EP0508058B1 - Austenitische Nickel-Chrom-Eisen-Legierung - Google Patents
Austenitische Nickel-Chrom-Eisen-Legierung Download PDFInfo
- Publication number
- EP0508058B1 EP0508058B1 EP92102228A EP92102228A EP0508058B1 EP 0508058 B1 EP0508058 B1 EP 0508058B1 EP 92102228 A EP92102228 A EP 92102228A EP 92102228 A EP92102228 A EP 92102228A EP 0508058 B1 EP0508058 B1 EP 0508058B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chromium
- max
- iron
- mpa
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 title claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 title description 35
- 239000000956 alloy Substances 0.000 title description 35
- 239000000463 material Substances 0.000 claims abstract description 21
- 230000003647 oxidation Effects 0.000 claims abstract description 17
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 11
- 229910000640 Fe alloy Inorganic materials 0.000 claims abstract description 10
- 239000010936 titanium Substances 0.000 claims abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 239000011651 chromium Substances 0.000 claims abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011575 calcium Substances 0.000 claims abstract description 6
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 6
- 239000011777 magnesium Substances 0.000 claims abstract description 6
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 6
- 239000010955 niobium Substances 0.000 claims abstract description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 6
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 239000011572 manganese Substances 0.000 claims abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 3
- 239000011574 phosphorus Substances 0.000 claims abstract description 3
- 239000004411 aluminium Substances 0.000 claims abstract 3
- 239000005864 Sulphur Substances 0.000 claims abstract 2
- 239000012535 impurity Substances 0.000 claims abstract 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 2
- 125000004122 cyclic group Chemical group 0.000 abstract description 6
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 238000003723 Smelting Methods 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- -1 chromium carbides Chemical class 0.000 description 3
- 229910052845 zircon Inorganic materials 0.000 description 3
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229910000604 Ferrochrome Inorganic materials 0.000 description 1
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 229910001005 Ni3Al Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- IHNDUGMUECOVKK-UHFFFAOYSA-N aluminum chromium(3+) oxygen(2-) Chemical compound [O-2].[Cr+3].[O-2].[Al+3] IHNDUGMUECOVKK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/058—Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
Definitions
- the invention relates to an austenitic nickel-chromium-iron alloy and its use as a material for articles with high resistance to isothermal and cyclic high-temperature oxidation, high heat resistance and creep rupture strength at temperatures above 1100 to 1200 ° C.
- Objects such as furnace components, radiant tubes, furnace rollers, furnace muffles and support systems in furnaces for ceramic products are not only isothermally stressed in use at very high temperatures above 1000 ° C, but must also be able to withstand cyclical temperature stresses when heating up and cooling the furnaces or radiant tubes. They must therefore be characterized by scaling resistance not only in the case of isothermal, but also in the case of cyclic oxidation, and by sufficient heat resistance and creep rupture strength.
- An austenitic alloy is known for the first time from US Pat. No. 3,607,243 with contents of (data in% by weight) to 0.1% carbon, 58-63% nickel, 21-25% chromium, 1-1.7 % Aluminum, and optionally up to 0.5% silicon, up to 1.0% manganese, up to 0.6% titanium, up to 0.006% boron, up to 0.1% magnesium, up to 0.05% calcium, the rest iron, the Phosphorus content below 0.030%, the sulfur content should be below 0.015%, which has a good resistance especially to cyclic oxidation at temperatures up to 2000 ° F (1093 ° C).
- the heat resistance values are given as follows: 80 MPa for 1800 ° F, 45 MPa for 2000 ° F and 23 MPa for 2100 ° F.
- the creep rupture strength after 1000 hours is 32 MPa for 1600 ° F, 16 MPa for 1800 ° F and 7 MPa for 2000 ° F.
- the material NiCr23Fe with material no. 2.4851 and the UNS designation N 06601 introduced into industrial application. This material has proven itself particularly when used in the temperature range above 1000 ° C. This is based on the formation of a protective chromium oxide-aluminum oxide layer, but in particular on the overall low tendency of the oxide layer to flake off under alternating temperature loads.
- the material has developed into an important material in industrial furnace construction. Typical applications are jet pipes for gas-heated furnaces and transport rollers in roller hearth furnaces for ceramic products. The material is also suitable for parts in exhaust gas detoxification plants and petrochemical plants.
- the material known from US Pat. No. 3,607,243 contains nitrogen in amounts of 0.04 to 0.1 wt .-% added and at the same time a titanium content of 0.2 to 1.0 wt .-% mandatory.
- the chrome contents are 19-28% and the aluminum contents 0.75-2.0% with nickel contents of 55-65%.
- the carbon content should not exceed 0.1% by weight in order to avoid the formation of carbides, in particular of the M23C6 type, since these adversely affect the microstructure of the structure and affect the properties of the alloy at very high temperatures.
- the resistance to oxidation (expressed by the so-called cyclical mass change (g / m2 ⁇ h) in air at high test temperatures, for example 2000 ° F, as described in US Pat. No. 4,784,830) is not the only decisive factor for the life of highly heat-resistant objects. but also the heat resistance and the creep rupture strength at the respective application temperatures.
