EP0499897B1 - Verfahren zur Prozesssteuerung in Spaltöfen zur Olefinherstellung - Google Patents

Verfahren zur Prozesssteuerung in Spaltöfen zur Olefinherstellung Download PDF

Info

Publication number
EP0499897B1
EP0499897B1 EP92102007A EP92102007A EP0499897B1 EP 0499897 B1 EP0499897 B1 EP 0499897B1 EP 92102007 A EP92102007 A EP 92102007A EP 92102007 A EP92102007 A EP 92102007A EP 0499897 B1 EP0499897 B1 EP 0499897B1
Authority
EP
European Patent Office
Prior art keywords
stream
sub
zone
steam
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92102007A
Other languages
English (en)
French (fr)
Other versions
EP0499897A1 (de
Inventor
Heinz. Dr.-Ing. Zimmermann
Wolfgang Schwab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to AT92102007T priority Critical patent/ATE98668T1/de
Publication of EP0499897A1 publication Critical patent/EP0499897A1/de
Application granted granted Critical
Publication of EP0499897B1 publication Critical patent/EP0499897B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces

Definitions

  • the invention relates to a method for controlling the transition temperature between the convection and the radiation zone in cracking furnaces for olefin production from different hydrocarbon inserts.
  • the required high temperatures in the cracking zone are usually achieved by passing the feed material through cracked tubes which are arranged in the radiation zone of a burner-heated cracking furnace.
  • the hot flue gases generated during the firing form a large heat reservoir after exiting the radiation zone, which can be used to preheat the use of hydrocarbons and possibly other fluids and for this purpose is passed through a convection zone equipped with heat exchangers.
  • DE-A-15 68 966 teaches what such a regulation can look like. It relates to a control method for the splitting of hydrocarbons, in which the transition temperature between a convection part and a radiation part of a cracking furnace is regulated by either part of the hot flue gases or part of the hydrocarbons to be preheated being circulated around the convection zone.
  • the known method is aimed at influencing the temperature profile within a can which penetrates a convection zone and a subsequent radiation zone.
  • a greater steepness of the temperature profile in the radiation zone is achieved in that the preheating of the gap insert in the convection zone is reduced, so that the transition temperature from the convection zone to the radiation zone is reduced and preheating is initially continued in the radiation zone.
  • An essential aspect of this method is to be seen in the fact that the regulation provided there works in such a way that the predetermined end temperature T E is reached at the outlet end of the can.
  • the cited German published application does not indicate any changes to the procedure to be undertaken in the event of a transition to a completely different gap insert, for example the transition from gasoline fractions to gas oil.
  • transition temperature also called cross-over temperature
  • the present invention is therefore based on the object of developing a method of the type mentioned above in such a way that it is possible to adapt the transition temperature between the convection and radiation zones in the most varied of hydrocarbon applications in a process-technically simple manner and with an improved economy of the process sequence.
  • This object is achieved in that the feed stream is divided into two sub-streams before being introduced into the convection zone, the first sub-stream initially preheated, then mixed with process steam, then mixed with the second, up to this point in time untreated partial stream and the total process stream thus formed is led into the radiation zone after further heating and / or evaporation.
  • One embodiment of the method according to the invention is to overheat the process steam before it is mixed with the first partial stream.
  • This process steam superheating can take place on the one hand in a heat exchanger in the convection zone of the cracking furnace for hot flue gas coming from the radiation zone of the cracking furnace, and on the other hand in any manner outside the cracking furnace.
  • the former embodiment is used above all in the case of liquid hydrocarbon inserts, since only partial evaporation of the first partial stream takes place here, and only when the superheated process steam and the first partial stream are mixed does an almost complete evaporation take place due to the heat released by the superheated process steam onto the hydrocarbons.
  • a further embodiment of the method according to the invention provides the possibility of initially mixing the process steam and the first partial stream and then feeding the gas mixture thus formed to a heat exchanger where it is heated to such an extent that the gas mixture overheats.
  • a further embodiment of the method according to the invention discloses the possibility of preheating the first partial stream in one or more stages before mixing with process steam.
  • the heating of the overall process stream formed after the mixing of the two partial streams can take place in one or more steps.
  • a further embodiment of the method according to the invention consists in preheating the first partial stream and further heating the overall process stream formed after the two partial streams have been mixed by indirect heat exchange with the hot flue gas coming from the radiation zone.
  • the process according to the invention is applicable to hydrocarbon inserts as diverse as ethane, propane, butane, liquid gas, naphtha, kerosene, atmospheric gas oil, hydrogenated atmospheric gas oil and hydrogenated vacuum gas oil.
  • hydrocarbon inserts as diverse as ethane, propane, butane, liquid gas, naphtha, kerosene, atmospheric gas oil, hydrogenated atmospheric gas oil and hydrogenated vacuum gas oil.
