EP0519422B1 - Vorrichtung zum Abschrecken von erwärmten Metallteilen mit einer Einrichtung zum Absaugen von Dämpfen - Google Patents

Vorrichtung zum Abschrecken von erwärmten Metallteilen mit einer Einrichtung zum Absaugen von Dämpfen Download PDF

Info

Publication number
EP0519422B1
EP0519422B1 EP92110217A EP92110217A EP0519422B1 EP 0519422 B1 EP0519422 B1 EP 0519422B1 EP 92110217 A EP92110217 A EP 92110217A EP 92110217 A EP92110217 A EP 92110217A EP 0519422 B1 EP0519422 B1 EP 0519422B1
Authority
EP
European Patent Office
Prior art keywords
chute
quenching medium
pump
gas
bell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92110217A
Other languages
English (en)
French (fr)
Other versions
EP0519422A2 (de
EP0519422A3 (en
Inventor
Hans-Werner Herre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfgang Kohnle Warmebehandlungsanlagen GmbH
Original Assignee
Wolfgang Kohnle Warmebehandlungsanlagen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolfgang Kohnle Warmebehandlungsanlagen GmbH filed Critical Wolfgang Kohnle Warmebehandlungsanlagen GmbH
Publication of EP0519422A2 publication Critical patent/EP0519422A2/de
Publication of EP0519422A3 publication Critical patent/EP0519422A3/de
Application granted granted Critical
Publication of EP0519422B1 publication Critical patent/EP0519422B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone

Definitions

  • the invention relates to a device with the features specified in the preamble of claim 1.
  • DE-GM 90 14 549 discloses a device for quenching metal parts that have passed through a heat treatment furnace; it has a container in which the quenching liquid, an oil bath, a salt bath or a water emulsion is contained. To ensure that the metal parts do not come into contact with air on their way from the furnace to the quenching medium, the furnace chamber is connected to the quenching container by a chute. The chute dips into the quenching medium a.
  • a ring of openings or a surge shower is provided in the chute, through which quenching medium is fed into the chute, so that it does not heat up too much in the chute due to the immersed metal parts or splashes that occur when the metal parts hit the Bath surface arise, are intercepted.
  • the disadvantage here is that the condensate separators must be emptied regularly, since the pipelines and the condensate separators become dirty due to condensed residues that are tough or solid and must therefore be cleaned at regular intervals. It is particularly disadvantageous that condensation also occurs in the pump, that the condensates solidify during breaks in operation and lead to start-up problems after a break in operation. This is particularly serious with salt baths, which result in solid condensate deposits (incrustations), so that the extraction of vapors from salt baths is practically impossible to this day.
  • the present invention is based on the object of realizing a reliable and low-maintenance vapor extraction in a device of the type mentioned, which works reliably in both oil baths and salt baths.
  • the invention solves the problem by taking two measures in combination.
  • a propellant pump is used as the pump, which uses the quenching medium as the propellant.
  • the extracted vapors do not come into contact with moving parts, since the propellant pump has no moving parts, but rather gains its suction effect solely from the flow of the propellant.
  • deposits, such as salt crusts can form in the propellant pump during breaks in operation, these are always dissolved and removed again by the operation of the propellant pump with the hot quenching medium, so that the propellant pump is always ready for operation.
  • the quenching medium itself is used as the blowing agent, some of the fumes extracted have the opportunity in the blowing agent pump to condense in the quenching medium.
  • a gas scrubber which also contains the quenching medium as washing liquid.
  • the protective gas or reaction gas freed from the condensable components from the furnace atmosphere leaves the gas scrubber and can be flared.
  • the condensed quenching medium is returned to the quenching tank, most simply by the container with the quenching medium being the gas scrubber at the same time.
  • the outflow opening of the propellant pump is below the level of the quenching medium in the container and that the container has a vent line extending from the gas space above the level, which leads to the point where the gas can be flared.
  • the gases and vapors entrained by the propellant pump must at least cover the route from the outflow opening of the propellant pump to the level of the quenching medium in the quenching bath and the vapors of the quenching medium have the opportunity to fully condense.
  • the vent line can lead out of the covered quenching container at any point.
  • the extracted gas is not distributed over the entire gas space of the quenching container, but instead is concentrated in a diving bell, which is arranged where the gas bubbles rise from the quenching medium and from which the vent line originates.
  • the propellant pump is expediently arranged in such a way that its outflow opening lies below the diving bell. But you can also place them next to the diving bell and align the beam so that it just passes under the edge of the bell.
  • the jet of propellant it is also possible for the jet of propellant to emerge from a nozzle above the bath level in the container and to have it strike the surface of the quenching medium contained therein. The jet then penetrates into the quenching medium with entrainment of components of the extracted gas and generates a high degree of turbulence in the quenching medium, which is favorable for condensation of the condensable components.
  • the gas space of the quenching container into at least two compartments, which are separated from each other by a wall immersed in the quenching medium, namely one compartment (the suction chamber) into which the gas is sucked out of the chute and entrained by the propellant jet, and a second Compartment (the gas collection chamber) into which the gas bubbles freed from the condensable constituents rise from the quenching medium and from which the ventilation line originates.
  • These two compartments are preferably components of one and the same bell, which for this purpose has a vertical partition which is immersed in the quenching medium.
  • the propellant pump and the bell are preferably arranged in a floating manner, so that the pressure conditions in the compartments of the bell and, when the propellant pump is immersed, the counterpressure present at their outflow opening is independent of the fill level in the quenching container.
  • a circulating pump is required to operate the propellant pump, which draws quenching medium out of the quenching container and feeds it into the propellant pump.
  • the extraction capacity (the throughput of the extracted gas) can be set or regulated by setting or regulating the circulation pump accordingly.
  • a particularly advantageous way of adjusting the suction power is to return a portion of the gas that has been extracted and freed of condensable constituents to the chute, preferably at a point opposite the suction opening of the suction line, so that a crossflow occurs in the chute. This not only has the advantage that the consumption of protective gas or reaction gas is reduced, but also that the effectiveness of the suction is better and more uniform than without such a cross flow.
  • the propellant pump is preferably arranged close to the chute, in particular installed directly on the chute together with the bell.
  • the suction side of the propellant pump is located directly at the suction opening for the vapors in the wall of the chute, because then the flow path leading to the suction side of the propellant pump is as short as possible and offers practically no opportunity for annoying deposits, especially since the surroundings of the chute are hot anyway, so that the condensable components, as long as the heat treatment system is in operation, are not cooled to such an extent that they solidify.
  • the gas extracted from the chute is at least partially returned to the chute, for which purpose a duct which is close to the chute is preferably provided, on the one hand keeping the gas warm and on the other hand achieving a compact structure.
  • the gas scrubber can also be arranged above the level which the quenching medium forms in the container. This measure also contributes to extremely short cable routing.
  • the gas scrubber is preferably a continuous tank through which not only the gas to be washed flows, but also the quenching medium used as the blowing agent for the propellant pump, which can be returned in free fall from the continuous tank to the quenching tank.
  • the drain opening of the flow container is connected to the inside of the chute, to form the veil already mentioned, which is intended to prevent the quenching medium in the chute from being excessively heated by the hot metal parts falling into it.
  • the jet pump is used twice: on the one hand to extract the vapors from the chute and on the other hand to supply quenching medium to form the veil in the chute.
  • this is preferably divided into an overflow chamber, into which the jet of the propellant pump enters and into an outlet chamber into which the overflow chamber overflows and which has the named outlet opening from which the veil can be fed.
  • the quench medium has a constant level in the overflow chamber.
  • FIG. 1 shows a container 1 in which a liquid quenching medium 2 is located.
  • the container 1 is covered by a lid 3.
  • Above the container 1 is the rear section of a heat treatment furnace 4; the structure of the heat treatment furnace is not the subject of the patent application and therefore no details of the furnace are shown.
  • a chute 5 leads through the lid 3 into the container 1 and opens below the level 6 of the quenching medium.
  • the drop chute 5 is surrounded by an annular channel 7 just above the cover 3 and has a connection with the interior of the drop shaft 5 via a circumferential slot 8.
  • the ring channel 7 is supplied with liquid quenching medium via a line 10, in which two valves 11 and 12 are located, which liquid is poured into the chute in the form of a veil 13.
  • a bell 14 is suspended floating on the quenching medium 2.
  • a propellant pump (jet pump) 15 is fastened to the outside of the bell 14 and is fed with a rapidly flowing quenching medium as a propellant via a branch line 16 branching off the line 10.
  • a suction line 17 opens into a waist of the jet pump housing and extends from the chute 5 above the openings 8.
  • the jet pipe of the propellant pump 15 opens into the quenching medium 2 below the bell 14.
  • a ventilation line 18 leads as a riser pipe, in which a valve 19 and a solenoid valve 19a is located, upwards through the cover 3 out of the container 1.
  • a chicane 20 is also provided between the inlet of the vent line 18 and the mirror 6 of the quenching medium.
  • the solenoid valve 19a is coupled to a valve switch igniter and only opens when after its pilot light burns.
  • an auxiliary gas e.g. Nitrogen.
  • the device works as follows: Hot metal parts falling out of the furnace 4 through the chute 5 into the container 1, in particular while they are falling through the veil 13, cause a certain amount of the quenching medium to evaporate. The rising vapors are sucked off through the suction line 17, the suction being supported by a cross flow which forms between the mouth of the line 21 and the suction opening 23. The gas sucked in by the jet pump 15 mixes with the propellant jet which flows through the lower edge 34 of the bent wall 30 passes under the bell 14 and reaches the area under the bell 14.
  • an auxiliary gas such as nitrogen can be introduced via line 25 in order to purge the entire device before start-up, so that no explosive gas can form.
  • the suction power can be set via the speed of the circulation pump 9, via the position of the valves 11 and 12 and the position of the control valves 19 and 22.
  • parts that are the same as or correspond to parts of the first exemplary embodiment are identified by the same reference numerals.
  • the exemplary embodiment according to FIG. 2 differs from that in FIG. 1 only in the design of the bell 14 and the jet pump 15.
  • the bell 14 is enlarged and divided into two compartments 31 by a partition wall 30 that runs from top to bottom and ends below the mirror 6 32 divided.
  • the compartment 31 is part of the propellant pump 15.
  • the propellant line 16 opens into the compartment 31 with a nozzle 33, which serves as a suction chamber.
  • the nozzle 33 is directed obliquely into the area below the correspondingly bent partition 30, but lies above the mirror 6.
  • the propellant jet which strikes the surface of the quenching medium 2, entrains constituents of the gas which pass through the line 17 opening into the compartment 31 is brought up from the chute 5 and drives it in the form of bubbles 27 under the edge 34 of the bent partition 30 into the area below the compartment 32, which serves as a gas collection chamber. From here, the gas rises through the baffle 20 into the vent line 18.
  • the embodiment according to FIG. 3 differs from that in FIG. 2 in that a tube 35 is welded into the partition 30, one end of which is above the mirror 6 in the compartment 31 and the other end of which is below the mirror 6 below the compartment 32.
  • Blowing agent jet which emerges from the nozzle 33, is directed precisely into the tube 35.
  • the tube ensures a more effective transfer of the gas from compartment 31 to compartment 32.
  • Level differences which arise are compensated for by openings 36 in tube 35 below the mirror 6.
  • the embodiment according to FIG. 4 differs from that in FIG. 2 in that the bell 14 has a bottom 40 which extends at a distance from the lower edge 34 of the partition 30 below the entire compartment 31 and an area of the compartment 32 adjoining it.
  • the level of the quenching medium above the bottom 40 is therefore independent of fluctuations in the level 6 at a constant level, as a result of which the conditions for the liquid jet and the gas transport always remain the same.
  • the exemplary embodiment according to FIGS. 5 and 6 differs from the previous exemplary embodiments essentially in that the chute 5, the jet pump 15 and a gas washer 50 are combined to form a very compact assembly.
  • the chute 5 of this assembly is immersed in a container 1 in which the liquid quenching medium 2 with a mirror 6 is located at a predetermined height (see FIGS. 1 to 4).
  • the bell shown in FIGS. 1 to 4 is evidently no longer required in the exemplary embodiment according to FIGS. 5 and 6.
  • the gas washer 50 is a continuous container which closely surrounds the chute 5.
  • the gas washer is divided by a partition 51 into an overflow chamber 52 and an outlet chamber 53, which has two opposing sequences of slots 8 as outlet openings, which open into the chute 5, which consists of two sections, which have a liquid seal 59, a so-called Water cup, are interconnected.
  • slots 8 there are slots 22 in one wall of the chute 5, which is rectangular in cross section, and slightly higher in the opposite wall, slots 23, the latter of which open into a suction chamber 54 in which the suction side of two jet pumps 15 arranged next to one another is located , which are fed via a feed line 16 with liquid quenching medium, for example by the pump 9 shown in FIGS. 1 to 4.
  • the jet 37 of the jet pumps 15 is directed into an immersion tube 35, which in the overflow chamber 52 into the upper edge of the Partition 51 immersed quenching medium.
  • the jet pump 15 draws gas loaded with vaporous quenching medium through the slots 23, which is washed in the overflow chamber 52, the vaporous quenching medium condensing and the uncondensed gas rising in the form of bubbles 27 and collecting in the gas scrubber above the level of the quenching medium.
  • This space above the mirror in the gas scrubber is divided by a partition 55 into a pressure chamber 56 and an outflow chamber 57, which has a connection via the slots 43 to the inside of the chute 5.
  • the pressure chamber 56 and outflow chamber 57 are connected to one another by a pressure compensation channel 58.
  • the gas flow generated by the jet pumps 15 takes the Away from the slots 23 via the jet pumps 15, the pressure chamber 56, the pressure compensation channel 58, the outflow chamber 57 and the slots 22 back into the chute 5, in which a cross flow is generated in this way between the slots 22 and 23.
  • the quenching medium introduced by the jet pumps 15 into the overflow chamber 52 flows via the partition 51 into the outlet chamber 53 and from there through the slits 8 into the chute 5 as a veil 13.
  • the conduction paths are so short that malfunctions due to harmful deposits no longer occur are to be feared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