- the contents are: carbon 0.15 to 0.25% chrome 24 to 26% aluminum 2.1 to 2.4% yttrium 0.05 to 0.12% titanium 0.40 to 0.60% niobium 0.40 to 0.60% Zircon 0.01 to 0.10% nitrogen max 0.010% with unchanged content ranges of the remaining alloy elements.
- the nickel-chromium-iron alloy according to the invention has a departure from the prior art, which only permits carbon contents of up to a maximum of 0.10% by weight, since it was believed that the required oxidation resistance at temperatures up to 1200 ° C. was only possible with these low carbon contents to be able to guarantee carbon contents of 0.12 to 0.30% by weight.
- carbon contents of this order of magnitude in combination with the additives also provided according to the invention, in particular yttrium and zirconium not only increase the heat resistance and the creep rupture strength, but also improve the oxidation resistance,
- the nitrogen content in the alloy according to the invention is kept as low as possible, the present carbon contents of 0.12 to 0.30% by weight in connection with the stable carbide formers titanium, niobium and zircon essentially form carbides of these elements, which also occur at temperatures up to 1200 ° C are thermally stable. The formation of chromium carbides, so of the type Cr23C6, is largely prevented.
- Chromium contents of at least 23% by weight are required to ensure adequate oxidation resistance at temperatures above 1100 ° C.
- the upper limit should not exceed 30% by weight in order to avoid problems with the hot deformation of the alloy.
- Aluminum especially in the temperature range of 600 to 800 ° C, which the material passes through in use both during heating and cooling, increases the heat resistance by eliminating the phase Ni3Al (so-called ⁇ 'phase). Since the elimination of this phase is associated with a drop in toughness, it is necessary to limit the aluminum content to 1.8 to 2.4% by weight.
- the silicon content should be kept as low as possible to avoid the formation of low-melting phases.
- the manganese content should not exceed 0.25% by weight in order to avoid negative effects on the oxidation resistance of the material.
- magnesium and calcium serve to improve the hot formability and also improve the oxidation resistance.
- the upper limits of 0.015% by weight (magnesium) and 0.010% by weight (calcium) should not are exceeded, since magnesium and calcium contents above these limit values promote the occurrence of low-melting phases and thus in turn impair the hot formability.
- the iron contents of the alloy according to the invention are in the range from 8 to 11% by weight. They are necessary in order to be able to use inexpensive ferrochrome and ferronickel when melting the alloy.
- Table 1 contains the analyzes of two alloys A and B covered by the invention and an alloy C according to the prior art, as can be found in US Pat. No. 4,784,830.
- the alloy A according to the invention in the entire temperature range of interest from 850 to 1200 ° C. is at significantly higher values than the alloy C according to the prior art, both in terms of the heat resistance Rm and at the 1% yield strength Rp.
- alloy B according to the invention Even better values are achieved by alloy B according to the invention, the alloy composition of which lies within the alloy variant given by claim 2. With this alloy variant, both the heat resistance and the yield point can be almost doubled up to temperatures of 1000 ° C.
- FIGS. 3 and 4 compare the creep behavior of alloy A according to the invention with that of alloy C according to the prior art.
- the creep rupture strength and the 1% yield stress limit were determined in conventional creep rupture tests (see DE book “Material Science Steel", Volume 1, Springer-Verlag Berlin, 1984, pages 384 to 396 and DIN 50118).
- the creep rupture strength (MPa) is a measure of the ability of a material not to be destroyed under the influence of an acting load.
- the 1% yield stress limit which specifies the stress (in MPa) at a given loading time at which a 1% elongation is reached, characterizes the functional failure of the material under a specific long-term loading for the respective temperature.
- Alloy A according to the invention is clearly superior over the entire temperature range both in terms of the creep rupture strength and in the 1% elongation limit of alloy C according to the prior art.
- the strength gain of alloy A according to the invention is more than 25% at all temperatures compared to alloy C.
- the behavior of the alloy A according to the invention can be better assessed than the behavior of the alloy C corresponding to the prior art, which cuts the abscissa (transition to loss of mass) already at approx. 1000 ° C., while the alloy A only at approx. 1050 ° C has a zero crossing.
- the objects mentioned can be easily manufactured from the material according to the invention, since it is not only readily thermoformable, but also for cold processing operations - such as Cold rolling to thin dimensions, folding, deep drawing, flanging - has the necessary forming capacity.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Heat Treatment Of Steel (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
- Die Erfindung betrifft eine austenitische Nickel-Chrom-Eisen-Legierung und ihre Verwendung als Werkstoff für Gegenstände mit hoher Beständigkeit gegenüber isothermer und zyklischer Hochtemperaturoxidation, hoher Warmfestigkeit und Zeitstandfestigkeit bei Temperaturen oberhalb von 1100 bis 1200 °C.