  • the method according to the invention now allows a relatively inexpensive adaptation of the splitting process to a wide variety of hydrocarbon uses. This enables an optimized and thus maximum utilization of the hydrocarbon feedstocks with the lowest possible energy consumption, specifically heating gas for operating the burners in the radiation zone and the resulting quantity and temperature of the flue gas.
  • the constructional and operational expenditure compared to the cited prior art can be significantly reduced.
  • the method according to the invention thus reduces the investment and operating costs on the basis of the following improvements: Optimization of the utilization at different Hydrocarbon inserts, minimization of the heating media required and constructional simplification of the convection zone of a cracking furnace for olefin production from different hydrocarbon inserts.
  • Precise control of the transition temperature between the convection and radiation zones also enables the reduction of coke deposits in the heat exchanger through which the entire process gas flow last flowed.
  • the rate of coking of the gas lines essentially depends both on the temperature of the gas mixture to be split and on the cracking severity. This means that the start of the actual fission processes in the last heat exchangers of the convection zone should be avoided. Rapid coking of the gas lines can drastically shorten the life of a cracking furnace.
  • the regulation of the transition temperature now makes it possible to set a temperature which is chosen for each hydrocarbon used in such a way that coking does not yet take place in the convection zone.
  • the avoidance of operational interruptions due to decoking work in the convection zone leads to an improvement in the economy of the cracking furnace.
  • Figure 1 is the basic representation of the method according to the invention. It shows the convection zone of a cracking furnace for the thermal decomposition of different hydrocarbon inserts.
  • the hydrocarbon feed stream is led via line 1 upstream of the convection zone and divided into a first partial stream (line 2) and a second partial stream (line 3) in the desired ratio.
  • the first partial flow is then fed via line 2 to a heat exchanger B, heated against cooling flue gas (represented by the dashed arrows) from the radiation zone of the cracking furnace and discharged via line 2a.
  • the process steam required for diluting the hydrocarbon feed is fed to a heat exchanger C via line 4 and overheated in it against cooling flue gas.
  • the superheated process steam is then drawn off via line 4a, mixed with the heated first partial stream from line 2a and brought together via line 2c with the second, previously untreated partial stream in line 3.
  • the total process stream thus formed is then fed via line 5 to a heat exchanger D, where it is further heated or evaporated against cooling flue gas.
  • a heat exchanger D After bypassing an intermediate heat exchanger E, which will be described below, the total process stream is fed via line 6 to a last heat exchanger F in the convection zone and heated in it against cooling hot flue gas to the desired transition temperature between the convection and radiation zones before being conducted via line 7 is directed into the radiation zone.
  • feed water supplied via line 10 is heated and then passed via line 11 into a high-pressure steam drum, not shown here.
  • This feed water serves as a coolant for the quenching of the cracked gases, for which purpose it is fed to a quench cooler.
  • steam is formed, which is collected in the upper area of the quench cooler and returned to the steam chamber of the high-pressure steam drum. From there it passes via line 12 into the heat exchanger E, where it is overheated against high-temperature flue gas.
  • the superheated steam is drawn off via line 13 and can be used, for example, to operate a turbine for energy recovery.
  • the flue gas has a temperature of 1000 ° C to 1200 ° C at the transition from the radiation to the convection zone, leaves the convection zone shown here at the upper end with a temperature of about 130 ° C and is removed via a chimney, if necessary after cleaning .
  • FIG. 2 shows a further embodiment of the method according to the invention.
  • the hydrocarbon feed is divided into a first partial stream (line 2) and a second partial stream (line 3) in the desired ratio.
  • the first partial stream is fed via line 2 into a heat exchanger B, heated against cooling flue gas and drawn off via line 2a.
  • Process steam required for dilution is introduced via line 4 and mixed with the first, already heated partial flow in line 2a, the gas mixture thus formed is fed via line 2b to a further heat exchanger C and heated in it to such an extent that the process steam component overheats.
  • the gas mixture is then over Line 2c withdrawn and mixed with the second, up to this point in time untreated stream in line 3.
  • the total process stream formed in this way is conducted analogously to FIG. 1 via lines 5, 6 and 7 and heat exchangers D and F into the radiation zone.
  • Points 21 and 22 each indicate a measuring point for flow rate control in the two partial streams in line 2 and line 3.
  • Points 23 to 28 indicate six temperature measuring points.
  • Table 1 shows the range in which the transition temperature, which corresponds to the temperature of the measuring point 28, can be varied. Ethane is chosen as the hydrocarbon feed.
  • Gas oil at a pressure of 5.4 bar and a temperature of 82 ° C. is supplied in liquid form via line 1 and 2 to heat exchanger B. After heating to 357 ° C, half of the gas oil which has already evaporated is drawn off at a pressure of 5.4 bar via line 2a.