  • Die Erfindung geht aus von einer Vorrichtung mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.
  • In dem DE-GM 90 14 549 ist eine Vorrichtung zum Abschrecken von Metallteilen offenbart, die einen Wärmebehandlungsofen durchlaufen haben; sie hat einen Behälter, in welchem die Abschreckflüssigkeit, ein Ölbad, ein Salzbad oder eine Wasseremulsion enthalten ist. Damit die Metallteile auf ihrem Weg vom Ofen zum Abschreckmedium nicht mit Luft in Berührung kommen, ist der Ofenraum durch einen Fallschacht mit dem Abschreckbehälter verbunden. Der Fallschacht taucht in das Abschreckmedium ein. Oberhalb des Spiegels des Abschreckmediums ist im Fallschacht ein Kranz von Öffnungen oder eine Schwallbrause vorgesehen, über die Abschreckmedium in den Fallschacht eingespeist wird, damit sich dieses im Fallschacht durch die eintauchenden Metallteile nicht zu sehr erwärmt bzw. Spritzer, die beim Auftreffen der Metallteile auf die Badoberfläche entstehen, abgefangen werden. Die heißen Metallteile bewirken beim Auftreffen auf den Schleier des Abschreckmediums und beim Eintauchen in das Abschreckbad, dass Dämpfe entstehen, die innerhalb des Fallschachtes aufsteigen; damit die Dämpfe nicht in die Ofenatmosphäre gelangen, ist es bekannt, sie mit gasdichten Pumpen abzusaugen und durch Rohrleitungen über Kondensatabscheideeinrichtungen zu einer Stelle zu leiten, wo sie - soweit sie brennbare Bestandteile enthalten, die vornehmlich aus der Ofenatmosphäre stammen - abgefackelt werden können.
  • Nachteilig dabei ist, dass die Kondensatabscheideeinrichtungen regelmässig entleert werden müssen, da die Rohrleitungen und die Kondensatabscheider durch kondensierte Rückstände, die zäh oder fest sind, verschmutzen und deshalb in regelmässigen Abständen gereinigt werden müssen. Besonders nachteilig ist, dass es auch in der Pumpe zu einer Kondensation kommt, dass sich die Kondensate in Betriebspausen verfestigen und nach einer Betriebsruhe zu Anlaufstörungen führen. Das ist besonders gravierend bei Salzbädern, die feste Kondensatablagerungen (Verkrustungen) zur Folge haben, so dass eine Absaugung von Dämpfen, die aus Salzbädern stammen, bis heute praktisch nicht möglich ist.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, bei einer Vorrichtung der eingangs genannten Art eine zuverlässig und wartungsarm arbeitende Dampfabsaugung zu verwirklichen, die sowohl bei Ölbädern, als auch bei Salzbädern zuverlässig arbeitet.
  • Diese Aufgabe wird gelöst durch eine Vorrichtung mit den im Anspruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Die Erfindung kommt dem Problem bei, in dem sie zwei Maßnahmen in Kombination ergreift. Zum einen wird als Pumpe eine Treibmittelpumpe eingesetzt, die als Treibmittel das Abschreckmedium verwendet. In einer solchen Pumpe kommen die abgesaugten Dämpfe nicht mit bewegten Teilen in Verbindung, da die Treibmittelpumpe keine bewegten Teile hat, sondern ihre Saugwirkung allein aus der Strömung des Treibmittels gewinnt. Zwar können sich in der Treibmittelpumpe in Betriebspausen auch Ablagerungen, z.B. Salzkrusten, in geringeren Mengen bilden, doch werden diese durch den Betrieb der Treibmittelpumpe mit dem gegebenenfalls heißen Abschreckmedium stets wieder aufgelöst und abgeführt, so dass die Treibmittelpumpe stets betriebsbereit ist. Dadurch, dass als Treibmittel das Abschreckmediums selbst verwendet wird, hat ein Teil der abgesaugten Dämpfe schon in der Treibmittelpumpe Gelegenheit, im Abschreckmedium zu kondensieren. Die in der Treibmittelpumpe noch nicht kondensierten Dämpfe werden anschließend in einem Gaswäscher ausgewaschen, der als Waschflüssigkeit ebenfalls das Abschreckmedium enthält. Das von den kondensierbaren Anteilen befreite Schutzgas oder Reaktionsgas aus der Ofenatmosphäre verläßt den Gaswäscher und kann abgefackelt werden. Das kondensierte Abschreckmedium wird in den Abschreckbehälter zurückgeführt, und zwar am einfachsten dadurch, dass der Behälter mit dem Abschreckmedium zugleich der Gaswäscher ist.
  • Das regelmässige Entleeren und Reinigen eines Kondensators entfällt ebenso wie das beim Stand der Technik erforderliche lästige Reinigen einer Pumpe. Zwischen dem Fallschacht und der Treibmittelpumpe wird lediglich eine kurze, einfache, von jeglichen Einbauten freie Rohrleitung benötigt, bei welcher nicht die Gefahr besteht, dass sie sich leicht zusetzt und welche, wenn es denn z.B. bei einem Wechsel des Abschreckmediums je möglich sein sollte, leicht gereinigt werden kann.
  • Es ist vorteilhaft, dass nur solche Anteile des abgesaugten Gases abgefackelt und damit ins Freie geleitet werden, die über eine gewisse Strecke durch das flüssige Abschreckmedium hindurchgeströmt sind. Es wird deshalb bevorzugt, dass die Ausströmöffnung der Treibmittelpumpe unterhalb des Spiegels des Abschreckmediums im Behälter liegt und der Behälter eine vom Gasraum oberhalb des Spiegels ausgehende Entlüftungsleitung hat, die zu der Stelle führt, wo das Gas abgefackelt werden kann. Auf diese Weise müssen die von der Treibmittelpumpe mitgerissenen Gase und Dämpfe mindestens den Weg von der Ausströmöffnung der Treibmittelpumpe bis zum Spiegel des Abschreckmediums im Abschreckbad zurücklegen und dabei haben die Dämpfe des Abschreckmediums Gelegenheit, vollständig zu kondensieren. Prinzipiell kann die Entlüftungsleitung an irgendeiner Stelle aus dem abgedeckten Abschreckbehälter herausführen. Vorzugsweise läßt man jedoch das abgesaugte Gas sich nicht über den gesamten Gasraum des Abschreckbehälters verteilen, sondern fängt es konzentriert in einer Tauchglocke auf, welche man dort anordnet, wo die Gasblasen aus dem Abschreckmedium aufsteigen und von welcher die Entlüftungsleitung ausgeht. Zweckmässigerweise ordnet man die Treibmittelpumpe so an, dass ihre Ausströmöffnung unterhalb der Tauchglocke liegt. Man kann sie aber auch neben der Tauchglocke anordnen und den Strahl so schräg ausrichten, dass er den Rand der Glocke knapp unterquert.