- Gegenstände, wie Ofenbauteile, Strahlrohre, Ofenrollen, Ofenmuffeln und Stützsysteme in Brennöfen für keramische Erzeugnisse werden im Einsatz nicht nur bei sehr hohen Temperaturen oberhalb 1000 °C isotherm belastet, sondern müssen auch zyklischen Temperaturbelastungen beim Aufheizen und Abkühlen der Öfen oder Strahlrohre gewachsen sein.
Sie müssen sich daher durch Zunderbeständigkeit nicht nur bei isothermer, sondern auch bei zyklischer Oxidation, sowie durch eine ausreichende Warmfestigkeit und Zeitstandfestigkeit auszeichnen. - Aus der US-PS 3 607 243 ist erstmals eine austenitische Legierung bekannt geworden mit Gehalten von (Angaben in Gew.-%) bis 0,1 % Kohlenstoff, 58 - 63 % Nickel, 21 - 25 % Chrom, 1 - 1,7 % Aluminium, sowie wahlweise bis 0,5 % Silizium, bis 1,0 % Mangan, bis 0,6 % Titan, bis 0,006 % Bor, bis 0,1 % Magnesium, bis 0,05 % Calcium, Rest Eisen, wobei der Phosphorgehalt unter 0,030 %, der Schwefelgehalt unter 0,015 % liegen soll, die eine gute Beständigkeit insbesondere gegen zyklische Oxidation bei Temperaturen bis 2000 °F (1093 °C) aufweist.
Die Warmfestigkeitswerte werden wie folgt angegeben: 80 MPa für 1800 °F, 45 MPa für 2000 °F und 23 MPa für 2100 °F. - Die Zeitstandfestigkeit beträgt nach 1000 Stunden 32 MPa für 1600 °F, 16 MPa für 1800 °F und 7 MPa für 2000 °F.
Davon ausgehend hat sich der innerhalb dieser Legierungsgrenzen liegende Werkstoff NiCr23Fe mit der Werkstoff-Nr. 2.4851 und der UNS-Bezeichnung N 06601 in die industrielle Anwendung eingeführt.
Dieser Werkstoff bewährt sich vor allem bei der Anwendung im Temperaturbereich oberhalb von 1000 °C. Dies beruht auf der Bildung einer schützenden Chromoxid-Aluminiumoxidschicht, insbesondere jedoch auf der insgesamt geringen Neigung der Oxidschicht zum Abplatzen bei Temperatur-Wechselbelastung. Der Werkstoff hat sich so zu einem wichtigen Werkstoff im industriellen Ofenbau entwickelt. Typische Anwendungen sind Strahlrohre für gasbeheizte Öfen und Transportrollen in Rollenherdöfen für keramische Erzeugnisse. Darüberhinaus ist der Werkstoff auch für Teile in Abgasentgiftungsanlagen und petrochemischen Anlagen geeignet.
Um die für die Anwendung dieses Werkstoffs maßgebenden Eigenschaften noch weiter - für Anwendungstemperaturen oberhalb von 1100 bis 1200 °C - zu steigern, wird gemäß der US-PS 4 784 830 dem aus der, US-PS 3 607 243 bekannten Werkstoff Stickstoff in Mengen von 0,04 bis 0,1 Gew.-% zugesetzt und gleichzeitig zwingend ein Titangehalt von 0,2 bis 1,0 Gew.-% gefordert. Vorteilhafterweise soll auch der Siliziumgehalt oberhalb von 0,25 Gew.-% liegen und mit dem Titangehalt so korreliert sein, daß sich ein Verhältnis Si:Ti = 0,85 bis 3,0 ergibt. Die Chromgehalte betragen 19 - 28 % und die Aluminiumgehalte 0,75 - 2,0 % bei Nickelgehalten von 55 - 65 %.
Mit diesen Maßnahmen wird eine Verbesserung der Oxidationsbeständigkeit bei Anwendungstemperaturen bis 1200 °C erzielt, wodurch die Lebensdauer von z.B. Ofenrollen auf 12 Monate und mehr gegenüber 2 Monaten bei Ofenrollen, gefertigt aus dem Werkstoff gemäß US-PS 3 607 243, gesteigert werden konnte. Diese Verbesserung der Lebensdauer von Ofenbauteilen beruht vor allem auf einer Stabilisierung des Mikrogefüges durch Titannitride bei Temperaturen von 1200 °C. - Der Kohlenstoffgehalt soll ebenso, wie in der US-PS 3 607 243 beschrieben, 0,1 Gew.-% nicht überschreiten, um eine Ausbildung von Karbiden, insbesondere vom Typ M₂₃C₆, zu vermeiden, da diese sich nachteilig auf die Mikrostruktur des Gefüges und auf die Eigenschaften der Legierung bei sehr hohen Temperaturen auswirken.
- Für die Lebensdauer von hochhitzebeständigen Gegenständen ist jedoch nicht allein die Oxidationsbeständigkeit (ausgedrückt durch die sogenannte zyklische Massenänderung (g/m²·h) in Luft bei hohen Testtemperaturen, z.B. 2000 °F, wie in der US-PS 4 784 830 beschrieben) maßgebend, sondern auch die Warmfestigkeit und die Zeitstandfestigkeit bei den jeweiligen Anwendungstemperaturen.
