EP0508058B1 - Austenitische Nickel-Chrom-Eisen-Legierung - Google Patents

Austenitische Nickel-Chrom-Eisen-Legierung Download PDF

Info

Publication number
EP0508058B1
EP0508058B1 EP92102228A EP92102228A EP0508058B1 EP 0508058 B1 EP0508058 B1 EP 0508058B1 EP 92102228 A EP92102228 A EP 92102228A EP 92102228 A EP92102228 A EP 92102228A EP 0508058 B1 EP0508058 B1 EP 0508058B1
Authority
EP
European Patent Office
Prior art keywords
chromium
max
iron
mpa
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92102228A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0508058A1 (de
Inventor
Ulrich Dr.-Ing. Brill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp VDM GmbH
Original Assignee
Krupp VDM GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krupp VDM GmbH filed Critical Krupp VDM GmbH
Publication of EP0508058A1 publication Critical patent/EP0508058A1/de
Application granted granted Critical
Publication of EP0508058B1 publication Critical patent/EP0508058B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W

Definitions

  • the invention relates to an austenitic nickel-chromium-iron alloy and its use as a material for articles with high resistance to isothermal and cyclic high-temperature oxidation, high heat resistance and creep rupture strength at temperatures above 1100 to 1200 ° C.
  • Objects such as furnace components, radiant tubes, furnace rollers, furnace muffles and support systems in furnaces for ceramic products are not only isothermally stressed in use at very high temperatures above 1000 ° C, but must also be able to withstand cyclical temperature stresses when heating up and cooling the furnaces or radiant tubes. They must therefore be characterized by scaling resistance not only in the case of isothermal, but also in the case of cyclic oxidation, and by sufficient heat resistance and creep rupture strength.
  • An austenitic alloy is known for the first time from US Pat. No. 3,607,243 with contents of (data in% by weight) to 0.1% carbon, 58-63% nickel, 21-25% chromium, 1-1.7 % Aluminum, and optionally up to 0.5% silicon, up to 1.0% manganese, up to 0.6% titanium, up to 0.006% boron, up to 0.1% magnesium, up to 0.05% calcium, the rest iron, the Phosphorus content below 0.030%, the sulfur content should be below 0.015%, which has a good resistance especially to cyclic oxidation at temperatures up to 2000 ° F (1093 ° C).
  • the heat resistance values are given as follows: 80 MPa for 1800 ° F, 45 MPa for 2000 ° F and 23 MPa for 2100 ° F.
  • the creep rupture strength after 1000 hours is 32 MPa for 1600 ° F, 16 MPa for 1800 ° F and 7 MPa for 2000 ° F.
  • the material NiCr23Fe with material no. 2.4851 and the UNS designation N 06601 introduced into industrial application. This material has proven itself particularly when used in the temperature range above 1000 ° C. This is based on the formation of a protective chromium oxide-aluminum oxide layer, but in particular on the overall low tendency of the oxide layer to flake off under alternating temperature loads.
  • the material has developed into an important material in industrial furnace construction. Typical applications are jet pipes for gas-heated furnaces and transport rollers in roller hearth furnaces for ceramic products. The material is also suitable for parts in exhaust gas detoxification plants and petrochemical plants.
  • the material known from US Pat. No. 3,607,243 contains nitrogen in amounts of 0.04 to 0.1 wt .-% added and at the same time a titanium content of 0.2 to 1.0 wt .-% mandatory.
  • the chrome contents are 19-28% and the aluminum contents 0.75-2.0% with nickel contents of 55-65%.
  • the carbon content should not exceed 0.1% by weight in order to avoid the formation of carbides, in particular of the M23C6 type, since these adversely affect the microstructure of the structure and affect the properties of the alloy at very high temperatures.
  • the resistance to oxidation (expressed by the so-called cyclical mass change (g / m2 ⁇ h) in air at high test temperatures, for example 2000 ° F, as described in US Pat. No. 4,784,830) is not the only decisive factor for the life of highly heat-resistant objects. but also the heat resistance and the creep rupture strength at the respective application temperatures.
  • the contents are: carbon 0.15 to 0.25% chrome 24 to 26% aluminum 2.1 to 2.4% yttrium 0.05 to 0.12% titanium 0.40 to 0.60% niobium 0.40 to 0.60% Zircon 0.01 to 0.10% nitrogen max 0.010% with unchanged content ranges of the remaining alloy elements.
  • the nickel-chromium-iron alloy according to the invention has a departure from the prior art, which only permits carbon contents of up to a maximum of 0.10% by weight, since it was believed that the required oxidation resistance at temperatures up to 1200 ° C. was only possible with these low carbon contents to be able to guarantee carbon contents of 0.12 to 0.30% by weight.