  • Heat exchanger C water vapor is supplied via line 4 at a pressure of 5.6 bar and a temperature of 179.degree. After overheating, the water vapor is drawn off at a pressure of 5.4 bar and a temperature of 449 ° C. via line 4a and mixed with the gas oil from line 2a. The mixing results in a complete evaporation of the mixture formed, so that a mixture with a pressure of 5.0 bar and a temperature of 361 ° C.
  • feed water is preheated in heat exchanger A from 110 ° C to 140 ° C and superheated steam in heat exchanger E from 329 ° C to 527 ° C.
  • the hot flue gas has a temperature of 1124 ° C when entering the convection zone and leaves the convection zone after overflowing the seven heat exchangers A to F at a temperature of 122 ° C.
  • Gaseous ethane with a pressure of 3.9 bar and a temperature of 68 ° C. is introduced via line 1 as the hydrocarbon feed. 30% of the feed are fed via line 2 to heat exchanger B, heated to 646 ° C. in it and discharged via line 2a at a pressure of 3.9 bar.
  • Heat exchanger C steam at a pressure of 3.9 bar and a temperature of 175 ° C., is fed in via line 4, overheated to 629 ° C., drawn off via line 4a at constant pressure and mixed with the heated ethane from line 2a.
  • the gas mixture formed is brought together via line 2c with the remaining 70% of the hydrocarbon feed which has hitherto been untreated, and the mixture thus formed is fed via line 5 to heat exchanger D at a pressure of 3.5 bar and a temperature of 347 ° C. It is further heated to 496 ° C., whereupon the gas mixture is fed into the heat exchanger F via line 6 at a pressure of 3.4 bar. Here it heats up to a transition temperature of 649 ° C before the mixture reaches the radiation zone via line 7.
  • feed water is preheated or evaporated in heat exchanger A from 110 ° C to 309 ° C and superheated steam in heat exchanger E from 330 ° C to 504 ° C.
  • the hot flue gas has a temperature of 1182 ° C when entering the convection zone and leaves the convection zone after overflow of the seven heat exchangers A to F at a temperature of 183 ° C.
  • Gaseous ethane with a pressure of 4.0 bar and a temperature of 68 ° C. is introduced via line 1 as the hydrocarbon feed. 60% of the feed are fed via line 2 to heat exchanger B, heated to 643 ° C. in it and discharged via line 2a at a pressure of 3.9 bar. Heat exchanger C, steam at a pressure of 3.9 bar and a temperature of 175 ° C., is fed in via line 4, overheated to 636 ° C., drawn off via line 4a at constant pressure and mixed with the heated ethane from line 2a.
  • the gas mixture formed is brought together via line 2c with the remaining 40% of the hydrocarbon feed which has hitherto been untreated, and the mixture thus formed is fed via line 5 to heat exchanger D at a pressure of 3.5 bar and a temperature of 482 ° C. It is heated further to 581 ° C., whereupon the gas mixture is fed into the heat exchanger F via line 6 at a pressure of 3.5 bar. Here it is heated to a transition temperature of 709 ° C before the mixture reaches the radiation zone via line 7.
  • feed water is preheated or evaporated in heat exchanger A from 110 ° C to 256 ° C and superheated steam in heat exchanger E from 329 ° C to 527 ° C.
  • the hot flue gas has a temperature of 1166 ° C when entering the convection zone and leaves the convection zone after overflow of the seven heat exchangers A to F at a temperature of 162 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Regelung der Übergangstemperatur zwischen der Konvektions- und der Strahlungszone in Spaltöfen zur Olefinherstellung aus unterschiedlichen Kohlenwasserstoffeinsätzen.
  • Bei der thermischen Spaltung von Kohlenwasserstoffen zur Olefinerzeugung ist es erforderlich, die Kohlenwasserstoffe in der Spaltzone, sprich Strahlungszone, auf hohe Temperaturen in der Größenordnung zwischen 550°C und 900°C zu erhitzen, um die gewünschten Umwandlungen beim kurzzeitigen Durchströmen der Kohlenwasserstoffe durch diese Zone zu erzielen. Um dies zu erreichen, müssen die Kohlenwasserstoffe bereits vor Eintritt in die Strahlungszone auf relativ hohe Temperaturen vorgewärmt werden. Da die Spaltung üblicherweise in Gegenwart von Wasserdampf als inertem Verdünnungsmittel durchgeführt wird, ist es darüber hinaus erforderlich, auch den Wasserdampf auf die Eintrittstemperatur der Strahlungszone vorzuwärmen.
  • Die erforderlichen hohen Temperaturen in der Spaltzone werden üblicherweise dadurch erreicht, daß das Einsatzmaterial durch Spaltrohre geführt wird, die in der Strahlungszone eines brennerbeheizten Spaltofens angeordnet sind. Die bei der Befeuerung entstehenden heißen Rauchgase bilden nach ihrem Austritt aus der Strahlungszone noch ein großes Wärmereservoir, das zur Vorwärmung des Kohlenwasserstoffeinsatzes und ggf. weiterer Fluide verwertbar ist und zu diesem Zweck durch eine mit Wärmetauschern bestückte Konvektionszone geleitet wird.
  • Unter der idealisierten Voraussetzung, daß ein genau definierter, unveränderlicher Kohlenwasserstoffeinsatz bei stets unveränderten Betriebsverhältnissen verarbeitet wird, ließe sich theoretisch das Design der Konvektions- als auch der Strahlungszone hinsichtlich Anzahl der Wärmetauscher, Länge der Rohrleitungen, Verweilzeiten etc. sehr genau bestimmen. Selbst bei einem zeitlich und von seiner Zusammensetzung nahezu konstanten Einsatz zeigt die Praxis jedoch, daß aufgrund der komplexen und noch nicht völlig durchforschten gegenseitigen Abhängigkeit der einzelnen Betriebsparameter Regeleingriffe während des Betriebes unumgänglich sind. Die Betriebspraxis zeigt außerdem, daß in fast allen Fällen die Produktzusammensetzung der Kohlenwasserstoffeinsätze in größeren Grenzen schwankt, wodurch eine entsprechende Flexibilität in den Spaltbedingungen, d.h. speziell des Temperaturprofils, wünschenswert erscheint.