- Es ist Aufgabe der Erfindung, Nickel-Chrom-Eisen-Legierungen der eingangs genannten Art so auszugestalten, daß bei ausreichender Oxidationsbeständigkeit die Werte für die Warmfestigkeit und die Zeitstandfestigkeit verbessert sind, wodurch die Lebensdauer von aus solchen Legierungen gefertigten Gegenständen bedeutend erhöht wird.
-
- Nach einer bevorzugten Legierungsvariante betragen die Gehalte an
Kohlenstoff 0,15 bis 0,25 % Chrom 24 bis 26 % Aluminium 2,1 bis 2,4 % Yttrium 0,05 bis 0,12 % Titan 0,40 bis 0,60 % Niob 0,40 bis 0,60 % Zirkon 0,01 bis 0,10 % Stickstoff max 0,010 %
bei unveränderten Gehaltsbereichen der restlichen Legierungselemente. - Die erfindungsgemäße Nickel-Chrom-Eisen-Legierung weist in Abkehr vom bisherigen Stand der Technik, der Kohlenstoffgehalte nur bis maximal 0,10 Gew.-% zuläßt, da man glaubte, nur mit diesen geringen Kohlenstoffgehalten die geforderte Oxidationsbeständigkeit bei Temperaturen bis 1200 °C gewährleisten zu können, Kohlenstoffgehalte von 0,12 bis 0,30 Gew.-% auf.
In überraschender Weise bewirken Kohlenstoffgehalte in dieser Größenordnung in Verbindung mit den erfindungsgemäß weiterhin vorgesehenen Zusätzen, insbesondere an Yttrium und Zirkon, nicht nur eine Steigerung der Warmfestigkeit und der Zeitstandfestigkeit, sondern verbessern auch noch die Oxidationsbeständigkeit, - Da bei der erfindungsgemäßen Legierung der Stickstoffgehalt möglichst niedrig gehalten wird, entstehen bei den vorliegenden Kohlenstoffgehalten von 0,12 bis 0,30 Gew.-% in Verbindung mit den stabilen Karbidbildnern Titan, Niob und Zirkon im wesentlichen Karbide dieser Elemente, die auch bei Temperaturen bis zu 1200 °C thermisch stabil sind.Die Bildung von Chromkarbiden, so vom Typ Cr₂₃C₆, wird dadurch weitgehend unterbunden. Dies führt dazu, daß erstens durch die Bildung der im Vergleich zu Chromkarbiden thermisch stabileren Titan-, Niob- und Zirkonkarbide die Warmfestigkeit und die Zeitstandfestigkeit nachhaltig verbessert wird, zweitens mehr Chrom zur Bildung einer schützenden Chromoxid-Schicht zur Verfügung steht und damit die Oxidationsbeständigkeit bei gleichzeitiger Zugabe von Yttrium und Zirkon verbessert wird.
- Zur Sicherstellung einer ausreichenden Oxidationsbeständigkeit bei Temperaturen von oberhalb 1100 °C sind Chrom-Gehalte von mindestens 23 Gew.-% erforderlich. Die obere Grenze sollte 30 Gew.-% nicht überschreiten, um Probleme bei der Warmverformung der Legierung zu vermeiden.
- Aluminium bewirkt, besonders im Temperaturbereich von 600 bis 800 °C, den der Werkstoff im Einsatz sowohl beim Aufheizen als auch beim Abkühlen durchläuft, eine Steigerung der Warmfestigkeit durch Ausscheidung der Phase Ni₃Al (sog. γ' - Phase). Da die Ausscheidung dieser Phase gleichzeitig mit einem Abfall der Zähigkeit verbunden ist, ist es notwendig, die Gehalte an Aluminium auf 1,8 bis 2,4 Gew.-% zu begrenzen.
- Der Silizium-Gehalt sollte möglichst niedrig gehalten werden, um die Bildung von niedrig schmelzenden Phasen zu vermeiden.
Der Mangan-Gehalt sollte 0,25 Gew.-% nicht überschreiten, um negative Auswirkungen auf die Oxidationsbeständigkeit des Werkstoffes zu vermeiden. - Zusätze von Magnesium und Calcium dienen der Verbesserung der Warmumformbarkeit und wirken sich auch verbessernd auf die Oxidationsbeständigkeit aus. Hierbei sollten die Obergrenzen von 0,015 Gew.-% (Magnesium) und 0,010 Gew.-% (Calcium) jedoch nicht überschritten werden, da oberhalb dieser Grenzwerte liegende Gehalte an Magnesium und Calcium das Auftreten niedrig schmelzender Phasen begünstigen und so wiederum die Warmumformbarkeit verschlechtern.
- Die Eisen-Gehalte der erfindungsgemäßen Legierung liegen im Bereich von 8 bis 11 Gew.-%. Sie sind dadurch bedingt, um beim Erschmelzen der Legierung preiswertes Ferrochrom und Ferronickel einsetzen zu können.
