EP0490289B1 - Electric heater particularly radiant heater - Google Patents

Electric heater particularly radiant heater Download PDF

Info

Publication number
EP0490289B1
EP0490289B1 EP91120964A EP91120964A EP0490289B1 EP 0490289 B1 EP0490289 B1 EP 0490289B1 EP 91120964 A EP91120964 A EP 91120964A EP 91120964 A EP91120964 A EP 91120964A EP 0490289 B1 EP0490289 B1 EP 0490289B1
Authority
EP
European Patent Office
Prior art keywords
heater
heater according
boundary insulation
boundary
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91120964A
Other languages
German (de)
French (fr)
Other versions
EP0490289A1 (en
Inventor
Eugen Wilde
Erich Wagner
Leonhard Doerner
Robert Kicherer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Gerate Blanc und Fischer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6420060&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0490289(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by EGO Elektro Gerate Blanc und Fischer GmbH filed Critical EGO Elektro Gerate Blanc und Fischer GmbH
Publication of EP0490289A1 publication Critical patent/EP0490289A1/en
Application granted granted Critical
Publication of EP0490289B1 publication Critical patent/EP0490289B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/746Protection, e.g. overheat cutoff, hot plate indicator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means

Definitions

  • the invention relates to an electric radiator, in particular a radiant heater, with thermal lateral boundary insulation.
  • the unpublished EP 0 442 275 A2 (corresponding to USA patent application 650 489 of February 5, 1991) discloses a radiant heater in the outer edge of which a sensor coil of a pot detection system is inserted into a groove that is open to the outside.
  • the object of the invention is to provide an electric radiator, the lateral limitation is easy to manufacture with good strength and thermal insulation.
  • An induction coil running around the radiant heater is embedded in the edge. This can be done, for example, inside a U-shaped edge cross section, which is then filled with other insulating material behind it, or the coil can also be pressed in. It is thus possible to insulate this coil against the main heat influence, but close to the glass ceramic plate, with simultaneous electrical insulation.
  • Their supply lines and the other heating element supply lines can also be led out in the region of cutouts of the edge, which can be pressed directly into the molded body.
  • a connecting block can also extend directly into the area of an edge cutout. The fixing can take place by snap-in or bending-in connection as well as by clawing out a punched-out tab of a carrier shell.
  • the lateral boundary insulation that is to say the insulation of the edge region of the radiator, which is usually ring-shaped, can be divided into several layers which are staggered according to the desired properties.
  • the mechanically more stressed sides for example the inside facing the radiant heating chamber, could consist of a mechanically stronger layer, and a somewhat firmer layer could also be provided on the outer circumference, so that the ring can be handled and assembled easily.
  • a mechanically less strong, but thermally well insulating layer could be attached inside.
  • the individual layers could also have a reflective coating or have interposed reflective foils.
  • the coating can be metallic and / or by other reflection means happen, for example metal oxides, which have a reflective effect in the mainly existing wavelength range.
  • the edge could, for example, be a vermiculite molded body with a U-shaped cross section, which is closed on the upper side facing a glass ceramic plate and rests with its two legs on the rest of the insulation of the radiant heater.
  • the interior can be an air space or can be lined with a well-insulating bulk material or the like. It is also possible to manufacture from pipe sections of sandwich-like design.
  • a horizontal layer formation can be provided if the main concern is to mechanically form the layer lying towards the radiation side.
  • the rest of the insulation can be made largely flat and thus relatively inexpensive and with good thermal insulation properties.
  • the arrangement of the layers makes it possible to influence the thermal profile.
  • a bridge between the layers for example the U-leg of a profile, can be arranged near the glass ceramic plate, so that the heat transferred there can preferably be dissipated through the glass ceramic plate.
  • the dimensional stability and dimensional stability make it possible to attach the edge in the carrier shell without special adaptation measures. It can also hold the rest of the radiator insulation in the carrier shell. Production with smooth transitions between the insulating layers is also possible. For example, by correspondingly blowing or foaming the insulating material in the form, a structure similar to an integral foam can be achieved in which the The surface is denser and the densities decrease towards the center and thus the insulation capacity increases.
  • the insulating body can be partially or completely provided with an outer layer made of mechanically stronger material, for example vermiculite, which may even replace the otherwise customary sheet metal carrier shell and thus a self-supporting, relatively wear-resistant shell that also forms the base for connections, temperature sensors, etc. his.