  • carbon contents of this order of magnitude in combination with the additives also provided according to the invention, in particular yttrium and zirconium not only increase the heat resistance and the creep rupture strength, but also improve the oxidation resistance,
  • the nitrogen content in the alloy according to the invention is kept as low as possible, the present carbon contents of 0.12 to 0.30% by weight in connection with the stable carbide formers titanium, niobium and zircon essentially form carbides of these elements, which also occur at temperatures up to 1200 ° C are thermally stable. The formation of chromium carbides, so of the type Cr23C6, is largely prevented.
  • Chromium contents of at least 23% by weight are required to ensure adequate oxidation resistance at temperatures above 1100 ° C.
  • the upper limit should not exceed 30% by weight in order to avoid problems with the hot deformation of the alloy.
  • Aluminum especially in the temperature range of 600 to 800 ° C, which the material passes through in use both during heating and cooling, increases the heat resistance by eliminating the phase Ni3Al (so-called ⁇ 'phase). Since the elimination of this phase is associated with a drop in toughness, it is necessary to limit the aluminum content to 1.8 to 2.4% by weight.
  • the silicon content should be kept as low as possible to avoid the formation of low-melting phases.
  • the manganese content should not exceed 0.25% by weight in order to avoid negative effects on the oxidation resistance of the material.
  • magnesium and calcium serve to improve the hot formability and also improve the oxidation resistance.
  • the upper limits of 0.015% by weight (magnesium) and 0.010% by weight (calcium) should not are exceeded, since magnesium and calcium contents above these limit values promote the occurrence of low-melting phases and thus in turn impair the hot formability.
  • the iron contents of the alloy according to the invention are in the range from 8 to 11% by weight. They are necessary in order to be able to use inexpensive ferrochrome and ferronickel when melting the alloy.
  • Table 1 contains the analyzes of two alloys A and B covered by the invention and an alloy C according to the prior art, as can be found in US Pat. No. 4,784,830.
  • the alloy A according to the invention in the entire temperature range of interest from 850 to 1200 ° C. is at significantly higher values than the alloy C according to the prior art, both in terms of the heat resistance Rm and at the 1% yield strength Rp.
  • alloy B according to the invention Even better values are achieved by alloy B according to the invention, the alloy composition of which lies within the alloy variant given by claim 2. With this alloy variant, both the heat resistance and the yield point can be almost doubled up to temperatures of 1000 ° C.
  • FIGS. 3 and 4 compare the creep behavior of alloy A according to the invention with that of alloy C according to the prior art.
  • the creep rupture strength and the 1% yield stress limit were determined in conventional creep rupture tests (see DE book “Material Science Steel", Volume 1, Springer-Verlag Berlin, 1984, pages 384 to 396 and DIN 50118).
  • the creep rupture strength (MPa) is a measure of the ability of a material not to be destroyed under the influence of an acting load.
  • the 1% yield stress limit which specifies the stress (in MPa) at a given loading time at which a 1% elongation is reached, characterizes the functional failure of the material under a specific long-term loading for the respective temperature.
  • Alloy A according to the invention is clearly superior over the entire temperature range both in terms of the creep rupture strength and in the 1% elongation limit of alloy C according to the prior art.
  • the strength gain of alloy A according to the invention is more than 25% at all temperatures compared to alloy C.
  • the behavior of the alloy A according to the invention can be better assessed than the behavior of the alloy C corresponding to the prior art, which cuts the abscissa (transition to loss of mass) already at approx. 1000 ° C., while the alloy A only at approx. 1050 ° C has a zero crossing.
  • the objects mentioned can be easily manufactured from the material according to the invention, since it is not only readily thermoformable, but also for cold processing operations - such as Cold rolling to thin dimensions, folding, deep drawing, flanging - has the necessary forming capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
EP92102228A 1991-04-11 1992-02-11 Austenitische Nickel-Chrom-Eisen-Legierung Expired - Lifetime EP0508058B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4111821A DE4111821C1 (uk) 1991-04-11 1991-04-11
DE4111821 1991-04-11

Publications (2)

Publication Number Publication Date
EP0508058A1 EP0508058A1 (de) 1992-10-14
EP0508058B1 true EP0508058B1 (de) 1995-08-16

Family

ID=6429356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92102228A Expired - Lifetime EP0508058B1 (de) 1991-04-11 1992-02-11 Austenitische Nickel-Chrom-Eisen-Legierung