-
- Die Werkstoffeigenschaften dieser Legierungen sind Gegenstand der Figuren 1 bis 5.
- Im einzelnen zeigen
- Fig. 1
- für die Legierungen A, B und C
die Warmfestigkeit Rm (MPa) in Abhängigkeit von der Temperatur (°C) - Fig. 2
- für die Legierungen A, B und C
die 1 %-Streckgrenze Rp (MPa) in Abhängigkeit von der Temperatur (°C) - Fig. 3
- für die Legierungen A und C
die 1 %-Zeitdehngrenze Rp 1,0/10000 (MPa) nach einer Zeit von 10000 Stunden in Abhängigkeit von der Temperatur (°C) - Fig. 4
- für die Legierungen A und C
die Zeitstandfestigkeit Rm/10000 (MPa) nach einer Zeit von 10000 Stunden in Abhängigkeit von der Temperatur (°C) - Fig. 5
- für die Legierungen A und C
die zyklische Oxidationsbeständigkeit in Luft (spezifische Masseänderung in g/m²·h) in Abhängigkeit von der Temperatur (°C). - Die in Fig. 1 für die Warmfestigkeit und in Fig. 2 für die 1 %-Streckgrenze in Abhängigkeit der Temperatur aufgetragenen Werte sind wichtige Kenngrößen, inwieweit der Werkstoff bei einer bestimmten Temperatur belastet werden kann.
- Es ist zu erkennen, daß die erfindungsgemäße Legierung A im gesamten interessierenden Temperaturbereich von 850 bis 1200 °C bei deutlich höheren Werten als die Legierung C nach dem Stand der Technik liegt, sowohl bei der Warmfestigkeit Rm als auch bei der 1 %-Streckgrenze Rp.
- Noch bessere Werte werden von der erfindungsgemäßen Legierung B erreicht, deren Legierungszusammensetzung innerhalb der durch Anspruch 2 gegebenen Legierungsvariante liegt. Durch diese Legierungsvariante können bis zu Temperaturen von 1000 °C sowohl die Warmfestigkeit als auch die Streckgrenze fast verdoppelt werden.
- In den Figuren Fig. 3 und Fig. 4 ist das Zeitstandverhalten der erfindungsgemäßen Legierung A mit dem der Legierung C gemäß dem Stand der Technik verglichen.
Die Zeitstandfestigkeit und die 1 %-Zeitdehngrenze wurden in üblichen Zeitstandversuchen ermittelt (siehe dazu DE-Buch "Werkstoffkunde Stahl", Band 1, Springer-Verlag Berlin, 1984, Seiten 384 bis 396 und DIN 50118).
Die Zeitstandfestigkeit (MPa) gilt als ein Maß für die Fähigkeit eines Werkstoffes, unter dem Einfluß einer wirkenden Last nicht zerstört zu werden. Die 1 %-Zeitdehngrenze, die bei einer vorgegebenen Belastungszeit die Spannung (in MPa) angibt, bei der eine 1 %-Dehnung erreicht wird, charakterisiert das funktionelle Versagen des Werkstoffes bei einer bestimmten Langzeitbelastung für die jeweilige Temperatur. - Die erfindungsgemäße Legierung A ist sowohl in der Zeitstandfestigkeit als auch in der 1 %-Zeitdehngrenze der Legierung C entsprechend dem Stand der Technik über den gesamten Temperaturbereich deutlich überlegen. Der Festigkeitsgewinn der erfindungsgemäßen Legierung A beträgt im Vergleich zur Legierung C bei jeder Temperatur mehr als 25 %.
- In Fig. 5 wird die an Luft ermittelte zyklische Oxidationsbeständigkeit der Legierungen A und C mit Hilfe der Darstellung der spezifischen Massenänderung über der Temperatur verglichen.
Gewünscht werden in der Regel Massenzunahmen (+), da Massenabnahmen (-) häufig ein Anzeichen für stark abplatzenden Zunder sind. - Aus diesem Grunde ist das Verhalten der erfindungsgemäßen Legierung A besser zu bewerten als das dem Stand der Technik entsprechende Verhalten der Legierung C, die die Abzisse (Übergang zum Massenverlust) schon bei ca. 1000 °C schneidet, während die Legierung A erst bei ca. 1050 °C einen Nulldurchgang aufweist.