  • This can be a separate molded body into which other insulating materials are pressed, but the pressing can also take place at the same time as the rest of the insulating material, with the desired penetrations or intermixing of the insulating materials taking place in the interfaces between the insulating materials. This creates a largely seamless transition between these materials, which ensures good interlocking of the layers.
  • insulating materials in particular vermiculite with pyrogenic silica airgel, which can both be pressed dry and form a thermally well-insulating but mechanically stronger material than the airgel alone.
  • a carrier layer which carries the heating resistors could then also be formed from this material, preferably in one piece with an edge layer. They can be attached to it in any manner, a method which is derived from EP 0 355 388 A1 being particularly preferred. This document is referred to for the details.
  • Fig. 1 shows an electric radiant heater 11, which is attached under a glass ceramic hotplate 12 and is pressed with a boundary insulation 13 on the underside.
  • a carrier shell 14 Arranged in a carrier shell 14 is a lower insulating layer 15, which is formed by pyrogenic silica airgel poured into the sheet metal carrier shell 14 and then compressed. With good temperature resistance, this insulating material is extremely heat-insulating, but mechanical not very firm.
  • another insulating layer 16 made of a mechanically stronger insulating material, for example of a fiber material, such as that sold under the trade name "Fiberfrax", or another ceramic fiber material, which is pressed with binders.
  • heating coils 17 made of electrical resistance material are embedded with their lower vertices, namely at a clear distance from the glass ceramic plate 12 on which the cooking vessels can be placed.
  • the radiator is also suitable for other heating purposes, for example for radiant heating of ovens or for heating other objects, for example metal hot plates.
  • the radiation space 18 formed above the heating resistors 17 is surrounded by the boundary insulation 13. It forms an edge running around the radiator, which protrudes somewhat beyond the edge 19 of the sheet metal carrier shell and thus makes contact with the glass ceramic plate.
  • the boundary insulation 13 has a horizontal stratification. It consists of an annular shaped body, which has a firmer layer 22 of compressed vermiculite on its upper side facing the radiation side, ie, for example, on the glass ceramic plate, while the remaining part 26 of the shaped body, which takes up most of the ring height, consists of one Mixture of vermiculite, pyrogenic silica airgel and reinforcing fibers can exist. Pressed into it, in the area of the interface between the layers 22 and 26, is a sensor coil 27 made of an oxidation-insulated aluminum wire, which runs around the edge and is therefore relatively close under the glass ceramic plate, but is thermally shielded. It is the sensor of a pot detection device that changes the induction recognizes this in the coil 27 by an attached or pushed pot and switches on the radiant heater.
  • the boundary insulation can be produced by first introducing vermiculite with the appropriate binder into a trough-shaped recess, then placing the coil on top and finally inserting the material forming part 26 and compressing the whole.
  • a sheet metal tab 30 is punched out of the material of the edge 19 of the carrier shell 14 and bent slightly inward, which yields resiliently when the ring is inserted, but digs barb-like into the material of the boundary insulation with its downward-pointing free edge and thus securely holds it in the carrier shell (see Fig. 10).
  • the boundary insulation 13 in FIG. 2 consists of a molded body made of pressed vermiculite (expanded mica). This is pressed in granular form, mixed with a binder, as is also described in DE-U-87 02 714, to which reference is made here.
  • the cross section of the molded body is reversely U-shaped, so that the boundary insulation 13 has an inner leg 20, an outer leg 21, an upper connecting section 22 and an inner annular recess 23 which is elongated in the vertical direction.
  • the sensor coil 27 is arranged in its upper part. There, too, it is close to the glass ceramic plate.
  • the remaining part of the ring recess 23 is in turn filled with insulating material.
  • the sensor coil 27 consists of a spiral-shaped winding made of flat band-shaped oxide-insulated line material, similar to a tightly tensioned clock spring.
  • the conductor strips are vertical. This type of winding allows a high density of the coil body with low losses.
  • the walls, in particular in the interior of the ring recess 23, can be coated with a reflective coating, for example by metal vapor deposition or by applying reflective metal oxides, so that radiation heat transfer through the annular space 23 is impeded.
  • the ring recess 23 in the boundary insulation 13 is filled with an insulating material filling 24, the material of which differs from that of the U-shaped molded body.
  • insulating layer 15 It can in particular be the same material as the lower insulating layer 15 or an even lighter and better insulating material can be used, which is filled into the ring recess and, if necessary, pressed in a little there to make the ring easier to handle.
  • a cord made of ceramic fibers is used. The insulation is much better than would be the case with a solid molded body. The only place where the molded body passes from the inside to the outside is in the area of the connecting section 22, where, however, the heat can easily be dissipated through the glass ceramic plate 12.