  • Es ist auch möglich, den Treibmittelstrahl oberhalb des Badspiegels im Behälter aus einer Düse austreten und auf die Oberfläche des darin stehenden Abschreckmediums auftreffen zu lassen. Der Strahl dringt dann in das Abschreckmedium ein unter Mitreißen von Bestandteilen des abgesaugten Gases und erzeugt ein hohes Maß an Turbulenz im Abschreckmedium, was für eine Kondensation der kondensierbaren Bestandteile günstig ist. Damit über die Entlüftungsleitung aber nur Gas abgeleitet wird, welches vom Treibmittelstrahl in das Abschreckbad mitgerissen und aus diesem wieder aufgestiegen ist, benötigt man dafür eine Unterteilung des Gasraums des Abschreckbehälters in wenigstens zwei Abteile, die durch eine in das Abschreckmedium eintauchende Wand voneinander getrennt sind, nämlich ein Abteil (die Ansaugkammer) in welche das Gas aus dem Fallschacht angesaugt und vom Treibmittelstrahl mitgerissen wird, und ein zweites Abteil (die Gassammelkammer) in welche hinein die von den kondensierbaren Bestandteilen befreiten Gasblasen aus dem Abschreckmedium aufsteigen und von welcher die Entlüftungsleitung ausgeht. Diese beiden Abteile sind vorzugsweise Bestandteile ein und derselben Glocke, die zu diesem Zweck eine senkrechte Trennwand hat, die in das Abschreckmedium eintaucht. Die Treibmittelpumpe und die Glocke sind vorzugsweise schwimmend angeordnet, so dass die Druckverhältnisse in den Abteilen der Glocke sowie bei eintauchender Treibmittelpumpe der an ihrer Ausströmöffnung anstehende Gegendruck unabhängig vom Füllstand im Abschreckbehälter sind.
  • Es ist aber auch möglich, unter der Glocke einen Boden vorzusehen, der sich unterhalb des gesamten Abteils, in welchem der Strahl der Treibmittelpumpe in das Abschreckmedium eindringt, und unterhalb des angrenzenden Bereichs des benachbarten Abteils erstreckt, und von dem eine Trennwand aufragt, welche dieses benachbarte Abteil unterteilt und einen Überlauf bildet, der oberhalb des Badspiegels liegt, welcher ausserhalb der Glocke gegeben ist. Auf diese Weise hat man im Bereich der Strahlpumpe stets ein gleichbleibendes Niveau des Abschreckmediums, selbst wenn dessen Niveau ausserhalb der Glocke schwanken sollte.
  • Für den Betrieb der Treibmittelpumpe benötigt man eine Umwälzpumpe, welche Abschreckmedium aus dem Abschreckbehälter ansaugt und in die Treibmittelpumpe einspeist. Die Absaugleistung (den Durchsatz des abgesaugten Gases) kann man durch entsprechende Einstellung bzw. Regelung der Umwälzpumpe einstellen bzw. regeln. Eine besonders vorteilhafte Möglichkeit zur Einstellung der Absaugleistung besteht darin, dass man einen Teil des abgesaugten und von kondensierbaren Anteilen befreiten Gases in den Fallschacht zurückführt, und zwar vorzugsweise an einer Stelle, welche der Saugöffnung der Saugleitung gegenüberliegt, so dass im Fallschacht eine Querströmung entsteht. Das hat nicht nur den Vorteil, dass der Verbrauch an Schutzgas bzw. Reaktionsgas vermindert wird, sondern auch den, dass die Wirksamkeit der Absaugung besser und gleichmässiger ist als ohne eine solche Querströmung.
  • Um die Leitungen, in denen das Abschreckmedium umgepumpt wird, möglichst kurz zu halten, wird die Treibmittelpumpe vorzugsweise dicht bei dem Fallschacht angeordnet, insbesondere zusammen mit der Glocke direkt am Fallschacht installiert.
  • Unter dem Gesichtspunkt einer besonders kurzen Leitungsführung ist es besonders günstig, wenn die Ansaugseite der Treibmittelpumpe unmittelbar an der Absaugöffnung für die Dämpfe in der Wand des Fallschachtes liegt, denn dann ist der zur Ansaugseite der Treibmittelpumpe führende Strömungsweg so kurz wie möglich und bietet praktisch keine Gelegenheit für störende Ablagerungen, zumal die Umgebung des Fallschachtes ohnehin heiß ist, so dass die kondensierbaren Bestandteile, solange die Wärmbehandlungsanlage in Betrieb ist, nicht so weit abgekühlt werden, dass sie sich verfestigen. Das aus dem Fallschacht abgesaugte Gas wird, nachdem die kondensierbaren Bestandteile im Gaswäscher auskondensiert sind, wenigstens teilweise in den Fallschacht zurückgeführt, wozu vorzugsweise ein dem Fallschacht eng anliegender Kanal vorgesehen ist, wodurch einerseits das Gas warmgehalten und andererseits ein kompakter Aufbau erzielt wird.
  • Anstatt den Behälter, in welchem die wärmebehandelten Metallteile abgeschreckt werden, als Gaswäscher zu verwenden, kann man den Gaswäscher auch oberhalb des Spiegels, den das Abschreckmedium in dem Behälter bildet, anordnen. Auch diese Maßnahme trägt zu einer extrem kurzen Leitungsführung bei. In diesem Fall verwendet man als Gaswäscher bevorzugt einen Durchlaufbehälter, durch welchen nicht nur das zu waschende Gas hindurchströmt, sondern auch das als Treibmittel für die Treibmittelpumpe verwendete Abschreckmedium, welches im freien Fall aus dem Durchlaufbehälter in den Abschreckbehälter zurückgeführt werden kann. Vorzugsweise verbindet man die Ablauföffnung des Durchlaufbehälters mit dem Inneren des Fallschachtes, und zwar zur Bildung des bereits erwähnten Schleiers, der verhindern soll, dass sich das Abschreckmedium im Fallschacht durch die hereinfallenden heißen Metallteile zu stark erwärmt. Auf diese Weise wird die Strahlpumpe doppelt ausgenutzt: Einerseits zum Absaugen der Dämpfe aus dem Fallschacht und zum andern zum Zuführen von Abschreckmedium zur Bildung des Schleiers im Fallschacht. Um in dem als Durchlaufbehälter ausgebildeten Gaswäscher für den Vorgang der Gaswäsche gleichbleibende Bedingungen zu haben, ist dieser vorzugsweise unterteilt in eine Überlaufkammer, in welche der Strahl der Treibmittelpumpe eintritt, und in eine Auslaufkammer, in welche die Überlaufkammer überläuft und welche die genannte Ablauföffnung hat, aus welcher der Schleier gespeist werden kann. In der Überlaufkammer hat man auf diese Weise ein gleichbleibendes Niveau des Abschreckmediums.