- Die erfindungsgemäße Nickel-Chrom-Eisen-Legierung ist wegen ihrer guten Eigenschaften bei hohen Temperaturen ein bevorzugter Werkstoff für Gegenstände, die im praktischen Betrieb bezogen auf eine Temperatur von 1100 °C und eine Belastungsdauer von 10000 Stunden eine Zeitstandfestigkeit (Rm/10000) von mindestens 5 MPa bei einer 1 %-Zeitdehngrenze (Rp1,0/10000) von mindestens 2 MPa und hohe Oxidationsbeständigkeit aufweisen müssen,
wie z. B. - Strahlrohre zum Beheizen von Öfen
- Ofenrollen für das Glühen von metallischem oder keramischem Gut
- Muffeln für Blankglühöfen, z.B. für Öfen für das Blankglühen von Edelstählen
- Rohre für die Sauerstofferhitzung bei der Produktion von Titandioxid (TiO₂)
- Ethylencrackrohre
- Ofengestelle und Tragekreuze für stationäre Glühungen
- Isolierungen für Auspuffkrümmer
- Katalysatorfolien für die Abgasreinigung, insbesondere bei thermisch hochbelasteten Klein-Benzinmotoren, wie Motoren für Kettensägen, Heckenscheren und Rasenmäher.
- Die genannten Gegenstände lassen sich aus dem erfindungsgemäßen Werkstoff leicht fertigen, da er nicht nur gut warmverformbar ist, sondern auch das für Kaltverarbeitungsvorgänge - wie z.B. Kaltwalzen auf dünne Abmessungen, Abkanten, Tiefziehen, Bördeln - nötige Umformvermögen besitzt.
Claims (3)
- Austenitische Nickel-Chrom-Eisen-Legierung nach Anspruch 1, bei der die Gehalte an
Kohlenstoff 0,15 bis 0,25 % Chrom 24 bis 26 % Aluminium 2,1 bis 2,4 % Yttrium 0,05 bis 0,12 % Titan 0,40 bis 0,60 % Niob 0,40 bis 0,60 % Zirkon 0,01 bis 0,10 % Stickstoff betragen. max 0,010 % - Verwendung einer austenitischen Nickel-Chrom-Eisen-Legierung nach einem der Ansprüche 1 oder 2 als Werkstoff für im praktischen Betrieb thermisch hochbelastete Gegenstände, die bezogen auf eine Temperatur von 1100 °C und eine Belastungsdauer von 10000 Stunden eine Zeitstandfestigkeit (Rm/10000) von mindestens 5 MPa bei einer 1 %-Zeitdehngrenze (Rp1,0/10000) von mindestens 2 MPa und hohe Oxidationsbeständigkeit aufweisen müssen.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE4111821 | 1991-04-11 | ||
| DE4111821A DE4111821C1 (de) | 1991-04-11 | 1991-04-11 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0508058A1 EP0508058A1 (de) | 1992-10-14 |
| EP0508058B1 true EP0508058B1 (de) | 1995-08-16 |
Family
ID=6429356
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP92102228A Expired - Lifetime EP0508058B1 (de) | 1991-04-11 | 1992-02-11 | Austenitische Nickel-Chrom-Eisen-Legierung |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US5980821A (de) |
| EP (1) | EP0508058B1 (de) |
| JP (1) | JP3066996B2 (de) |
| AT (1) | ATE126548T1 (de) |
| AU (1) | AU653801B2 (de) |
| CA (1) | CA2065464C (de) |
| DE (2) | DE4111821C1 (de) |
| ES (1) | ES2079705T3 (de) |
Families Citing this family (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE69202965T2 (de) * | 1991-12-20 | 1996-03-14 | Inco Alloys Ltd | Gegen hohe Temperatur beständige Ni-Cr-Legierung. |
| DE19524234C1 (de) * | 1995-07-04 | 1997-08-28 | Krupp Vdm Gmbh | Knetbare Nickellegierung |
| RU2131943C1 (ru) * | 1997-03-05 | 1999-06-20 | Открытое акционерное общество "Всероссийский институт легких сплавов" | Жаропрочный сплав на основе никеля |
| DE19753539C2 (de) * | 1997-12-03 | 2000-06-21 | Krupp Vdm Gmbh | Hochwarmfeste, oxidationsbeständige knetbare Nickellegierung |
| US5997809A (en) * | 1998-12-08 | 1999-12-07 | Inco Alloys International, Inc. | Alloys for high temperature service in aggressive environments |
| GB2361933A (en) * | 2000-05-06 | 2001-11-07 | British Nuclear Fuels Plc | Melting crucible made from a nickel-based alloy |
| EP1323492A4 (de) * | 2001-03-23 | 2004-10-06 | Citizen Watch Co Ltd | Hartlötzusatzmetall |
| US6488783B1 (en) * | 2001-03-30 | 2002-12-03 | Babcock & Wilcox Canada, Ltd. | High temperature gaseous oxidation for passivation of austenitic alloys |
| JP3998983B2 (ja) | 2002-01-17 | 2007-10-31 | 松下電器産業株式会社 | ユニキャスト−マルチキャスト変換装置および映像監視システム |
| RU2220220C1 (ru) * | 2002-08-05 | 2003-12-27 | Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Никелевый жаропрочный сплав, изделие, выполненное из него, и способ термообработки сплава и изделия из него |
| DE10302989B4 (de) * | 2003-01-25 | 2005-03-03 | Schmidt + Clemens Gmbh & Co. Kg | Verwendung einer Hitze- und korrosionsbeständigen Nickel-Chrom-Stahllegierung |
| EP1610081A1 (de) * | 2004-06-25 | 2005-12-28 | Haldor Topsoe A/S | Wärmeaustauschprozess und Wärmetauscher |
