecryl at a volume concentration of 4%.
  • the new magnetic composition of the invention can be advantageously used in a process for recording and restoring information from supports made up of discs or tapes (sounds, images, computer data).
  • the possible applications mainly concern digital recordings such as: longitudinal magnetic recording, perpendicular magnetic recording or magneto-thermal recording with magneto-optical reading, but also analog recording.
  • the magnetic composition of the invention is used in the coating of the support.
  • the new magnetic composition of the invention can also be used in a coding and authentication process using "anti-theft devices” and “control systems”.
  • a support for example a sheet, at least partially coated with the composition of the invention, is subjected to an almost uniform magnetic field so as to orient the nanoparticles in suspension in the microcapsules and the orientation of the nanoparticles is frozen at the surface to be coded on the support by crosslinking of the suspension so that after removal of the magnetic field, there is coexistence of oriented and non-oriented areas.
  • This coding is erasable and rewritable as in the case of the coding of traditional magnetic supports based on ferromagnetic substances.
  • Crosslinking is obtained for example with UV radiation applied above a window mask placed on the support. Reading is done by detection of oriented and non-oriented areas which can correspond respectively to logical 0 and 1.
  • This type of writing with UV radiation can be used during the manufacture of the sheet (or of a strip) just before the drying of the layer of magnetic composition. We then speak of a magnetic watermark which constitutes security supports. But with the composition of the invention it is also possible to use writing with UV radiation at any time after manufacture since the wall of the microcapsules isolates the magnetic particles and leaves them within the suspension not yet crosslinked any freedom of movement.
  • UV crosslinking is done on the surface to be coded, exposed or not to a magnetic field and the reading is still done by detection of oriented and non-oriented areas.
  • a magnetic support is made from a substrate forming a base on which an emulsion of microdroplets optionally encapsulated with a magnetic liquid, consisting of a suspension of magnetic nanoparticles in a crosslinkable or change-over medium, is applied.
  • a magnetic liquid consisting of a suspension of magnetic nanoparticles in a crosslinkable or change-over medium
  • viscosity for example hot-melt
  • evaporable for example solvent
  • a homogeneous layer of magnetic nanoparticles is obtained forming a magnetic support.
  • an aqueous emulsion will preferably be produced.
  • the magnetic liquid will then be formed in a medium such as a wax, an oil, a solvent, a crosslinkable formulation. in which cobalt ferrite nanoparticles are suspended at a concentration of approximately 10% in the presence sodium dodecyl sulfate (SDS) at 0.05 to 1 mole / liter.
  • SDS sodium dodecyl sulf
  • the coercivity and the persistence can be controlled by the nature, the size and the shape of the particles used.
  • FIG. 1 represents a cross section of a magnetic recording or coding support according to the invention comprising a substrate 1 forming a base, on which is disposed a layer 2 consisting essentially of microcapsules 3 containing a crosslinkable suspension 4 of magnetic nanoparticles 5 whose diameter is of the order of 10 nm, and a protective coating 6 allowing the crosslinking means to pass.
  • This coating will for example be transparent in the case where the crosslinking means is UV radiation.
  • the protective coating 6 is formed as in Figure 1 as a layer in contact with the substrate 1 in which are embedded the microcapsul 'are or in the form of a separate layer overlying the layer of microcapsules and without contact with the substrate.
  • the microcapsules 3 are incorporated into the substrate from its manufacture by intimately mixing them with the material of the substrate from the manufacture of the support or later by impregnation.
  • a protective coating may also be provided covering at least one face of the substrate.
  • composition of the invention can also be used in a magnetic filter.
  • the filter is a stack of sheets coated with microcapsules containing a magnetic liquid.
  • the sheets are then magnetized and attract dust aim 'antables (whether in liquid or gaseous medium).
  • Cleaning the filter is particularly simple. In fact, when the magnetic field is removed, the particles which are in a liquid medium lose their orientation. The leaves no longer attract the dust and it falls and is collected.
  • the magnetic board can be produced from an emulsion of droplets or microcapsules by drying in the field, the suspension or core being able to be crosslinkable, hot-melt or polymer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Record Carriers (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

Composition magnétique comprenant une émulsion de microgouttelettes d'un liquide magnétique constitué d'une suspension de nanoparticules magnétiques; lesdites microgouttelettes étant éventuellement microencapsulées. Procédé de fabrication d'un support magnétique et support magnétique obtenu à partir de ladite composition magnétique.