  • Die DE-A- 15 68 966 vermittelt die Lehre, wie eine solche Regelung aussehen kann. Sie betrifft ein Regelungsverfahren für die Spaltung von Kohlenwasserstoffen, bei dem die Übergangstemperatur zwischen einem Konvektionsteil und einem Strahlungsteil eines Spaltofens geregelt wird, indem entweder ein Teil der heißen Rauchgase oder ein Teil der vorzuwärmenden Kohlenwasserstoffe um die Konvektionszone herumgeführt wird.
  • Das bekannte Verfahren ist darauf ausgerichtet, das Temperaturprofil innerhalb eines eine Konvektionszone und eine anschließende Strahlungszone durchsetzenden Spaltrohres zu beeinflussen. Eine größere Steilheit des Temperaturprofils in der Strahlungszone wird dabei dadurch erreicht, daß die Vorwärmung des Spalteinsatzes in der Konvektionszone reduziert wird, so daß die Übergangstemperatur von der Konvektionszone in die Strahlungszone verringert und in der Strahlungszone zunächst noch die Vorwärmung fortgesetzt wird. Ein wesentlicher Gesichtspunkt dieses Verfahrens ist darin zu sehen, daß die dort vorgesehene Regelung so arbeitet, daß am Austrittsende des Spaltrohres jeweils die fest vorgegebene Endtemperatur TE erreicht wird. Die zitierte deutsche Offenlegungsschrift gibt jedoch keine Hinweise auf eine vorzunehmende Änderung der Verfahrensführung bei einem Übergang zu einem gänzlich unterschiedlichen Spalteinsatz, etwa dem Übergang von Benzinfraktionen zu Gasöl.
  • Da ein stetig wachsender Bedarf an Olefinen besteht, der zu einer Verknappung und/oder Preissteigerung bestimmter Einsätze führen kann, sind seit einiger Zeit Bestrebungen im Gange, Verfahren zu entwickeln, die die optimale Verwertung verschiedener Kohlenwasserstoffeinsätze erlauben.
  • Ein Wechsel des Kohlenwasserstoffeinsatzes macht jedoch in den meisten Fällen Änderungen im Verfahrensablauf notwendig. Ferner sind u.a. auch Änderungen in der Dampfverdünnung erforderlich. Derartige Änderungen können starke Schwankungen der Durchflußmenge durch die in der Konvektionszone angeordneten Wärmetauscher bedingen, was betriebstechnische Probleme verursachen kann.
  • Aus der deutschen Patentschrift De-A- 28 54 061 ist ein Verfahren zum Vorwärmen von Kohlenwasserstoffen vor deren thermischer Spaltung in der Strahlungszone eines brennerbeheizten Spaltofens bekannt, wobei die Kohlenwasserstoffe und andere Fluide durch in der Konvektionszone des Spaltofens angeordnete Wärmetauscher gegen Rauchgas erhitzt werden. Die Auslegung des Spaltofens für die Spaltung unterschiedlicher Kohlenwasserstoffeinsätze resultiert aus der Möglichkeit, die Kohlenwasserstoffe und andere Fluide durch in eine Reihe von Bündeln unterteilte Wärmetauscher zu führen, wobei die Durchflußreihenfolge und/oder die durch die einzelnen Bündel fließenden Fluide mittels einer Schalteinrichtung in Abhängigkeit vom Spalteinsatz verändert werden können. Dies wird dadurch ermöglicht, daß die Wärmetauscherbündel mindestens teilweise durch mit Umschaltorganen versehenen Leitungen miteinander verbunden sind.
  • Um eine möglichst optimale Ausbeute aus dem jeweiligen Kohlenwasserstoffeinsatz bei möglichst geringem Energiebedarf realisieren zu können, ist die Regelung der Übergangstemperatur, auch Cross-Over-Temperatur genannt, zwischen Konvektions- und Strahlungszone des Spalt-, Pyrolyse- bzw. Crackofens notwendig.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der obengenannten Art so weiterzubilden, daß eine Anpassung der Übergangstemperatur zwischen Konvektions- und Strahlungszone bei unterschiedlichsten Kohlenwasserstoffeinsätzen auf verfahrenstechnisch einfache Weise bei einer verbesserten Wirtschaftlichkeit des Prozeßablaufes möglich ist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Einsatzstrom vor der Einleitung in die Konvektionszone in zwei Teilströme geteilt, der erste Teilstrom zunächst vorgewärmt, anschließend mit Prozeßdampf vermischt, danach mit dem zweiten, bis zu diesem Zeitpunkt unbehandelten Teilstrom vermischt und der so gebildete Gesamtprozeßstrom nach weiterer Erwärmung und/oder Verdampfung in die Strahlungszone geführt wird.
  • Eine Ausgestaltung des erfindungsgemäßen Verfahrens besteht darin den Prozeßdampf vor der Vermischung mit dem ersten Teilstrom zu überhitzen. Diese Prozeßdampfüberhitzung kann zum einen in einem Wärmetauscher der Konvektionszone des Spaltofens gegen heißes, aus der Strahlungszone des Spaltofens kommendes Rauchgas, und zum anderen auf beliebige Art und Weise außerhalb des Spaltofens geschehen. Erstere Ausgestaltung findet vor allem bei flüssigen Kohlenwasserstoffeinsätzen Verwendung, da hier zunächst nur eine teilweise Verdampfung des ersten Teilstromes stattfindet und erst beim Vermischen von überhitztem Prozeßdampf und erstem Teilstrom eine nahezu vollständige Verdampfung aufgrund der Wärmeabgabe des überhitzten Prozeßdampfes auf die Kohlenwasserstoffe erfolgt.
  • Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens sieht die Möglichkeit vor, Prozeßdampf und ersten Teilstrom zunächst zu vermischen und das so gebildete Gasgemisch anschließend einem Wärmetauscher zuzuführen wo es soweit erwärmt wird, daß es zu einer Überhitzung des Gasgemisches kommt.
  • Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens offenbart die Möglichkeit, die Vorwärmung des ersten Teilstromes vor dem Vermischen mit Prozeßdampf ein- oder mehrstufig durchzuführen.
  • Ebenso kann in einer weiteren Ausgestaltung der Erfindung die Erwärmung des nach dem Vermischen beider Teilströme gebildeten Gesamtprozeßstromes in einem oder mehreren Schritten erfolgen.
  • Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens besteht darin, die Vorwärmung des ersten Teilstromes sowie die weitere Erwärmung des nach dem Vermischen beider Teilströme gebildeten Gesamtprozeßstromes durch indirekten Wärmetausch mit dem aus der Strahlungszone kommenden heißen Rauchgas durchzuführen.