  • Ausführungsbeispiele der Erfindung sind schematisch in den beigefügten Zeichnungen dargestellt.
  • Figur 1
    zeigt ein erstes Ausführungsbeispiel einer Vorrichtung zum Abschrecken von erwärmten Metallteilen in einem Vertikalschnitt,
    Figur 2
    zeigt ein zweites Ausführungsbeispiel einer Vorrichtung zum Abschrecken von erwärmten Metallteilen in einem Vertikalschnitt wie in Figur 1,
    Figur 3
    zeigt ein drittes Ausführungsbeispiel einer Vorrichtung zum Abschrecken von erwärmten Metallteilen in einem Vertikalschnitt wie in Figur 2 mit einer im Vergleich zu Figur 2 abgewandelten Glocke mit Treibmittelpumpe,
    Figur 4
    zeigt ein viertes Ausführungsbeispiel einer Vorrichtung zum Abschrecken von erwärmten Metallteilen in einem Vertikalschnitt wie in Figur 2 mit einer im Vergleich zu Figur 2 abgewandelten Glocke mit Treibmittelpumpe,
    Figur 5
    zeigt von einem fünften Ausführungsbeispiel eine kompakte Anordnung aus einem Fallschacht, einer Treibmittelpumpe und einem Gaswäscher in einem Vertikalschnitt, und
    Figur 6
    zeigt den entlang der Schnittlinie VI-VI gelegten waagerechten Schnitt durch die Vorrichtung aus Figur 5.
  • Figur 1 zeigt einen Behälter 1, in welchem sich ein flüssiges Abschreckmedium 2 befindet. Der Behälter 1 ist durch einen Deckel 3 abgedeckt. Oberhalb des Behälters 1 befindet sich der hintere Abschnitt eines Wärmebehandlungsofens 4; der Aufbau des Wärmebehandlungsofens ist nicht Gegenstand der Patentanmeldung und deshalb sind keine Details des Ofens dargestellt. Vom Ofen 4 führt ein Fallschacht 5 durch den Deckel 3 hindurch in den Behälter 1 und mündet unterhalb des Spiegels 6 des Abschreckmediums. Dicht oberhalb des Deckels 3 ist der Fallschacht 5 von einem Ringkanal 7 umgeben, der über einen umlaufenden Schlitz 8 Verbindung mit dem Inneren des Fallschachtes 5 hat. Mittels einer Umwälzpumpe 9, welche in das Abschreckmedium 2 eintaucht, wird der Ringkanal 7 über eine Leitung 10, in welcher zwei Ventile 11 und 12 liegen, mit flüssigem Abschreckmedium versorgt, welches sich in Form eines Schleiers 13 in den Fallschacht ergießt.
  • Unter dem Deckel 3 ist eine Glocke 14 auf dem Abschreckmedium 2 schwimmend aufgehängt. An der Aussenseite der Glocke 14 ist eine Treibmittelpumpe (Strahlpumpe) 15 befestigt, welche über eine von der Leitung 10 abzweigende Zweigleitung 16 mit schnell strömendem Abschreckmedium als Treibmittel gespeist wird. In eine Taille des Strahlpumpengehäuses mündet eine Saugleitung 17, welche oberhalb der Öffnungen 8 vom Fallschacht 5 ausgeht. Das Strahlrohr der Treibmittelpumpe 15 mündet im Abschreckmedium 2 unterhalb der Glocke 14. Von der Glocke 14 führt eine Entlüftungsleitung 18 als Steigleitung, in welcher ein Ventil 19 sowie ein Magnetventil 19a liegt, nach oben durch den Deckel 3 hindurch aus dem Behälter 1 hinaus. Zwischen dem Einlaß der Entlüftungsleitung 18 und dem Spiegel 6 des Abschreckmediums ist noch eine Schikane 20 vorgesehen. Das Magnetventil 19a ist mit einem Ventilschaltzünder gekoppelt, und öffnet erst, nachdem dessen Zündflamme brennt.
  • Von der Entlüftungsleitung 18 führt eine Zweigleitung 21, in welcher ein Stellventil 21a liegt, zum Fallschacht 5 und mündet in diesen an einer Stelle 22, welche der Eintrittsöffnung 23 der Saugleitung 17 gegenüberliegt. Am Verzweigungspunkt 24 der Leitungen 18 und 21 kann über eine weitere Leitung 25, in welcher ein Stellventil 26 liegt, ein Hilfsgas, z.B. Stickstoff, eingespeist werden.
  • Die Vorrichtung arbeitet folgendermaßen:
    Aus dem Ofen 4 durch den Fallschacht 5 in den Behälter 1 fallende heiße Metallteile bewirken insbesondere, während sie durch den Schleier 13 hindurchfallen, dass eine gewisse Menge des Abschreckmediums verdampft. Die aufsteigenden Dämpfe werden durch die Saugleitung 17 abgesaugt, wobei die Absaugung unterstützt wird durch eine sich ausbildende Querströmung zwischen der Mündung der Leitung 21 und der Ansaugöffnung 23. Das durch die Strahlpumpe 15 angesaugte Gas vermischt sich mit dem Treibmittelstrahl, der den unteren Rand 34 der abgeknickten Wand 30 der Glocke 14 unterquert und in den Bereich unter der Glocke 14 gelangt. Mitgerissene Gasblasen 27 steigen im Abschreckmedium 2 hoch, wobei die kondensierbaren Bestandteile (Dämpfe des Abschreckmediums) kondensieren, wohingegen die aus dem Schutzgas bzw. Reaktionsgas des Ofens 4 stammenden nichtkondensierbaren Bestandteile durch die Schikane 20 in die Entlüftungsleitung 18 eintreten, teilweise über die Leitung 21 in den Fallschacht 5 zurückgeführt und teilweise abgefackelt werden. Nach Bedarf kann über die Leitung 25 ein Hilfsgas wie Stickstoff eingeleitet werden, um die gesamte Einrichtung vor Inbetriebnahme zu spülen, so dass sich kein explosives Gas bilden kann.
  • Die Absaugleistung kann eingestellt werden über die Drehzahl der Umwälzpumpe 9, über die Stellung der Ventile 11 und 12 sowie über die Stellung der Stellventile 19 und 22. In den folgenden Ausführungsbeispielen sind Teile, die Teilen des ersten Ausführungsbeispiels gleichen oder entsprechen mit denselben Bezugszahlen bezeichnet.