Description

Composition magnétique-et -ses -applications.-
La présente invention concerne une nouvelle composition magnétique et ses applications. De façon plus précise, elle se rapporte à une composition magnétique comprenant une emulsion de microgouttelettes d'un liquide magnétique. Un liquide magnétique est défini comme une suspension colloïdale dans un solvant, de particules magnétiques dont la taille est de l'ordre du nanomètre, de telle sorte que l'ensemble du fluide se comporte comme un corps paramagnétique.
Pour la fabrication des liquides magnétiques , il est connu de broyer de la magnétite (Fe^04) pendant plusieurs semaines de manière à obtenir des grains de taille appropriée (10 nm) puis au terme de ce broyage, on ajoute un agent tensio-actif en présence de solvant (ferrofluide surfacté) . Des liquides magnétiques peuvent être ainsi stabilisés dans différents types de liquides : des huiles, des solvants organiques, mais beaucoup plus difficilement, les solvants polaires. La durée du processus de fabrication est, entre autres, à' l'origine du prix assez élevé des liquides obtenus par cette méthode.
Une méthode plus récente mise au point par R. ASSART et qui a fait l'objet de la demande de brevet français 79/18842 (FR 2 461 521) permet d'obtenir des liquides magnétiques par une simple synthèse chimique : la condensation alcaline d'un mélange aqueux d'ions ferriques et d'un métal divalent conduit à la formation de macroanions ferrimagnétiques qui ne sont autres que des particules de magnétite chargées superficiellement de façon électrostatique. Cette synthèse chimique conduit directement à un liquide magnétique ionique aqueux.
Les matériaux ou substances magnétiques et notamment ceux constitués de microparticules magnétiques sont utilisés très largement.
Ainsi, l'enregistrement de diverses données dans des domaines très variés (son, image, informatique) est un procédé bien connu et largement utilisé qui est mis en oeuvre au moyen de supports (disques, bandes ..) revêtus avec une substance magnétique.
Mais la sensibilité magnétique du support et la définition des données enregistrées dépendent étroitement de la taille, de la polarisation et de la mobilité des particules magnétiques.
De plus, compte-tenu des problèmes liés à la miniaturisation des dispositifs d'enregistrement et de lecture , on souhaite aujourd'hui augmenter la capacité de stockage des informations au niveau des supports tout en maintenant ou en augmentant leur niveau de performance (niveau de sortie, rapport signal/bruit, tenue dans le temps ...).
Cela implique notamment le développement de nouvelles techniques d'écriture et de lecture mettant en oeuvre des supports magnétiques améliorés.
- Les procédés de codage et d'authentification utilisent également des matériaux magnétiques et l'amélioration de leur efficacité passe en particulier par le développement de nouveaux matériaux magnétiques possédant des" capacités de codage effaçable ou réinscriptible plus importantes.
- Le filtrage magnétique ainsi que la réalisation de supports à affichage magnétique sont mis en oeuvre à partir de matériaux dont on cherche à augmenter la densité magnétique. La présente invention a pour but d'apporter une solution technique aux problèmes posés dans les domaines évoqués ci-dessus.
Ce but est atteint conformément à l'objet de l'invention qui est une composition magnétique comprenant une emulsion de microgouttelettes d'un liquide magnétique constitué d'une suspension de nanoparticules magnétiques.
Selon un mode de réalisation particulièrement avantageux, les microgouttelettes sont microencapsulees.
Pour compenser l'attraction entre les nanoparticules et éviter leur agglomération, les nanoparticules en suspension dans le liquide magnétique sont surfactées ou bien ionisées. Pour fixer l'orientation des nanoparticules, on réalisera de préférence ladite ' suspension sous forme d'une . composition réticulable ou thermofusible.
Selon un mode de réalisation particulier de l'invention ladite suspension est une composition photopolymérisable comportant des composés organiques éthyléniquement insaturés et un système photosensible.
La composition magnétique de l'invention peut être utilisé dans un support magnétique destiné à l'enregistrement et à la restitution d'informations.