  • Das erfindungsgemäße Verfahren ist auf so unterschiedliche Kohlenwasserstoffeinsätze wie Ethan, Propan, Butan, Flüssiggas, Naphtha, Kerosin, atmosphärisches Gasöl, hydriertes atmosphärisches Gasöl und hydriertes Vakuum-Gasöl anwendbar. Hierzu muß angemerkt werden, daß neben den genannten nahezu alle weiteren bekannten Kohlenwasserstoffeinsätze Verwendung finden können.
  • Das erfindungsgemäße Verfahren erlaubt nun eine verfahrenstechnisch verhältnismäßig unaufwendige Anpassung des Spaltprozesses an unterschiedlichste Kohlenwasserstoffeinsätze. Dadurch kann eine optimierte und somit maximale Verwertung der Kohlenwasserstoffeinsätze bei geringstmöglichem Energiebedarf, hierbei ist speziell Heizgas zum Betreiben der Brenner in der Strahlungszone und die daraus resultierende Menge und Temperatur des Rauchgases gemeint, erzielt werden. Der konstruktive und betriebstechnische Aufwand gegenüber dem zitierten Stand der Technik kann dadurch erheblich vermindert werden.
  • Das erfindungsgemäße Verfahren reduziert somit die Investitions- und Betriebskosten aufgrund folgender Verbesserungen: Optimierung der Verwertung bei verschiedenen Kohlenwasserstoffeinsätzen, Minimierung der benötigten Heizmedien sowie konstruktive Vereinfachung der Konvektionszone eines Spaltofens zur Olefinherstellung aus unterschiedlichen Kohlenwasserstoffeinsätzen.
  • Eine exakte Regelung der Übergangstemperatur zwischen Konvektions- und Strahlungszone ermöglicht ferner die Reduzierung von Koksablagerungen im zuletzt vom Gesamtprozeßgasstrom durchströmten Wärmetauscher. Die Verkokungsgeschwindigkeit der Gasleitungen hängt im wesentlichen sowohl von der Temperatur des zu spaltenden Gasgemisches als auch von der Crackschärfe ab. Dies bedeutet, daß der Beginn der eigentlichen Spaltungsprozesse in den letzten Wärmetauschern der Konvektionszone vermieden werden sollte. Eine schnelle Verkokung der Gasleitungen kann die Laufzeiten eines Spaltofens drastisch verkürzen.
  • Die Regelung der Übergangstemperatur ermöglicht nun, eine Temperatur einzustellen, die für jeden verwendeten Kohlenwasserstoffeinsatz so gewählt wird, daß gerade noch keine Verkokung in der Konvektionszone erfolgt. Die Vermeidung von Betriebsunterbrechungen aufgrund von Entkokungsarbeiten in der Konvektionszone führt zu einer Verbesserung der Wirtschaftlichkeit des Spaltofens.
  • Die Erfindung sei nunmehr anhand zweier schematisch dargestellter Ausführungsbeispiele näher erläutert.
  • Dabei zeigen:
  • Figur 1:
    Ein erfindungsgemäßes Verfahren, wobei der Prozeßdampf zunächst überhitzt und anschließend mit dem ersten Teilstrom vermischt wird.
    Figur 2:
    Ein erfindungsgemäßes Verfahren, wobei der Prozeßdampf und erste Teilstrom zunächst vermischt und anschließend soweit erwärmt werden, daß es zu einer Überhitzung der Prozeßdampfkomponente des gebildeten Gasgemisches kommt.
  • Figur 1 ist die prinzipielle Darstellung des erfindungsgemäßen Verfahrens. Sie zeigt die Konvektionszone eines Spaltofens zur thermischen Zerlegung von unterschiedlichen Kohlenwasserstoffeinsätzen.
  • Über Leitung 1 wird der Kohlenwasserstoffeinsatzstrom vor die Konvektionszone geführt und im gewünschten Verhältnis in einen ersten Teilstrom (Leitung 2) und einen zweiten Teilstrom (Leitung 3) geteilt. Der erste Teilstrom wird sodann über Leitung 2 einem Wärmetauscher B zugeführt, gegen abkühlendes Rauchgas (dargestellt durch die gestrichelten Pfeile) aus der Strahlungszone des Spaltofens erwärmt und über Leitung 2a abgeführt. Der zur Verdünnung des Kohlenwasserstoffeinsatzes benötigte Prozeßdampf wird einem Wärmetauscher C über Leitung 4 zugeführt und in ihm gegen abkühlendes Rauchgas überhitzt. Der überhitzte Prozeßdampf wird anschließend über Leitung 4a abgezogen, mit dem erwärmten ersten Teilstrom aus Leitung 2a vermischt und über Leitung 2c mit dem zweiten, bis dahin unbehandelten Teilstrom in Leitung 3 zusammengeführt. Der so gebildete Gesamtprozeßstrom wird anschließend über Leitung 5 einem Wärmetauscher D zugeführt, wo er gegen abkühlendes Rauchgas weiter erwärmt bzw. verdampft wird. Nach Umgehung eines dazwischen angeordneten Wärmetauschers E, der weiter unten beschrieben wird, wird der Gesamtprozeßstrom über Leitung 6 einem letzten Wärmetauscher F in der Konvektionszone zugeführt und in ihm gegen abkühlendes heißes Rauchgas auf die gewünschte Übergangstemperatur zwischen Konvektions- und Strahlungszone erwärmt, bevor er über Leitung 7 in die Strahlungszone geleitet wird.
  • Im Wärmetauscher A wird über Leitung 10 zugeführtes Speisewasser erhitzt und danach über Leitung 11 in eine hier nicht dargestellte Hochdruck-Dampftrommel geleitet. Dieses Speisewasser dient als Kühlmittel für die Quenchung der Spaltgase, wozu es einem Quenchkühler zugeführt wird. Beim Wärmetausch mit den heißen Spaltgasen bildet sich Dampf, der im oberen Bereich des Quenchkühlers gesammelt und in den Dampfraum der Hochdruck-Dampftrommel zurückgeführt wird. Von dort gelangt er über Leitung 12 in den Wärmetauscher E, wo er gegen Rauchgas hoher Temperatur überhitzt wird. Der überhitzte Dampf wird über Leitung 13 abgezogen und kann beispielsweise zum Betreiben einer Turbine zur Energierückgewinnung verwendet werden.
  • Das Rauchgas hat am Übergang von der Strahlungs- zur Konvektionszone eine Temperatur von 1000°C bis 1200°C, verläßt die hier dargestellte Konvektionszone am oberen Ende mit einer Temperatur von etwa 130°C und wird, gegebenenfalls nach einer Reinigung, über einen Schornstein abgeführt.
  • Figur 2 zeigt eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens. Wie bereits bei Figur 1 beschrieben, wird der Kohlenwasserstoffeinsatz im gewünschten Verhältnis in einen ersten Teilstrom (Leitung 2) und einen zweiten Teilstrom (Leitung 3) geteilt. Der erste Teilstrom wird auch hier über Leitung 2 in einen Wärmetauscher B geführt, gegen abkühlendes Rauchgas erwärmt und über Leitung 2a abgezogen. Über Leitung 4 wird zur Verdünnung benötigter Prozeßdampf herangeführt und mit dem ersten, bereits erwärmten Teilstrom in Leitung 2a vermischt, das so gebildete Gasgemisch über Leitung 2b einem weiteren Wärmetauscher C zugeführt und in ihm so weit erwärmt, daß es zu einer Überhitzung der Prozeßdampfkomponente kommt. Das Gasgemisch wird anschließend über Leitung 2c abgezogen und mit dem zweiten, bis zu diesem Zeitpunkt unbehandelten Teilstrom in Leitung 3 vermischt. Der so gebildete Gesamtprozeßstrom wird analog zur Figur 1 über die Leitungen 5, 6 und 7 sowie die Wärmetauscher D und F in die Strahlungszone geführt.