  • Das Ausführungsbeispiel gemäss Figur 2 unterscheidet sich von dem in Figur 1 lediglich in der Ausbildung der Glocke 14 und der Strahlpumpe 15. Die Glocke 14 ist vergrößert und durch eine von oben nach unten verlaufende und unterhalb des Spiegels 6 endende Trennwand 30 in zwei Abteile 31 und 32 unterteilt. Das Abteil 31 ist Bestandteil der Treibmittelpumpe 15. Die Treibmittelleitung 16 mündet mit einer Düse 33 in das Abteil 31, welches als Saugkammer dient. Die Düse 33 ist schräg in den Bereich unterhalb der entsprechend schräg abgeknickten Trennwand 30 gerichtet, liegt aber oberhalb des Spiegels 6. Der schräg auf die Oberfläche des Abschreckmediums 2 auftreffende Treibmittelstrahl reißt Bestandteile des Gases mit, welches durch die in das Abteil 31 einmündende Leitung 17 vom Fallschacht 5 herangeführt wird und treibt es in Gestalt von Blasen 27 unter dem Rand 34 der abgeknickten Trennwand 30 hindurch in den Bereich unter dem Abteil 32, welches als Gassammelkammer dient. Von hier aus steigt das Gas durch die Schikane 20 in die Entlüftungsleitung 18.
  • Das Ausführungsbeispiel gemäss Figur 3 unterscheidet sich von dem in Figur 2 darin, dass in die Trennwand 30 ein Rohr 35 eingeschweißt ist, dessen eines Ende oberhalb des Spiegels 6 im Abteil 31 liegt und dessen anderes Ende unterhalb des Spiegels 6 unter dem Abteil 32 liegt. Der Treibmittelstrahl (37), der aus der Düse 33 austritt, ist genau in das Rohr 35 gerichtet. Das Rohr sorgt für einen wirksameren Übertritt des Gases vom Abteil 31 in das Abteil 32. Sich einstellende Niveauunterschiede werden ausgeglichen durch Öffnungen 36 im Rohr 35 unterhalb des Spiegels 6. Mit dieser Einrichtung können gleichzeitig mehrere solcher Treibmittelpumpen nebeneinander angeordnet betrieben werden, was eine hohe Absaugleistung ermöglicht.
  • Das Ausführungsbeispiel gemäss Figur 4 unterscheidet sich von dem in Figur 2 darin, dass die Glocke 14 einen Boden 40 hat, der sich mit Abstand vom unteren Rand 34 der Trennwand 30 unterhalb des gesamten Abteils 31 und eines daran angrenzenden Bereichs des Abteils 32 erstreckt. Auf dem Boden 40 steht eine Trennwand 41, welche unterhalb der Schikane 20, aber oberhalb des sich ausserhalb der Glocke 14 einstellenden Badspiegels 6 endet. Auf diese Weise steigt der Spiegel oberhalb des Bodens 40 bis zum oberen Rand der Trennwand 41 an, welche einen Überlauf bildet. Der Spiegel des Abschreckmediums oberhalb des Bodens 40 ist deshalb unabhängig von Schwankungen des Spiegels 6 auf gleichbleibendem Niveau, wodurch die Bedingungen für den Flüssigkeitsstrahl und den Gastransport stets gleich bleiben.
  • Das Ausführungsbeispiel gemäss den Figuren 5 und 6 unterscheidet sich von den vorhergehenden Ausführungsbeispielen im wesentlichen darin, dass der Fallschacht 5, die Strahlpumpe 15 und ein Gaswäscher 50 zu einer sehr kompakten Baugruppe zusammengefügt sind. Der Fallschacht 5 dieser Baugruppe taucht wie in den vorhergehenden Beispielen in einen Behälter 1 ein, in welchem sich das flüssige Abschreckmedium 2 mit einem Spiegel 6 in vorgegebener Höhe befindet (siehe Figuren 1 bis 4). Die in Figuren 1 bis 4 dargestellte Glocke wird im Ausführungsbeispiel gemäss den Figuren 5 und 6 ersichtlich nicht mehr benötigt.
  • Der Gaswäscher 50 ist ein Durchlaufbehälter, welcher den Fallschacht 5 eng umgibt. Der Gaswäscher ist durch eine Trennwand 51 unterteilt in eine Überlaufkammer 52 und eine Auslaufkammer 53, welche als Ablauföffnungen zwei einander gegenüberliegende Folgen von Schlitzen 8 hat, welche in den Fallschacht 5 münden, der aus zwei Abschnitten besteht, die über eine Flüssigkeitsdichtung 59, eine sogenannte Wassertasse, miteinander verbunden sind.
  • Oberhalb der Schlitze 8 liegen in der einen Wand des im Querschnitt rechteckigen Fallschachtes 5 Schlitze 22 und etwas höher in der gegenüberliegenden Wand Schlitze 23, von denen die zuletzt genannten in eine Ansaugkammer 54 münden, in welcher sich die Saugseite von zwei nebeneinander angeordneten Strahlpumpen 15 befindet, welche über eine Zuleitung 16 mit flüssigem Abschreckmedium gespeist werden, beispielsweise durch die in den Figuren 1 bis 4 dargestellte Pumpe 9. Der Strahl 37 der Strahlpumpen 15 ist in ein Tauchrohr 35 gerichtet, welches in der Überlaufkammer 52 in das dort bis zur Oberkante der Trennwand 51 stehende Abschreckmedium eintaucht. Die Strahlpumpe 15 saugt durch die Schlitze 23 mit dampfförmigem Abschreckmedium beladenes Gas an, welches in der Überlaufkammer 52 gewaschen wird, wobei das dampfförmige Abschreckmedium kondensiert und das nicht kondensierte Gas in Form von Blasen 27 hochsteigt und sich über dem Spiegel des Abschreckmediums im Gaswäscher sammelt. Dieser Raum über dem Spiegel im Gaswäscher ist durch eine Trennwand 55 unterteilt in einen Druckraum 56 und eine Ausströmkammer 57, welche über die Schlitze 43 Verbindung hat mit dem Innern des Fallschachtes 5. Druckkammer 56 und Ausströmkammer 57 sind durch einen Druckausgleichskanal 58 miteinander verbunden. Mithin nimmt der von den Strahlpumpen 15 erzeugte Gasstrom den Weg von den Schlitzen 23 über die Strahlpumpen 15, die Druckkammer 56, den Druckausgleichskanal 58, die Ausströmkammer 57 und die Schlitze 22 zurück in den Fallschacht 5, in welchem auf diese Weise zwischen den Schlitzen 22 und 23 eine Querströmung erzeugt wird.
  • Das von den Strahlpumpen 15 in die Überlaufkammer 52 eingeleitete Abschreckmedium fließt über die Trennwand 51 in die Auslaßkammer 53 und von dort durch die Schlitze 8 als Schleier 13 in den Fallschacht 5. Dabei sind die Leitungswege so kurz, dass Betriebsstörungen aufgrund von schädlichen Ablagerungen nicht mehr zu befürchten sind.
  • Da die abgesaugten Gase in den Fallschacht 5 zurückgeführt werden, ist eine Leitung 18 zum Abfackeln, wie in Figur 1 dargestellt, entbehrlich.