| ES2671703T3 (es) | 2007-10-05 | 2018-06-08 | Sandvik Intellectual Property Ab | Un acero reforzado por dispersión como material un rodillo para un horno de solera de rodillos |
| US8506883B2 (en) * | 2007-12-12 | 2013-08-13 | Haynes International, Inc. | Weldable oxidation resistant nickel-iron-chromium-aluminum alloy |
| US9551051B2 (en) | 2007-12-12 | 2017-01-24 | Haynes International, Inc. | Weldable oxidation resistant nickel-iron-chromium aluminum alloy |
| DE102012002514B4 (de) | 2011-02-23 | 2014-07-24 | VDM Metals GmbH | Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit |
| DE102012011162B4 (de) | 2012-06-05 | 2014-05-22 | Outokumpu Vdm Gmbh | Nickel-Chrom-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit |
| DE102012011161B4 (de) | 2012-06-05 | 2014-06-18 | Outokumpu Vdm Gmbh | Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit |
| JP5857894B2 (ja) * | 2012-07-05 | 2016-02-10 | 新日鐵住金株式会社 | オーステナイト系耐熱合金 |
| DE102012015828B4 (de) | 2012-08-10 | 2014-09-18 | VDM Metals GmbH | Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit |
| DE102014001330B4 (de) | 2014-02-04 | 2016-05-12 | VDM Metals GmbH | Aushärtende Nickel-Chrom-Kobalt-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
| DE102014001329B4 (de) | 2014-02-04 | 2016-04-28 | VDM Metals GmbH | Verwendung einer aushärtenden Nickel-Chrom-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
| DE102018107248A1 (de) | 2018-03-27 | 2019-10-02 | Vdm Metals International Gmbh | Verwendung einer nickel-chrom-eisen-aluminium-legierung |
| US20220074026A1 (en) * | 2018-12-21 | 2022-03-10 | Sandvik Intellectual Property Ab | New use of a nickel-based alloy |
| DE102020132193A1 (de) * | 2019-12-06 | 2021-06-10 | Vdm Metals International Gmbh | Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit |
| DE102020132219A1 (de) | 2019-12-06 | 2021-06-10 | Vdm Metals International Gmbh | Verwendung einer Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit |
| DE102022105659A1 (de) | 2022-03-10 | 2023-09-14 | Vdm Metals International Gmbh | Verfahren zur Herstellung eines mit Schweißnähten versehenen Bauteils aus einer Nickel-Chrom-Aluminium-Legierung |
| DE102022105658A1 (de) | 2022-03-10 | 2023-09-14 | Vdm Metals International Gmbh | Verfahren zur Herstellung eines Bauteils aus dem Halbzeug einer Nickel-Chrom-Aluminium-Legierung |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB810366A (en) * | 1957-09-25 | 1959-03-11 | Mond Nickel Co Ltd | Improvements relating to heat-resisting alloys |
| US3607243A (en) * | 1970-01-26 | 1971-09-21 | Int Nickel Co | Corrosion resistant nickel-chromium-iron alloy |
| JPS5953663A (ja) * | 1982-09-22 | 1984-03-28 | Kubota Ltd | 耐浸炭性と高温クリ−プ破断強度にすぐれた耐熱鋳鋼 |
| JPS6179742A (ja) * | 1984-09-26 | 1986-04-23 | Mitsubishi Heavy Ind Ltd | 耐熱合金 |
| CA1304608C (en) * | 1986-07-03 | 1992-07-07 | Inco Alloys International, Inc. | High nickel chromium alloy |
| US4784830A (en) * | 1986-07-03 | 1988-11-15 | Inco Alloys International, Inc. | High nickel chromium alloy |
| US5217684A (en) * | 1986-11-28 | 1993-06-08 | Sumitomo Metal Industries, Ltd. | Precipitation-hardening-type Ni-base alloy exhibiting improved corrosion resistance |
| JPH0660369B2 (ja) * | 1988-04-11 | 1994-08-10 | 新日本製鐵株式会社 | 鋳造過程或いはその後の熱間圧延過程で割れを起こし難いCr−Ni系ステンレス鋼 |
-
1991
- 1991-04-11 DE DE4111821A patent/DE4111821C1/de not_active Expired - Fee Related
-
1992
- 1992-02-11 EP EP92102228A patent/EP0508058B1/de not_active Expired - Lifetime
- 1992-02-11 AT AT92102228T patent/ATE126548T1/de active
- 1992-02-11 ES ES92102228T patent/ES2079705T3/es not_active Expired - Lifetime
- 1992-02-11 DE DE59203257T patent/DE59203257D1/de not_active Expired - Lifetime
- 1992-04-02 US US07/862,486 patent/US5980821A/en not_active Expired - Lifetime
- 1992-04-07 CA CA002065464A patent/CA2065464C/en not_active Expired - Lifetime
- 1992-04-08 AU AU14787/92A patent/AU653801B2/en not_active Expired
- 1992-04-13 JP JP4092718A patent/JP3066996B2/ja not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| DE59203257D1 (de) | 1995-09-21 |
| CA2065464A1 (en) | 1992-10-12 |
| JPH07216483A (ja) | 1995-08-15 |
| EP0508058A1 (de) | 1992-10-14 |
| AU653801B2 (en) | 1994-10-13 |
| DE4111821C1 (de) | 1991-11-28 |
| ATE126548T1 (de) | 1995-09-15 |
| AU1478792A (en) | 1992-10-15 |
| CA2065464C (en) | 2002-03-26 |
| US5980821A (en) | 1999-11-09 |
| ES2079705T3 (es) | 1996-01-16 |