  • Die Punkte 21 und 22 kennzeichnen je einen Meßpunkt zur Durchflußmengenkontrolle in den beiden Teilströmen in Leitung 2 und Leitung 3. Die Punkte 23 bis 28 bezeichnen sechs Temperaturmeßpunkte.
  • Tabelle 1 zeigt anhand von sechs unterschiedlich gewählten Verhältnissen der beiden Teilströme, in welchem Bereich sich die Übergangstemperatur, die der Temperatur des Meßpunktes 28 entspricht, variieren läßt. Als Kohlenwasserstoffeinsatz ist Ethan gewählt.
    Figure imgb0001
  • Die günstige Wirkungsweise des erfindungsgemäßen Verfahrens sei nachfolgend anhand dreier Beispiele aufgezeigt. Als Kohlenwasserstoffeinsatz ist im ersten Beispiel atmosphärisches Gasöl mit einem Teilstromverhältnis von 100/0 und in den Beispielen 2 und 3 Ethan mit einem Teilstromverhältnis von 30/70 bzw. 60/40 gewählt. Die Beschreibung der drei Beispiele erfolgt anhand von Figur 1.
  • Beispiel 1:
  • Über Leitung 1 und 2 wird Gasöl mit einem Druck von 5,4 bar und einer Temperatur von 82°C in flüssiger Form Wärmetauscher B zugeführt. Nach Erhitzen auf 357°C wird das bereits zur Hälfte verdampfte Gasöl bei einem Druck von 5,4 bar über Leitung 2a abgezogen. Über Leitung 4 wird Wärmetauscher C Wasserdampf bei einem Druck von 5,6 bar und einer Temperatur von 179°C zugeführt. Nach erfolgter Überhitzung wird der Wasserdampf mit einem Druck von 5,4 bar und einer Temperatur von 449°C über Leitung 4a abgezogen und mit dem Gasöl aus Leitung 2a vermischt. Die Vermischung hat ein völliges Verdampfen des gebildeten Gemisches zur Folge, so daß über Leitung 2c und 5 Wärmetauscher D ein Gemisch mit einem Druck von 5,0 bar und einer Temperatur von 361°C zugeführt wird. Das weitererwärmte Gemisch verläßt Wärmetauscher D mit einem Druck von 4,9 bar und einer Temperatur von 449°C und wird über Leitung 6 anschließend dem letzten Wärmetauscher F der Konvektionszone zugeführt. Mit einem Druck von 4,8 bar und einer Temperatur von 540°C, die der Übergangstemperatur zwischen der Konvektionszone und der Strahlungszone entspricht, wird es über Leitung 7 dem Wärmetauscher F entzogen und in die Strahlungszone geführt. Weiterhin wird in Wärmetauscher A Speisewasser von 110°C auf 140°C vorgewärmt und im Wärmetauscher E Hochdruckdampf von 329°C auf 527°C überhitzt. Das heiße Rauchgas hat beim Eintritt in die Konvektionszone eine Temperatur von 1124°C und verläßt die Konvektionszone nach Überstömen der sieben Wärmetauscher A bis F mit einer Temperatur von 122°C.
  • Beispiel 2:
  • Über Leitung 1 wird als Kohlenwasserstoffeinsatz gasförmiges Ethan mit einem Druck von 3,9 bar und einer Temperatur von 68°C herangeführt. 30% des Einsatzes werden über Leitung 2 Wärmetauscher B zugeführt, in ihm auf 646°C erhitzt und über Leitung 2a mit einem Druck von 3,9 bar abgeführt. Über Leitung 4 wird Wärmetauscher C Wasserdampf mit einem Druck von 3,9 bar und einer Temperatur von 175°C zugeführt, auf 629°C überhitzt, bei konstantem Druck über Leitung 4a abgezogen und mit dem erwärmten Ethan aus Leitung 2a vermischt. Das gebildete Gasgemisch wird über Leitung 2c mit den restlichen 70% des, bis zu diesem Zeitpunkt unbehandelten Kohlenwasserstoffeinsatzes zusammengeführt und das so gebildete Gemisch mit einem Druck von 3,5 bar und einer Temperatur von 347°C über Leitung 5 Wärmetauscher D zugeführt. In ihm erfolgt eine weitere Erwärmung auf 496°C, woraufhin das Gasgemisch mit einem Druck von 3,4 bar über Leitung 6 in den Wärmetauscher F geführt wird. Hier erfolgt eine Erwärmung auf eine Übergangstemperatur von 649°C, bevor das Gemisch über Leitung 7 in die Strahlungszone gelangt. Weiterhin wird im Wärmetauscher A Speisewasser von 110°C auf 309°C vorgewärmt bzw. verdampft und im Wärmetauscher E Hochdruckdampf von 330°C auf 504°C überhitzt. Das heiße Rauchgas hat beim Eintritt in die Konvektionszone eine Temperatur von 1182°C und verläßt die Konvektionszone nach Überströmen der sieben Wärmetauscher A bis F mit einer Temperatur von 183°C.
  • Beispiel 3:
  • Über Leitung 1 wird als Kohlenwasserstoffeinsatz gasförmiges Ethan mit einem Druck von 4,0 bar und einer Temperatur von 68°C herangeführt. 60% des Einsatzes werden über Leitung 2 Wärmetauscher B zugeführt, in ihm auf 643°C erhitzt und über Leitung 2a mit einem Druck von 3,9 bar abgeführt. Über Leitung 4 wird Wärmetauscher C Wasserdampf mit einem Druck von 3,9 bar und einer Temperatur von 175°C zugeführt, auf 636°C überhitzt, bei konstantem Druck über Leitung 4a abgezogen und mit dem erwärmten Ethan aus Leitung 2a vermischt. Das gebildete Gasgemisch wird über Leitung 2c mit den restlichen 40% des, bis zu diesem Zeitpunkt unbehandelten Kohlenwasserstoffeinsatzes zusammengeführt und das so gebildete Gemisch mit einem Druck von 3,5 bar und einer Temperatur von 482°C über Leitung 5 Wärmetauscher D zugeführt. In ihm erfolgt eine weitere Erwärmung auf 581°C, worauf hin das Gasgemisch mit einem Druck von 3,5 bar über Leitung 6 in den Wärmetauscher F geführt wird. Hier erfolgt eine Erwärmung auf eine Übergangstemperatur von 709°C, bevor das Gemisch über Leitung 7 in die Strahlungszone gelangt. Weiterhin wird im Wärmetauscher A Speisewasser von 110°C auf 256°C vorgewärmt bzw. verdampft und im Wärmetauscher E Hochdruckdampf von 329°C auf 527°C überhitzt. Das heiße Rauchgas hat beim Eintritt in die Konvektionszone eine Temperatur von 1166°C und verläßt die Konvektionszone nach Überströmen der sieben Wärmetauscher A bis F mit einer Temperatur von 162°C.