Claims (19)

  1. Vorrichtung zum Abschrecken von erwärmten Metallteilen,
    mit einem mit einer Abdeckung (3) versehenen Behälter (1) zur Aufnahme eines Abschreckmediums (2),
    mit einem von einem Ofen (4) kommenden und in den Behälter (1) mündenden Fallschacht (5),
    und mit einer Einrichtung zum Absaugen von Dämpfen des Abschreckmediums aus dem Fallschacht (5) durch eine Pumpe (15), deren Saugseite mit dem Innern des Fallschachts (5) verbunden ist,
    dadurch gekennzeichnet, dass die Pumpe (15) eine mit dem Abschreckmedium als Treibmittel arbeitende Treibmittelpumpe ist,
    und dass im Strömungsweg nach der Treibmittelpumpe (15) ein Gaswäscher (1) angeordnet ist, der als Waschflüssigkeit das Abschreckmedium (2) enthält.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Behälter (1) der Gaswäscher ist.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Verbindung der Saugseite der Treibmittelpumpe (15) mit dem Innern des Fallschachts (5) eine Saugleitung (17) vorgesehen ist, und dass diese ein Rohr ohne Einbauten ist.
  4. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Ausströmöffnung der Treibmittelpumpe (15) unterhalb des Spiegels (6) des Abschreckmediums (2) liegt und dieser eine vom Gasraum oberhalb des Spiegels (6) ausgehende Entlüftungsleitung (18) hat.
  5. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Teil des abgesaugten und gewaschenen Gases zurückgeführt und an einer der Absaugöffnung (23) gegenüberliegenden Stelle (22) in den Fallschacht (5) eingeleitet wird.
  6. Vorrichtung nach einem der vorstehenden Ansprüche in Verbindung mit Anspruch 2, dadurch gekennzeichnet, dass zum Sammeln des aus dem Abschreckmedium (2) aufsteigenden Gases eine mit ihrem Rand in das Abschreckmedium eintauchende Glocke (14) vorgesehen ist, von welcher eine Entlüftungsleitung (18) aus dem Behälter (1) herausführt.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Glocke (14) durch eine Trennwand (30) in zwei nebeneinander liegende Abteile (31, 32) unterteilt ist, von denen eines (31) Bestandteil der Treibmittelpumpe (15) ist und die Mündung der Saugleitung (17) enthält und von denen das andere (32) mit der Entlüftungsleitung (18) verbunden ist.
  8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Strahl der Treibmittelpumpe (15) schräg nach unten gerichtet ist, so dass er den unteren Rand der Glocke (14) bzw. ihrer Trennwand (30) knapp unterquert.
  9. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Strahl der Treibmittelpumpe (15) in ein Rohr (35) gerichtet ist, welches unterhalb des Spiegels (6) des Abschreckmediums (2) in die Glocke (14) bzw. deren mit der Entlüftungsleitung (18) verbundenes Abteil (32) mündet.
  10. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Treibmittelpumpe (15), ggfs. auch die Glocke (14), schwimmend gelagert ist bzw. sind.
  11. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Glocke (14) einen Boden (40) hat, der sich mit Abstand von der Trennwand (30) unter dem gesamten einen Abteil (31) und unter einem angrenzenden Bereich des anderen Abteils (32) erstreckt und von welchem sich eine weitere, dieses andere Abteil (32) unterteilende Trennwand (41) nach oben erstreckt, welche einen Überlauf bildet, der oberhalb des ausserhalb der Glocke (14) vorgesehenen Spiegels (6) des Abschreckmediums (2) liegt.
  12. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Treibmittelpumpe (15) dicht bei dem Fallschacht (5) angeordnet, insbesondere unmittelbar am Fallschacht (5) installiert ist.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Ansaugseite der Treibmittelpumpe (15) unmittelbar an der Absaugöffnung (23) in der Wand des Fallschachtes (5) liegt.
  14. Vorrichtung nach Anspruch 5 und 12 oder 13, dadurch gekennzeichnet, dass zur Rückführung des Gases ein am Fallschacht (5) eng anliegender Kanal (56-58) vorgesehen ist.
  15. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Gaswäscher (50) ein oberhalb des im Behälter (1) bestimmungsgemäss vorgesehenen Spiegels (6) des Abschreckmediums angeordneter Durchlaufbehälter bezüglich des Abschreckmediums ist.
  16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass die Ablauföffnung (8) Verbindung mit dem Innern des Fallschachts (5) hat.
  17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass die Ablauföffnung (8) in der Wand des Fallschachtes (5) liegt und diesen als Schlitz oder eine Folge von Schlitzen oder Bohrungen wenigstens teilweise umgibt.
  18. Vorrichtung nach Anspruch 15, 16 oder 17, dadurch gekennzeichnet, dass der Gaswäscher (50) am Fallschacht (5) angebracht ist.
  19. Vorrichtung nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass der Durchlaufbehälter (50) eine Überlaufkammer (52), in welche der Strahl (37) der Treibmittelpumpe (15) eintritt, und eine Auslaufkammer (53) hat, in welche die Überlaufkammer (52) überläuft und welche die genannte Ablauföffnung (8) hat.
EP92110217A 1991-06-17 1992-06-17 Vorrichtung zum Abschrecken von erwärmten Metallteilen mit einer Einrichtung zum Absaugen von Dämpfen Expired - Lifetime EP0519422B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4119863 1991-06-17
DE4119863A DE4119863C2 (de) 1991-06-17 1991-06-17 Vorrichtung zum Abschrecken von erwärmten Metallteilen mit einer Einrichtung zum Absaugen von Dämpfen