| JP3066996B2 (ja) | 2000-07-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0508058B1 (de) | Austenitische Nickel-Chrom-Eisen-Legierung | |
| EP2678458B1 (de) | Nickel-chrom-eisen-aluminium-legierung mit guter verarbeitbarkeit | |
| EP2855723B1 (de) | Nickel-chrom-aluminium-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit | |
| EP2855724B1 (de) | Nickel-chrom-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit | |
| DE102012015828B4 (de) | Verwendung einer Nickel-Chrom-Eisen-Aluminium-Legierung mit guter Verarbeitbarkeit | |
| WO2009124530A1 (de) | Eisen-chrom-aluminium-legierung mit hoher lebensdauer und geringen änderungen im warmwiderstand | |
| DE2517519B2 (de) | Wärmebeständigen rostfreien austenitischen Stahls | |
| EP0752481B1 (de) | Knetbare Nickellegierung | |
| DE4130139C1 (de) | ||
| WO2019185082A1 (de) | Verwendung einer nickel-chrom-eisen-aluminium-legierung | |
| DE2161954A1 (de) | Ferritischer hitzebestaendiger stahl | |
| DE60123016T2 (de) | Legierung zur thermischen behandlung bei hohen temperaturen | |
| DE69125868T2 (de) | Gleitschienenteil benutzend dispersionsverstärkte Eisen-Chrom-Basis-Legierungen | |
| DE2331100B2 (de) | Hitzebeständige, austenitische Eisen-Chrom-Nickel-Legierungen | |
| DE4411228A1 (de) | Hochwarmfeste Nickelbasislegierung und Verwendung derselben | |
| DE3911104C1 (de) | ||
| DE19753539C9 (de) | Hochwarmfeste, oxidationsbeständige knetbare Nickellegierung | |
| EP1047801B1 (de) | Hochwarmfeste, oxidationsbeständige knetbare nickellegierung | |
| DE1292412B (de) | Verfahren zur Waermebehandlung von Titanlegierungen | |
| DE3121782C2 (de) | Verwendung einer austenitischen Chrom-Nickel-Stahllegierung für Wärmetauscherkomponenten | |
| EP0041601B1 (de) | Verwendung einer Eisen-Nickel-Chrom-Legierung für Gegenstände mit hoher Zeitstandfestigkeit, Korrosionsbeständigkeit und grosser Gefügestabilität | |
| EP0690140B1 (de) | Hochtemperatur-Knetlegierung | |
| JPH0310042A (ja) | 耐熱高温高強度モリブデン材料およびその製造方法 | |
| WO2022106145A1 (de) | Wasserstoffbeständiger ferritischer stahl mit laves-phase | |
| DE1087814B (de) | Tantal-Niob-Legierung |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 19920729 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
| 17Q | First examination report despatched |
Effective date: 19941214 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19950816 Ref country code: DK Effective date: 19950816 |
|
| REF | Corresponds to: |
Ref document number: 126548 Country of ref document: AT Date of ref document: 19950915 Kind code of ref document: T |
|
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19950814 |
|
| REF | Corresponds to: |
Ref document number: 59203257 Country of ref document: DE Date of ref document: 19950921 |
|
| ITF | It: translation for a ep patent filed | ||
| ET | Fr: translation filed | ||
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2079705 Country of ref document: ES Kind code of ref document: T3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960229 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110302 Year of fee payment: 20 Ref country code: DE Payment date: 20110218 Year of fee payment: 20 Ref country code: IT Payment date: 20110221 Year of fee payment: 20 Ref country code: AT Payment date: 20110214 Year of fee payment: 20 Ref country code: SE Payment date: 20110214 Year of fee payment: 20 Ref country code: CH Payment date: 20110222 Year of fee payment: 20 Ref country code: NL Payment date: 20110216 Year of fee payment: 20 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20110217 Year of fee payment: 20 Ref country code: BE Payment date: 20110211 Year of fee payment: 20 Ref country code: ES Payment date: 20110222 Year of fee payment: 20 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59203257 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59203257 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20120211 |
|
| BE20 | Be: patent expired |
Owner name: *KRUPP VDM G.M.B.H. Effective date: 20120211 |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20120210 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20120424 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120212 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120210 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20120212 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 126548 Country of ref document: AT Kind code of ref document: T Effective date: 20120211 |