Claims (9)

  1. Verfahren zur Regelung der Übergangstemperatur zwischen der Konvektions- und der Strahlungszone in Spaltöfen zur Olefinherstellung aus unterschiedlichen Kohlenwasserstoffeinsätzen, dadurch gekennzeichnet, daß der Einsatzstrom vor der Einleitung in die Konvektionszone in zwei Teilströme geteilt, der erste Teilstrom zunächst vorgewärmt, anschließend mit Prozeßdampf vermischt, danach mit dem zweiten, bis zu diesem Zeitpunkt unbehandelten Teilstrom vermischt und der so gebildete Gesamtprozeßstrom nach weiterer Erwärmung und/oder Verdampfung in die Strahlungszone geführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Prozeßdampf überhitzt und anschließend mit dem ersten Teilstrom vermischt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Prozeßdampf in einem Wärmetauscher der Konvektionszone des Spaltofens gegen heißes, aus der Strahlungszone des Spaltofens kommendes Rauchgas überhitzt wird.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß bereits außerhalb des Spaltofens überhitzter Prozeßdampf zugeführt wird.
  5. Verfahren nch Anspruch 1, dadurch gekennzeichnet, daß der erste Teilstrom und der Prozeßdampf zunächst vermischt und anschließend soweit erwärmt werden, daß es zu einer Überhitzung des gebildeten Gasgemisches kommt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Vorwärmung des ersten Teilstromes vor dem Vermischen mit Prozeßdampf ein- oder mehrstufig erfolgen kann.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die weitere Erwärmung des nach dem Vermischen beider Teilströme gebildeten Gesamtprozeßstromes ein- oder mehrstufig erfolgen kann.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Vorwärmung des ersten Teilstroms sowie die weitere Erwärmung des nach dem Vermischen beider Teilströme gebildeten Gesamtprozeßstromes durch indirekten Wärmetausch mit dem aus der Strahlungszone kommenden heißen Rauchgas erfolgt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß als Kohlenwasserstoffeinsätze Ethan, Propan, Butan, Flüssiggas, Naphtha, Kerosin, atmosphärisches Gasöl, hydriertes atmosphärisches Gasöl und hydriertes Vakuum-Gasöl Verwendung finden können.
EP92102007A 1991-02-19 1992-02-06 Verfahren zur Prozesssteuerung in Spaltöfen zur Olefinherstellung Expired - Lifetime EP0499897B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT92102007T ATE98668T1 (de) 1991-02-19 1992-02-06 Verfahren zur prozesssteuerung in spaltoefen zur olefinherstellung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4105095A DE4105095A1 (de) 1991-02-19 1991-02-19 Verfahren zur prozesssteuerung in spaltoefen zur olefinherstellung
DE4105095 1991-02-19