Publications (3)

Publication Number Publication Date
EP0519422A2 EP0519422A2 (de) 1992-12-23
EP0519422A3 EP0519422A3 (en) 1994-07-13
EP0519422B1 true EP0519422B1 (de) 1995-12-27

Family

ID=6434078

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92110217A Expired - Lifetime EP0519422B1 (de) 1991-06-17 1992-06-17 Vorrichtung zum Abschrecken von erwärmten Metallteilen mit einer Einrichtung zum Absaugen von Dämpfen

Country Status (2)

Country Link
EP (1) EP0519422B1 (de)
DE (2) DE4119863C2 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB890125A (en) * 1959-04-24 1962-02-28 Wild Barfield Electr Furnaces Improvements in metallurgical heat-treatment furnaces
US3272489A (en) * 1964-03-13 1966-09-13 Pacific Scientific Co Heat treating furnace with removable helical insert
DE1972953U (de) * 1967-08-12 1967-11-23 Matthias Ludwig Industrieofenb Vorrichtung zum abkuehlen von insbesondere metallischen gegenstaenden in oel.
US3650853A (en) * 1969-10-27 1972-03-21 Multifastener Corp Heat treating method
DE4035155C2 (de) * 1990-09-14 1993-12-02 Kohnle W Waermebehandlung Anlage zum Vergüten von Kleinteilen aus Metall

Also Published As

Publication number Publication date
EP0519422A2 (de) 1992-12-23
EP0519422A3 (en) 1994-07-13
DE59204803D1 (de) 1996-02-08
DE4119863A1 (de) 1992-12-24
DE4119863C2 (de) 1995-06-14

Similar Documents

Publication Publication Date Title
DE2202236C3 (de) Waschvorrichtung
DE2314341A1 (de) Vorrichtung zur beseitigung teilchenfoermiger und gasfoermiger verunreinigungen aus rauchgasen
DE10327282C5 (de) Vorrichtung zur Wärmebehandlung von Substanzen, insbesondere Nahrungsmitteln
DE1427595A1 (de) Farbspritzkanal fuer die Spritzbehandlung von durch ihn hindurchbewegten Gegenstaenden
WO2016030161A1 (de) Verdampfungsanlage, verdampfungsverfahren und abdichtungssystem
DE1204558B (de) Tauchvorrichtung zum UEberziehen von Gegenstaenden mit erhitzter Farbmasse
DE1287042B (de) Gaswaescher
CH655249A5 (de) Einrichtung zum entgasen eines fluessigkeitskreislaufes.
EP0519422B1 (de) Vorrichtung zum Abschrecken von erwärmten Metallteilen mit einer Einrichtung zum Absaugen von Dämpfen
DE4220850C1 (de) Verfahren und Vorrichtung zum Entfernen von im wesentlichen festen Bestandteilen aus einem Abgasstrom
DE2800668C3 (de) Vorrichtung zum Auswaschen von Farbnebel aus der Abluft von Lackieranlagen
DE3408474C2 (de)
CH655860A5 (de) Vorrichtung zum trennen von fluessigkeit und festen partikeln aus einem gas.
DE2704830A1 (de) Anlage zum absaugen und reinigen von durch farbnebel oder staub verunreinigter luft
CH662932A5 (en) Device for separating vapour, fat and dust particles from an air flow
CH615837A5 (de)
DE3019143C2 (de)
DE2111831A1 (de) Belueftungs- und Durchmischungsvorrichtung fuer Tieftanks
DE4032120A1 (de) Kondensator, insbesondere bruedenkondensator
DE3421587A1 (de) Vorrichtung zum abscheiden von dunst-, fett- und staubpartikeln aus einem luftstrom
DE1501480C3 (de)
EP1782890B1 (de) Spritzvorbehandlungsanlage und Verfahren zur Spritzvorbehandlung von Werkstücken
AT392838B (de) Kondensator, insbesondere bruedenkondensator
DE804279C (de) Beheizte Reinigungsvorrichtung fuer Metallteile
EP0850100B1 (de) Vorrichtung zum abscheiden von dunst-, fett- und/oder staubpartikeln aus einem luftstrom

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR IT LI SE

17P Request for examination filed

Effective date: 19940623

17Q First examination report despatched

Effective date: 19950602

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

REF Corresponds to:

Ref document number: 59204803

Country of ref document: DE

Date of ref document: 19960208

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000503

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000623

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000626

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010630

EUG Se: european patent has lapsed

Ref document number: 92110217.4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050617