  • the shaped body forming the boundary insulation is a stable shaped body which can be produced with sharp boundary surfaces, but which contains a fiber 53 on the upper inner side in order to form an optical boundary surface secured against nicks.
  • the annular boundary insulation also secures the insulating layers 15, 16 and presses them into the carrier shell 14.
  • the radiant heater is also ideal for the use of quartz-encapsulated high-temperature radiant heaters, such as halogen incandescent lamps.
  • the single-layer insulation version can also be selected for this, in which the upper insulating layer 16 is dispensed with.
  • the heating coils 17 and the boundary insulation 13 are arranged there directly on the insulating layer 15, they lie on the surface thereof and can be fastened there, for example by metal clips.
  • FIG. 3 shows an edge design with a shaped body as in FIG. 2, but with a round wire coil 27 and a pressed-in insulation 24 made of bulk material filling the recess 23.
  • the insulating layer 16 has an elevated edge region 28, which lies approximately at the height of the top of the heating coils 17. As a result, the insulating layer 16 can be produced more easily because it can be placed flat on a drying plate with the pressed-in heating coils without fear of deformation.
  • the connecting lines of the heating resistors 17 can also be led out in the interface 29 between the insulating layer 16 and the boundary insulation 13, as shown in FIG. 4.
  • the U cross-section of the boundary insulation corresponding to FIG. 3 is unequal leg, in that the inner leg 20 is longer than the outer leg. Accordingly, the inner leg 20 has pressed-in recesses 31 on its underside, through which the connecting lines 32 can reach.
  • Fig. 5 shows an annular edge 26 made of insulating material without an internal recess.
  • a flat ring 22 made of mechanically stronger insulating material, for example vermiculite, in which a flat ring-shaped sensor coil made of wires arranged next to one another is embedded. It not only ideally protects the coil, but also the upper surface of the edge 26.
  • a similar ring 22 is provided with a recess 23 in which a common coil lies on the surface of the rim 26, i.e. is embedded or enclosed in the boundary surface of edge 26 and ring 22.
  • Fig. 7 shows an embodiment with a boundary insulation corresponding to FIGS. 3 and 4.
  • a snap connection 33 is provided between the shell edge 19 and the boundary insulation 13, which consists of a resilient tab 30 which projects obliquely downwards and inwards and which presses in the boundary insulation 13 is pushed back and then falls into grooves 34 formed on the outer circumference of the leg 21, which extend only over part of the height. (For details see Fig. 9)
  • FIG. 8 shows the embodiment according to FIG. 7 at the point at which the connecting lines for the heating coils 17 and the sensor coil 27 are led to the outside. It can be seen that there the two legs 20, 21 of the molded body have cutouts 35 through which the connecting lines 32 of the heating coils 17 and the sensor coil connecting lines 36 project outwards. They lead to a connector body 37 which has tabs 38 for the leads. The connector body is attached to the carrier shell, but can also engage in a recess 35 in the boundary insulation 13. Any temperature sensors of temperature limiting and regulating devices reaching through the radiation space 18 can also be passed through cutouts in the limiting insulation.
  • Fig. 11 shows the top view of a two-circuit radiator, in which two optionally separately controllable or adjustable circular heating zones are combined to form an oval or slot-shaped plate.
  • the two zones 40, 41 are separated from one another by a central section 43 which, like the oval outer edge 13, can be constructed in multiple layers in the manner of the boundary insulation described above.
  • the double-concave central section 43 can have a single or double U-shaped profile, in which sensors other than pot detection sensors may also be incorporated, for example temperature sensors or the like.
  • the sensor coil 27 for example in the embodiment according to FIGS. 2 to 4, can already be molded in during the manufacture of the shaped body.
  • the coil can be wound on the front edge of a mandrel, which is introduced into a trough-shaped shape and forms the recess 23. After pressing, it is pulled out and leaves the coil in the recess.
  • This preferred manufacturing method creates a particularly good embedding of the sensor coil 27 just below the glass ceramic plate.
  • FIG. 12 shows a section through a two-circuit heating element 11 corresponding to FIG. 11. It can be seen there that the central web 43 can also carry an arm of a sensor coil 27, which is designed here according to FIG. 2. If the heating zones 40, 41 are arranged concentrically, only the edge forming the boundary insulation 13 of the inner heating zone can be provided with the sensor coil 27.
  • the sensor coil is connected to a pot detection system that works with an induction measuring principle. If the damping of the induction coil changes when the pot is put on, the radiant heater is switched on. As the coil inductance values change with temperature changes, the best possible temperature shielding of the coil is important, also for the selection of a cheap coil material. Good pot detection systems, e.g. according to EP 0 442 275 A2 (corresponding to USA s.n. 650 489) a compensation for the temperature-related drift of the coil values, but the good thermal shielding improves the function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Electric Stoves And Ranges (AREA)
  • Cookers (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