On peut également utiliser la composition magnétique de l'invention dans un support magnétique destiné au codage et à 1'authentification.
Un autre objet de l'invention est donc un procédé de fabrication d'un support magnétique, caractérisé en ce qu'on forme un substrat formant base, on prépare une emulsion de microgouttelettes d'un liquide agnétiαue constitué d'une suspension, de nanoparticules magnétiques, on applique ladite emulsion sur ledit substrat et, le cas échéant, après séchage, -on applique un revêtement protecteur recouvrant au moins une face dudit substrat.
Dans un mode de réalisation particulier, ledit support magnétique d'enregistrement ou de codage comprend un substrat formant base sur lequel est disposée une couche constituée essentiellement de micro-capsules contenant une suspension réticulable de nano particules magnétiques et, le cas échéant, un revêtement protecteur laissant passer le moyen de réticulation et recouvrant la couche de micro-capsules.
Dans un autre mode de réalisation ledit support magnétique comprend un substrat formant base dans lequel sont incorporées des microcapsules contenant une suspension réticulable de nanoparticules magnétiques, et un revêtement protecteur transparent laissant passer le moyen de réticulation et recouvrant au moins une face dudit substrat.. On peut aussi utiliser la composition de l'invention dans un revêtement pour tableau d'affichage ou dans un filtre magnétique.
Encore un autre objet de l'invention est un procédé de codage magnéto-géométrique caractérisé en ce que l'on soumet l'ensemble d'un support au moins partiellement revêtu avec une composition magnétique constituée d'une pluralité de micro-capsules contenant chacune une suspension réticulable de nanoparticules magnétiques à un champ magnétique éventuellement alternatif de manière à orienter les nanoparticules en suspension dans les microcapsules et on fige sélectivement , au niveau des zones à coder du support, l'orientation des nanoparticules par réticulation de la suspension de telle sorte qu'après suppression du champ magnétique, il y ait coexistence de zones orientées figées et de zones non orientées. L'invention sera mieux comprise à la lecture de la description qui va suivre accompagnée des dessins sur lesquels :
La figure 1 représente une coupe transversale d'un mode de réalisation d'un support magnétique selon l'invention.
La figure 2 représente une coupe transversale d'un .autre mode de réalisation.
La microencapsulation est un procédé par lequel un agent actif en phase liquide ou solide est enrobé par un revêtement ou par une membrane formant paroi de la capsule. La préparation des microcapsules est bien connue et les méthodes de fabrication bien maîtrisées. Les applications potentielles de la microencapsulation ne connaissent pratiquement pas de limites.
Les procédés chimiques d'encapsulation diffèrent au niveau de la formation de la paroi de la microcapsule qui peut se faire soit par coacervation, soit par polymérisation interfaciale. II est donc possible d'utiliser différents modes opératoires pour la micro-encapsulation des liquides magnétiques.
D'une façon générale, le liquide magnétique contenant les nanoparticules en suspension est préparé dans un solvant à haut point d'ébullition. La solution ainsi obtenue est dispersée sous agitation dans un solvant secondaire non miscible (eau par exemple) et éventuellement stabilisée en présence d'un tensioactif formant ainsi une emulsion ou une microémulsion.On obtient de cette façon des gouttelettes de liquide magnétique dont le diamètre est de l'ordre du micron, finement disperdées dans un solvant non miscible.
Puis si la composition chimique des divers éléments de 1'emulsion s'y prête, des agents chimiques qui vont venir former, par réaction à l'interface, une pellicule macromoléculaire insoluble autour des microgouttelettes formant l'emulsion.La composition magnétique peut être utilisée directement sous la forme d'une emulsion de microgouttelettes de liquide magnétique ou bien sous la forme de microcapsules obtenues par le procédé ci-dessus. Les microcapsules elles-mêmes peuvent être utilisées comme telles ou séparées par des moyens physiques du solvant secondaire et séchées. L'encapsulation du liquide magnétique permet de conserver toutes les propriétés du liquide magnétique, à savoir : fluide et liquide magnétique.