Publications (2)

Publication Number Publication Date
EP0499897A1 EP0499897A1 (de) 1992-08-26
EP0499897B1 true EP0499897B1 (de) 1993-12-15

Family

ID=6425372

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92102007A Expired - Lifetime EP0499897B1 (de) 1991-02-19 1992-02-06 Verfahren zur Prozesssteuerung in Spaltöfen zur Olefinherstellung

Country Status (5)

Country Link
EP (1) EP0499897B1 (de)
JP (1) JPH06116568A (de)
AT (1) ATE98668T1 (de)
DE (2) DE4105095A1 (de)
MX (1) MX9200527A (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT398428B (de) * 1993-01-27 1994-12-27 Oemv Ag Vorrichtung zum thermischen spalten eines gemisches mit flüssigen und gasförmigen kohlenwasserstoffen
WO2005095548A1 (en) 2004-03-22 2005-10-13 Exxonmobil Chemical Patents Inc. Process for steam cracking heavy hydrocarbon feedstocks
CN103025930B (zh) 2010-07-02 2014-11-12 宝洁公司 递送活性剂的方法
CA2803629C (en) 2010-07-02 2015-04-28 The Procter & Gamble Company Filaments comprising an active agent nonwoven webs and methods for making same
WO2012003360A2 (en) 2010-07-02 2012-01-05 The Procter & Gamble Company Detergent product and method for making same
DE102012008038A1 (de) * 2012-04-17 2013-10-17 Linde Ag Konvektionszone eines Spaltofens
MX2021013141A (es) 2019-06-28 2021-12-10 Procter & Gamble Articulos fibrosos solidos disolubles que contienen surfactantes anionicos.
CN115867357A (zh) 2020-07-31 2023-03-28 宝洁公司 用于毛发护理的含有球粒的水溶性纤维小袋

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1568966A1 (de) * 1966-10-12 1970-07-16 Linde Ag Verfahren und Vorrichtung zur Prozesssteuerung in Spaltoefen fuer die thermische Spaltung von Kohlenwasserstoffen
DE2854061A1 (de) * 1978-12-14 1980-07-03 Linde Ag Verfahren zum vorwaermen von kohlenwasserstoffen vor deren thermischer spaltung
US4479869A (en) * 1983-12-14 1984-10-30 The M. W. Kellogg Company Flexible feed pyrolysis process

Also Published As

Publication number Publication date
EP0499897A1 (de) 1992-08-26
MX9200527A (es) 1992-08-01
DE4105095A1 (de) 1992-08-20
ATE98668T1 (de) 1994-01-15
DE59200031D1 (de) 1994-01-27
JPH06116568A (ja) 1994-04-26

Similar Documents

Publication Publication Date Title
EP0698075B1 (de) Verfahren und vorrichtung zum dampfcracken einer leichten und einer schweren kohlenwasserstoffbeschickung
DE2854061A1 (de) Verfahren zum vorwaermen von kohlenwasserstoffen vor deren thermischer spaltung
DE69008325T2 (de) Verfahren und Apparat zur pyrolitischen Krackung von Kohlenwasserstoffen.
DE1568469C3 (de) Verfahren zum thermischen Wasserdampf-Cracken von Kohlenwasserstoffen
DE68905333T2 (de) Verhinderung von koksablagerung bei der verdampfung von schweren kohlenwasserstoffen.
US5580443A (en) Process for cracking low-quality feed stock and system used for said process
DE1643074A1 (de) Verfahren zum Umwandeln von Kohlenwasserstoffen
DE1551535A1 (de) Heizvorrichtung und Verfahren zum Erhitzen von stroemenden Medien
EP0499897B1 (de) Verfahren zur Prozesssteuerung in Spaltöfen zur Olefinherstellung
DE2617772A1 (de) Vorrichtung zum abkuehlen eines spaltgasstromes
EP2653524B1 (de) Konvektionszone eines Spaltofens
DE2629082A1 (de) Verfahren und anlage zur waermebehandlung von feingut
DE4000675C9 (de) Verfahren und Vorrichtung zum Dampfcracken in einer durch Konvektion beheizten Reaktionszone
DE4000675C2 (de) Verfahren und Vorrichtung zum Dampfcracken in einer durch Konvektion beheizten Reaktionszone
DE60221476T2 (de) Pyrolyseofen mit neuartiger Wärmezufuhr und Verfahren zum Cracken bei hohen Temperaturen mit demselben
DE2203420B2 (de) Verfahren zum Erhitzen eines kohlenmonoxidhaltigen Gases und insbesondere zur Durchführung dieses Verfahrens geeignete Vorrichtung
DE2209302A1 (de) Verfahren zum Dampfkracken von Kohlenwasserstoffen
DE3527663A1 (de) Verfahren und vorrichtung zum thermischen cracken von kohlenwasserstoffen
DE4400430A1 (de) Verfahren zum thermokatalytischen Spalten von höhersiedenden Kohlenwasserstoffen und Spaltofen
DE1551536A1 (de) Waermeaustauscher und Verfahren zum Kuehlen von Medien
DE1922665A1 (de) Verfahren zum Umwandeln von Kohlenwasserstoffen in Olefine
EP0656928B1 (de) Verfahren zur spaltung von kohlenwasserstoff-einsätzen und unhydrierten c4-fraktionen
EP4305129B1 (de) Verfahren und anlage zum steamcracken
DE1543156A1 (de) Verfahren zur Erzeugung von AEthylen
DE1568113A1 (de) Verfahren zur Erzeugung von Olefinen,insbesondere AEthylen,durch thermische Spaltung von Kohlenwasserstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19930413

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 98668

Country of ref document: AT

Date of ref document: 19940115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931217

REF Corresponds to:

Ref document number: 59200031

Country of ref document: DE

Date of ref document: 19940127

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030205

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030210

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040206

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041029

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060202

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060205

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060213

Year of fee payment: 15

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20070416

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070901

BERE Be: lapsed

Owner name: *LINDE A.G.

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228