Country Status (8)

Country Link
US (1) US5980821A (uk)
EP (1) EP0508058B1 (uk)
JP (1) JP3066996B2 (uk)
AT (1) ATE126548T1 (uk)
AU (1) AU653801B2 (uk)
CA (1) CA2065464C (uk)
DE (2) DE4111821C1 (uk)
ES (1) ES2079705T3 (uk)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2073873T3 (es) * 1991-12-20 1995-08-16 Inco Alloys Ltd Aleacion de ni-cr con alta resistencia a la temperatura.
DE19524234C1 (de) * 1995-07-04 1997-08-28 Krupp Vdm Gmbh Knetbare Nickellegierung
DE19753539C2 (de) * 1997-12-03 2000-06-21 Krupp Vdm Gmbh Hochwarmfeste, oxidationsbeständige knetbare Nickellegierung
US5997809A (en) * 1998-12-08 1999-12-07 Inco Alloys International, Inc. Alloys for high temperature service in aggressive environments
GB2361933A (en) * 2000-05-06 2001-11-07 British Nuclear Fuels Plc Melting crucible made from a nickel-based alloy
US7074350B2 (en) * 2001-03-23 2006-07-11 Citizen Watch Co., Ltd. Brazing filler metal
US6488783B1 (en) * 2001-03-30 2002-12-03 Babcock & Wilcox Canada, Ltd. High temperature gaseous oxidation for passivation of austenitic alloys
JP3998983B2 (ja) 2002-01-17 2007-10-31 松下電器産業株式会社 ユニキャスト−マルチキャスト変換装置および映像監視システム
DE10302989B4 (de) * 2003-01-25 2005-03-03 Schmidt + Clemens Gmbh & Co. Kg Verwendung einer Hitze- und korrosionsbeständigen Nickel-Chrom-Stahllegierung
EP1610081A1 (en) * 2004-06-25 2005-12-28 Haldor Topsoe A/S Heat exchange process and heat exchanger
WO2009045136A1 (en) 2007-10-05 2009-04-09 Sandvik Intellectual Property Ab The use and method of producing a dispersion strengthened steel as material in a roller for a roller hearth furnace
US8506883B2 (en) 2007-12-12 2013-08-13 Haynes International, Inc. Weldable oxidation resistant nickel-iron-chromium-aluminum alloy
US9551051B2 (en) 2007-12-12 2017-01-24 Haynes International, Inc. Weldable oxidation resistant nickel-iron-chromium aluminum alloy
DE102012002514B4 (de) * 2011-02-23 2014-07-24 VDM Metals GmbH Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit
DE102012011161B4 (de) 2012-06-05 2014-06-18 Outokumpu Vdm Gmbh Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE102012011162B4 (de) 2012-06-05 2014-05-22 Outokumpu Vdm Gmbh Nickel-Chrom-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
JP5857894B2 (ja) * 2012-07-05 2016-02-10 新日鐵住金株式会社 オーステナイト系耐熱合金
DE102012015828B4 (de) 2012-08-10 2014-09-18 VDM Metals GmbH Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit
DE102014001329B4 (de) 2014-02-04 2016-04-28 VDM Metals GmbH Verwendung einer aushärtenden Nickel-Chrom-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
DE102014001330B4 (de) 2014-02-04 2016-05-12 VDM Metals GmbH Aushärtende Nickel-Chrom-Kobalt-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit
DE102018107248A1 (de) 2018-03-27 2019-10-02 Vdm Metals International Gmbh Verwendung einer nickel-chrom-eisen-aluminium-legierung
CN113195758B (zh) * 2018-12-21 2022-08-23 山特维克知识产权股份有限公司 镍类合金的新用途
DE102020132193A1 (de) 2019-12-06 2021-06-10 Vdm Metals International Gmbh Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit
DE102022105658A1 (de) 2022-03-10 2023-09-14 Vdm Metals International Gmbh Verfahren zur Herstellung eines Bauteils aus dem Halbzeug einer Nickel-Chrom-Aluminium-Legierung
DE102022105659A1 (de) 2022-03-10 2023-09-14 Vdm Metals International Gmbh Verfahren zur Herstellung eines mit Schweißnähten versehenen Bauteils aus einer Nickel-Chrom-Aluminium-Legierung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB810366A (en) * 1957-09-25 1959-03-11 Mond Nickel Co Ltd Improvements relating to heat-resisting alloys
US3607243A (en) * 1970-01-26 1971-09-21 Int Nickel Co Corrosion resistant nickel-chromium-iron alloy
JPS5953663A (ja) * 1982-09-22 1984-03-28 Kubota Ltd 耐浸炭性と高温クリ−プ破断強度にすぐれた耐熱鋳鋼
JPS6179742A (ja) * 1984-09-26 1986-04-23 Mitsubishi Heavy Ind Ltd 耐熱合金
CA1304608C (en) * 1986-07-03 1992-07-07 Inco Alloys International, Inc. High nickel chromium alloy
US4784830A (en) * 1986-07-03 1988-11-15 Inco Alloys International, Inc. High nickel chromium alloy
US5217684A (en) * 1986-11-28 1993-06-08 Sumitomo Metal Industries, Ltd. Precipitation-hardening-type Ni-base alloy exhibiting improved corrosion resistance
JPH0660369B2 (ja) * 1988-04-11 1994-08-10 新日本製鐵株式会社 鋳造過程或いはその後の熱間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼

Also Published As

Publication number Publication date
JPH07216483A (ja) 1995-08-15
DE59203257D1 (de) 1995-09-21
CA2065464A1 (en) 1992-10-12
DE4111821C1 (uk) 1991-11-28
US5980821A (en) 1999-11-09
AU653801B2 (en) 1994-10-13
AU1478792A (en) 1992-10-15
CA2065464C (en) 2002-03-26
EP0508058A1 (de) 1992-10-14
ES2079705T3 (es) 1996-01-16
ATE126548T1 (de) 1995-09-15
JP3066996B2 (ja) 2000-07-17

Similar Documents

Publication Publication Date Title
EP0508058B1 (de) Austenitische Nickel-Chrom-Eisen-Legierung
EP2855723B1 (de) Nickel-chrom-aluminium-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
EP2678458B1 (de) Nickel-chrom-eisen-aluminium-legierung mit guter verarbeitbarkeit
EP2855724B1 (de) Nickel-chrom-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit
DE2265686C2 (de) Verwendung einer Nickel-Chrom-Legierung
DE102012015828B4 (de) Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit
EP2283167A1 (de) Eisen-chrom-aluminium-legierung mit hoher lebensdauer und geringen änderungen im warmwiderstand
DE2517519B2 (de) Wärmebeständigen rostfreien austenitischen Stahls
EP0752481B1 (de) Knetbare Nickellegierung
DE4130139C1 (uk)
WO2019185082A1 (de) Verwendung einer nickel-chrom-eisen-aluminium-legierung
DE60123016T2 (de) Legierung zur thermischen behandlung bei hohen temperaturen
DE2331100B2 (de) Hitzebeständige, austenitische Eisen-Chrom-Nickel-Legierungen
DE4411228A1 (de) Hochwarmfeste Nickelbasislegierung und Verwendung derselben
DE3121782C2 (de) Verwendung einer austenitischen Chrom-Nickel-Stahllegierung für Wärmetauscherkomponenten
DE19753539C9 (de) Hochwarmfeste, oxidationsbeständige knetbare Nickellegierung
EP1047801B1 (de) Hochwarmfeste, oxidationsbeständige knetbare nickellegierung
EP0690140B1 (de) Hochtemperatur-Knetlegierung
WO2022106145A1 (de) Wasserstoffbeständiger ferritischer stahl mit laves-phase
DE3017620C2 (de) Verwendung einer Eisen-Nickel-Chrom-Legierung für Gegenstände mit hoher Zeitstandfestigkeit, Korrosionsbeständigkeit und großer Gefügestabilität
JPH07116557B2 (ja) 高温特性に優れたフェライト系ステンレス鋼

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19941214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950816

Ref country code: DK

Effective date: 19950816

REF Corresponds to:

Ref document number: 126548

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950814

REF Corresponds to:

Ref document number: 59203257

Country of ref document: DE

Date of ref document: 19950921

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079705

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960229

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110302

Year of fee payment: 20

Ref country code: DE

Payment date: 20110218

Year of fee payment: 20

Ref country code: IT

Payment date: 20110221

Year of fee payment: 20

Ref country code: AT

Payment date: 20110214

Year of fee payment: 20

Ref country code: SE

Payment date: 20110214

Year of fee payment: 20

Ref country code: CH

Payment date: 20110222

Year of fee payment: 20

Ref country code: NL

Payment date: 20110216

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110217

Year of fee payment: 20

Ref country code: BE

Payment date: 20110211

Year of fee payment: 20

Ref country code: ES

Payment date: 20110222

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59203257

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59203257

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20120211

BE20 Be: patent expired

Owner name: *KRUPP VDM G.M.B.H.

Effective date: 20120211

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120210

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120212

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 126548

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120211