La fabrication des microcapsules nécessite un solvant de point d1ébullition élevé, de faible tension de vapeur, de masse spécifique assez proche de un", -d'absorption faible dans l'ultraviolet et le visible (max 320 nm) non miscible dans des solvants polaires tels que eau, alcools ... On peut citer de manière non limitative les dérivés aromatiques hydrogénés ou non (par exemple terphényle hydrogéné, cymène, tétraline, décaline • • •) ι les esters qui sont parfois utilisés comme plastifiants des matières plastiques (par exemple phthalate de dioctyle, laurate de butyle, stéarate de butyle ...), les éthers (par exemple diglyme, diéthylène glycol dibutyl éther ...) .
De façon générale, les nanoparticules magnétiques en suspension sont choisies dans le groupe constitué des oxydes magnétiques à base de ferrite comme par exemple, le ferrite de fer, la maghe ite ( ou le ferrite de manganèse (MnFe?04) . La taille des particules est généralement comprise entre '3 et 500 nm et est de préférence de 10 nm et la concentration volumique en nanoparticules magnétiques dans le liquide magnétique varie entre 1 et 33 %.
On peut citer pour exemple les deux modes opératoires suivants : Exemple -1- : On utilise un liquide magnétique constitué d'une suspension de nanoparticules magnétiques dans du terphényl hydrogéné (SANT0S0L - marque déposée - de la Société MONSANTO) .
Dans 180 g de gélatine à 11 % en solution aqueuse à
55°C, on incorpore sous agitation violente 40 ml du liquide magnétique précité également à 55°C. Dans l'emulsion ainsi formée on ajoute 180 g de gomme arabique aqueuse à 11 % à un pH de 9 et
630 g d'eau, le tout à 55° également.
Toujours sous agitation le mélange est refroidi rapidement à 10°C en présence de 10 ml de solution aqueuse à 25 % de glutaraldéhyde.
Après une heure on ajoute 15 ml d'une solution de copolymère de polyméthylvinyle éther anhydride aléique et l'on agite l'ensemble pendant une heure avant d'ajouter 5 ml d'une solution de carbonate de sodium à 20 % et la quantité nécessaire d'hydroxyde de sodium aqueux à 10 % pour -amener le pH à 10.
La dispersion obtenue est alors prête à être utilisée. Exemple -2 :
Un mélange A est constitué de :
95 g de précondensat urée-formaldéhyde à 45 % de résine active et 35 % de teneur en matière solide.
60 g de précondensat mélamine-formaldéhyde à 76 % environ en résine active et 71 % de teneur en matière solide.
240 g de solution aqueuse à 20 % de copolymère d'acrylamide et acide acrylique (40 %) . 850 g d'eau distillée.
A 800 g de ce mélange A, on ajoute 200 g d'eau puis sous agitation rapide on incorpore 800 g du liquide magnétique de l'exemple 1. On ajoute alors le reste du mélange A et 1400 g d'eau distillée comme diluant. On agite 30 minutes puis on ajuste le pH à 4,7 à l'aide d'acide acétique. On agite encore pendant 30 minutes. On porte le tout au bain marie à 55°C et l'on agite pendant 2 heures à " cette température. On laisse refroidir lentement pendant 5 à 6 heures. On ajuste alors le pH à 10. On obtient une solution de microcapsules de liquide magnétique prêtes à l'emploi.
Le liquide magnétique peut être aussi une suspension aqueuse de particules magnétiques.
Les microcapsules peuvent ensuite être appliquées sur le substrat servant de base au support ou bien être incorporées directement dans le matériau du substrat soit dès sa fabrication, soit ultérieurement par imprégnation. Cela peut être réalisé par exemple en mélangeant intimement les microcapsules et le matériau du substrat avant la fabrication du support notamment dans le cas d'un substrat du type papier constitué de fibres. On peut également envisager de réaliser le liquide magnétique dans un milieu bien particulier comme par exemple une composition photosensible réticulable sous rayonnement (UV ou IR) ou par faisceau d'électrons ou bien encore une formulation gélifiable. En ce qui concerne la composition photosensible, on peut utiliser toute composition photopoly érisable encapsulable à condition que le liquide magnétique puisse être réalisé dans l'une des composantes de la formulation.
Dans le cas le plus typique, la composition photosensible comprend un ou plusieurs composés qui polymérisent par exposition à des radiations. Le "composé" peut être de façon inhérente sensible au rayonnement actinique ou nécessiter un photoamorceur radicalaire ou ionique.
On préfère les compositions photopolymérisables qui comportent des composés organiques éthyléniquement insaturés possédant au moins un groupe éthylène terminal par molécule et un système photosensible.
Le système photosensible peut contenir des prépolymères (oligomères) et diluants réactifs (monomères polyfonctionnels) . Les prépolymères réactifs sont de préférence des résines époxyacrylates, uréthane acrylate, polyester acrylate, polyéther acrylate. Les diluants sont des polyols _ acrylates (hexanedioldiacrylate (HDPA) , tripolylèneglycol diacrylate (TPGD)) Pentaerythitol triacrylate (PETIA) , triméthylolpropane triacrylate. La photopolymérisation induite par un rayonnement visible ou IR peut mettre en jeu un phénomène de photosensibilisation des photoamorceurs de la réaction de polymérisation radicalaire (à l'origine dans l'U.V.). Exemple *3 * : Formulation réticulable sous U.V. (U.C.B.)
Ebecryl 1608 (résine époxyacrylate) 34 P TPGDA (tripolylène glycûl triacrylate) 26 P OTA 480 (oligotriacrylate) 26 P benzophénone 3 P Le liquide magnétique est alors constitué d'une suspension de nanoparticules magnétiques (10 nm) de ferrite de cobalt à une concentration volumique de 6 % dans l'ebecryl 1608 ou le TPGDA ou l'OTA 480 ou dans l'ensemble des dérivés acrylates. On peut rajouter à cette formulation des agents anti U-V, tels que l'IRGACURE 651 de CIBA ou le DAROCURE 1173 de Merck en une quantité de 2 parties. Exemple*4- :
Une autre formulation avantageuse est la suivante : Ebecryl 586 60 P TMPTA 40 P benzophénone 2 P Irgacure 4 P
Le liquide magnétique est alors constitué de nanoparticules magnétiques en suspension dans l'Ebecryl à une concentration volumique de 4 %.
La nouvelle composition magnétique de l'invention peut être avantageusement utilisé dans un procédé d'enregistrement et de restitution d'informations à partir de supports constitués de disques ou de bandes (sons, images, données informatiques). Les applications envisageables concernent principalement les enregistrements numériques comme par exemple : l'enregistrement magnétique longitudinal, l'enregistrement magnétique perpendiculaire ou l'enregistrement magnétothermique à lecture magnéto optique, mais aussi l'enregistrement analogique.
Dans ces cas, la composition magnétique de l'invention est utilisée dans le revêtement du support.
La nouvelle composition magnétique de l'invention peut également être utilisée dans un procédé de codage et d'authentificatioπ mettant en oeuvre des "dispositifs anti-vol" et des "systèmes de contrôle".
Dans le cas de codages tels que le codage "magnéto géométrique", on soumet un support, par exemple une feuille, au moins partiellement revêtu avec la composition de l'invention à un champ magnétique quasi uniforme de manière à orienter les nanoparticules en suspension dans les microcapsules et on fige au niveau de la surface à coder du support l'orientation des nanoparticules par réticulation de la suspension de telle sorte qu'après suppression du champ magnétique,il y ait coexistence de zones orientées et de zones non orientées.
Ce codage est effaçable et réinscriptible comme dans le cas du codage des supports magnétiques traditionnels à base de substances ferromagnétiques.
La réticulation est obtenue par exemple avec un rayonnement UV appliqué au-dessus d'un masque à fenêtres disposé sur le support. La lecture se fait par détection des zones orientées et non orientées pouvant correspondre respectivement à des 0 et 1 logiques.
On peut ainsi coder numériquement une information. Ce type d'écriture avec rayonnement UV peut être utilisé lors de la fabrication de la feuille (ou d'une bande) juste avant le séchage de la couche de composition magnétique. On parle alors de filigrane magnétique qui constitue des supports de sécurité. Mais avec la composition de l'invention on peut aussi utiliser l'écriture à rayonnement UV à tout moment après la fabrication puisque la paroi des micro-capsules isole les particules magnétiques et leur laisse au sein de la suspension non encore réticulée toute liberté de mouvement.
Au cours de la lecture, on détectera la position, la forme et la dimension des zones orientées, ce qui offre de nombreuses applications possibles.
Dans le cas d'un "codage alternatif", la source UV et le champ magnétique alternatif sont fixes, c'est la bande à coder qui défile par rapport à eux. La réticulation UV se fait sur la surface à coder, exposée ou non à un champ magnétique et la lecture se fait encore par détection des zones orientées et non orientées.
On peut également envisager de réaliser une emulsion de liquide magnétique dans un milieu polymère et de déposer le mélange sur un papier comme une couche polymérique. Dans ce cas, le codage se fait par action du champ après polymérisation.
On peut aussi utiliser une gélatine comme polymère, dans ce cas, le message est réinscriptible par chauffage de la zone codée (fusion -de la gélatine - orientation aléatoire des particules) .
Selon l'invention, on fabrique un support magnétique à partir d'un substrat formant base sur lequel on applique une emulsion de microgouttelettes éventuellement encapsulées d'un liquide magnétique, constitué d'une suspension de nanoparticules magnétiques dans un milieu réticulable ou à changement de viscosité (par exemple thermofusible) ou encore évaporable (par exemple solvant) . Après séchage sous champ , on obtient une couche homogène de nanoparticules magnétiques formant un support aimanté. Dans le cas où on utilise directement une emulsion de microgouttelettes, on réalisera de préférence une emulsion aqueuse. Le liquide magnétique sera alors constitué dans un milieu tel qu'une cire, une huile, un solvant, une formulation réticulable . dans lequel des nanoparticules de ferrite de cobalt sont mises en suspension à une concentration d'environ 10 % en présence de sodium dodécylsulfate (SDS) à raison de 0,05 à 1 mole/litre.
Dans le cas où on applique sur le substrat des microgouttelettes microencapsulees, on utilisera une suspension réticulable et un revêtement protecteur laissant passer le moyen de réticulation.
De façon générale, la coercivité et la rémanence pourront être contrôlées par la nature, la taille et la forme des particules utilisées.
La figure 1 représente une coupe transversale d'un support magnétique d'enregistrement ou de codage selon l'invention comprenant un substrat 1 formant base, sur lequel est disposée une couche 2 constituée essentiellement de microcapsules 3 contenant une suspension réticulable 4 de nanoparticules magnétiques 5 dont le diamètre est de l'ordre de 10 nm, et un revêtement protecteur 6 laissant passer le moyen de réticulation. Ce revêtement sera par exemple transparent dans le cas où le moyen de réticulation est un rayonnement UV.
Le revêtement protecteur 6 est réalisé comme sur la figure 1 sous la forme d'une couche au contact du substrat 1- dans laquelle sont noyées les microcapsul'es ou bien sous la forme d'une couche distincte superposée à la couche de microcapsules et sans contact avec le substrat.
Dans le mode de réalisation de la figure 2, les microcapsules 3 sont incorporées dans le substrat dès sa fabrication en les mélangeant intimement avec le matériau du substrat dès la fabrication du support soit plus tard par imprégnation. Dans ce cas on pourra prévoir également un revêtement protecteur recouvrant au moins une face du substrat.
La composition de l'invention peut aussi être utilisée dans un filtre magnétique.
Le filtre est un empilement de feuilles couchées avec des microcapsules contenant un liquide magnétique . Par action d'un champ magnétique, les feuilles sont alors aimantées et attirent les poussières aim'antables (qu'elles soient en milieu liquide ou gazeux) . Le nettoyage du filtre est particulièrement simple . En effet, à la suppression du champ magnétique, les particules qui sont eh milieu liquide perdent leur orientation. Les feuilles n'attirent plus les poussières et celles-ci tombent et sont récupérées. On peut également réaliser un tableau aimantable constitué d'un support couché de microcapsules de liquide magnétique (support aimantable) qui adhère sur toute surface aimantée ou bien un tableau aimanté constitué d'un support couché aimanté qui adhère sur toute surface aimantable. Le tableau aimanté peut être réalisé à partir d'une emulsion de gouttelettes ou de microcapsules par séchage sous champ, la suspension ou coeur pouvant être réticulable, thermofusible ou polymère.

Claims

REVENDICATIONS 1. Composition magnétique comprenant une emulsion de microcapsules renfermant un liquide magnétique constitué d'une suspension de nanoparticules magnétiques.
2. Composition magnétique selon la revendication 1, caractérisée en ce que les nano-particules en suspension sont surfactées.
3. Composition magnétique selon la revendication 1, caractérisée en ce que les nano-particules en suspension sont ionisées.
4. Composition magnétique selon l'une des revendications précédentes, caractérisée en ce que ladite suspension est une composition réticulable.
5. Composition magnétique selon la revendication 3, caractérisée en ce que ladite suspension est une composition photopolymérisable comportant des composés organiques éthyléπiquement insaturés et un système photosensible.
6. Composition magnétique selon la revendication 4, caractérisée en ce que ledit système -photosensible contient des oligomères comme prépolymères, des monomères polyfonctionnels comme diluants réactifs et éventuellement un photoamorceur radicalaire ou ionique.
7. Composition magnétique selon la revendication 5, caractérisée en ce que lesdits oligo êres sont choisis dans le groupe constitué des résines époxyacrylates, uréthane acrylate, polyester acrylate, polyéther acrylate.
8. Composition magnétique selon la revendication 5 ou 6, caractérisée en ce que lesdits monomères sont choisis dans le groupe constitué des polyols acrylates (hexanedioldiacrylate (HDPA), tripolylèneglycol diacrylate (TPGD)) Pentaerythitol triacrylate (PETIA) , trimêthylolpropane triacrylate.
9. Composition magnétique selon la revendication 2 ou 3, caractérisée en ce que ladite- suspension est une composition réticulable par faisceau d'électrons.
10. Composition magnétique selon la revendication 2 ou 3, caractérisée en ce que ladite suspension est une composition
11. Composition -magnétique selon la revendication 2 ou 3, caractérisée en ce que ladite suspension est une composition à changement de viscosité.
12. Composition magnétique selon la revendication 2 ou 3, caractérisée en ce que ladite suspension est constituée essentiellement d'un milieu polymère.
13. Composition selon la revendication 2 ou 3, caractérisée en ce que ladite suspension est constituée essentiellement d'un solvant.
14. Composition selon l'une des revendications précédentes, caractérisée en ce que les nanoparticules sont des particules de ferrite, de cobalt dont le diamètre est de l'ordre de lOπm.
15. Composition selon l'une des revendications précédentes, caractérisée en ce que la concentration volumique en nanoparticules magnétiques dans ladite suspension varie de 1 à 33 %.
16. Procédé de fabrication d'un support magnétique, caractérisé en ce qu'on forme un substrat formant base, on prépare une emulsion de microgouttelettes d'un liquide magnétique constitué d'une suspension, de nanoparticules magnétiques, on applique ladite emulsion sur ledit substrat et, le cas échéant, après séchage, on applique un revêtement protecteur recouvrant au moins une face dudit substrat.
17. Procédé selon la revendication 15, caractérisé en ce que ladite suspension est réticulable.
18. Procédé selon la revendication 15, caractérisé en ce que ladite suspension est thermofusible.
19. Procédé selon la revendication 15, caractérisé en ce que ladite suspension est évaporable.
20. Procédé selon la revendication 15, 16 ou 17, caractérisé en ce que les microgouttelettes sont microencapsulees.
21. Procédé selon la revendication 15 ou 19, caractérisé en ce que ledit revêtement protecteur laisse passer le moyen de réticulation.
22. Support magnétique d'enregistrement ou de codage comprenant un substrat formant base, sur lequel est disposée une couche constituée essentiellement de microcapsules contenant une échéant un revêtement - protecteur laissant passer le moyen de réticulation et recouvrant la couche de microcapsules.
23. Support magnétique d'enregistrement ou de codage comprenant un substrat formant base dans lequel sont incorporées des microcapsules contenant une suspension réticulable de nanoparticules magnétiques et un revêtement protecteur laissant passer le moyen de réticulation et recouvrant au moins une face dudit substrat.
24. Procédé de codage magnéto-géométrique caractérisé en ce que l'on soumet un support au moins partiellement revêtu avec une composition magnétique selon l'une des revendications 1 à 15 à un champ magnétique éventuellement alternatif de manière à orienter les nano-particules en suspension dans les microcapsules et on fige sélectivement ,au niveau des zones à coder du support, l'orientation des nanoparticules par réticulation de la suspension de telle sorte qu'après suppression du champ magnétique, il y ait coexistence de zones orientées figées et de zones non orientées.
25. Procédé de codage selon la revendication 23, caractérisé en ce que la suspension est figée par réticulation sous l'action d'un rayonnement UV.
26. Procédé de codage selon la revendication 23 ou 24, caractérisé en ce que la suspension est figée sélectivement à tout moment après fabrication du support au niveau des zones à coder au moyen d'un masque à fenêtres.
27. Utilisation de la composition magnétique selon l'une des revendications 1 à 14 dans un support magnétique destiné à l'enregistrement et à la restitution d'informations.
28. Utilisation de la composition magnétique selon l'une des revendications 1 à 14 dans un support magnétique destiné au codage et à l'authentification.
29. Utilisation de la composition magnétique selon l'une des revendications 1 à 14, dans un revêtement pour tableau d'affichage.
30. Utilisation de la composition magnétique selon l'une des revendications 1 à 14 dans un filtre magnétique.
31. Utilisation de la composition magnétique selon l'une des revendications 1 à 14 dans un papier destiné au codage effaçable.
EP19910906498 1990-03-12 1991-03-11 Composition magnetique et ses applications Withdrawn EP0520006A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9003120 1990-03-12
FR9003120A FR2659478B1 (fr) 1990-03-12 1990-03-12 Composition magnetique et ses applications.

Publications (1)

Publication Number Publication Date
EP0520006A1 true EP0520006A1 (fr) 1992-12-30

Family

ID=9394628

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910906498 Withdrawn EP0520006A1 (fr) 1990-03-12 1991-03-11 Composition magnetique et ses applications

Country Status (4)

Country Link
EP (1) EP0520006A1 (fr)
AU (1) AU7541991A (fr)
FR (1) FR2659478B1 (fr)
WO (1) WO1991014260A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4115608A1 (de) * 1991-05-14 1992-11-19 Basf Ag Magnetisches tintenkonzentrat
DE4213513A1 (de) * 1992-04-24 1993-10-28 Basf Ag Magnetodilatante Suspensionen
US6773765B1 (en) * 1999-11-04 2004-08-10 The Research Foundation Of State University Of New York Thermally sprayed, flexible magnet with an induced anisotropy
US6779113B1 (en) 1999-11-05 2004-08-17 Microsoft Corporation Integrated circuit card with situation dependent identity authentication
JP3961887B2 (ja) * 2002-06-10 2007-08-22 富士通株式会社 垂直磁気記録媒体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1357214A (fr) * 1963-03-29 1964-04-03 California Research Corp Particules ferromagnétiques de cobalt
US3281344A (en) * 1963-08-27 1966-10-25 Chevron Res Colloidal suspension of ferromagnetic iron particles
EP0343934B1 (fr) * 1988-05-24 1995-01-25 Anagen (U.K.) Limited Particules magnétiquement attractives et méthode de préparation
ES2009404A6 (es) * 1988-11-24 1989-09-16 Quintela Manuel Arturo Lopez Procedimiento para a obtencion de particulas magneticas ultrafinas de nd-fe-b de diferentes tamanos.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9114260A1 *

Also Published As

Publication number Publication date
FR2659478A1 (fr) 1991-09-13
WO1991014260A1 (fr) 1991-09-19
AU7541991A (en) 1991-10-10
FR2659478B1 (fr) 1993-09-03

Similar Documents

Publication Publication Date Title
EP0242275B1 (fr) Matière sèche hydratable en un gel aqueux contenant des particules de polymère dispersées, procédé pour sa préparation et son application en biologie
US20090201779A1 (en) Novel reading inhibit agents
ATE293829T1 (de) Magnetisches speichermedium aus nanopartikeln
WO1991014260A1 (fr) Composition magnetique et ses applications
JP2718863B2 (ja) 紫膜−組成物、その製法及びそれからなる光学的情報の記憶材料
US6936403B2 (en) Recording medium
JPS63177148A (ja) 電子写真用トナ−
EP0366570B1 (fr) Carte à mémoire magnétique à grande capacité et procédé de fabrication
US5085911A (en) Flexible magnetic disc with a two layer protective coating which top layer is a ultra violet radiation cured compound with specified elasticity modulus
EP1800151A1 (fr) Composition pour revetement solide polarisant la lumiere, verre optique polarisant comprenant un tel revetement, et son procede de fabrication
JP2007015221A (ja) 有機薄膜の製造方法
JP2000143705A (ja) 高分子薄膜とその製造方法
JP4468233B2 (ja) ブロックコポリマー単分子膜を利用した光記録媒体及びその製造方法
JP2003094825A (ja) 有機薄膜とその製造方法、及び該有機薄膜を用いた光記録媒体とその記録再生方法
SU675446A1 (ru) Способ изготовлени носител магнитной записи
JPH0981980A (ja) 保護膜形成方法及び保護膜を有する光磁気記録媒体
JPS63153197A (ja) 磁気記録材料
CN114163584A (zh) 一种量子点荧光编码微球及其制备方法
JP4080595B2 (ja) 磁気記録媒体
TWI274065B (en) Method for coating organic material
JPS63135937A (ja) 光記録媒体及び光記録・再生方法
JP3193478B2 (ja) 透明性良好な帯電防止性合成樹脂成型品
JP2005322313A (ja) 光記録媒体およびその製造方法
JP2670901B2 (ja) 透明度の改良された磁性材料
JPH06187663A (ja) 光記録媒体

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU NL

17Q First examination report despatched

Effective date: 19930917

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19940128