The rim of an electric radiant heater is formed by a multilayer body (13). It can have the cross-sectional shape of a U, whose interior is filled with a good insulating material. In the interior (23) is placed a sensor coil (23) for a pot detection system, where it is well shielded against heat and mechanical influences.

Description

Die Erfindung betrifft einen elektrischen Heizkörper, insbesondere einen Strahlheizkörper, mit einer thermischen seitlichen Begrenzungsisolierung.The invention relates to an electric radiator, in particular a radiant heater, with thermal lateral boundary insulation.

Die nicht vorveröffentlichte EP 0 442 275 A2 (entsprechend USA-Patentanmeldung 650 489 vom 5. Februar 1991) offenbart einen Strahlheizkörper, in dessen Außenrand eine Sensorspule eines Topferkennungssystems in eine nach außen offene Nut eingelegt ist.The unpublished EP 0 442 275 A2 (corresponding to USA patent application 650 489 of February 5, 1991) discloses a radiant heater in the outer edge of which a sensor coil of a pot detection system is inserted into a groove that is open to the outside.

Die DE 37 35 179 A1 zeigt einen mehrschichtigen Randaufbau eines Strahlheizkörpers.DE 37 35 179 A1 shows a multilayer edge structure of a radiant heater.

Aufgabe der Erfindung ist es, einen elektrischen Heizkörper zu schaffen, dessen seitliche Begrenzung bei guter Festigkeits- und Wärmedämmung leicht herzustellen ist.The object of the invention is to provide an electric radiator, the lateral limitation is easy to manufacture with good strength and thermal insulation.

Eine um den Strahlheizkörper umlaufende Induktionsspule wird im Rand eingebettet. Dies kann beispielsweise im Inneren eines U-förmigen Randquerschnittes geschehen, der dann dahinter mit anderem Isoliermaterial ausgefüllt wird oder die Spule kann auch eingepreßt werden. Es ist somit möglich, diese Spule gegen den Haupt-Wärmeeinfluß isoliert, jedoch nahe der Glaskeramikplatte, bei gleichzeitiger elektrischer Isolierung anzubringen. Auch ihre Zuleitungen und die übrigen Heizelement-Zuleitungen können im Bereich von Ausschnitten des Randes herausgeführt werden, die direkt in den Formkörper eingepreßt sein können. Auch ein Anschlußstein kann sich unmittelbar bis in den Bereich eines Randausschnittes hinein erstrecken. Die Festlegung kann durch Einschnapp- oder Einbiegeverbindung sowie durch Einkrallen eines ausgestanzten Lappens einer Trägerschale erfolgen.An induction coil running around the radiant heater is embedded in the edge. This can be done, for example, inside a U-shaped edge cross section, which is then filled with other insulating material behind it, or the coil can also be pressed in. It is thus possible to insulate this coil against the main heat influence, but close to the glass ceramic plate, with simultaneous electrical insulation. Their supply lines and the other heating element supply lines can also be led out in the region of cutouts of the edge, which can be pressed directly into the molded body. A connecting block can also extend directly into the area of an edge cutout. The fixing can take place by snap-in or bending-in connection as well as by clawing out a punched-out tab of a carrier shell.

Die seitliche Begrenzungsisolierung, also die Isolierung des Randbereiches des Heizkörpers, die meist ringförmig ist, kann in mehrere den gewünschten Eigenschaften gestaffelte entsprechend Schichten aufgeteilt sein. So könnten beispielsweise die mechanisch höher beanspruchten Seiten, beispielsweise die zum Strahlheizraum gerichtete Innenseite, aus einer mechanisch festeren Schicht bestehen, und auch am Außenumfang könnte eine etwas festere Schicht vorgesehen sein, so daß der Ring sich leicht handhaben und auch montieren läßt. Dagegen könnte innen eine mechanisch weniger feste, dafür thermisch gut isolierende Schicht angebracht sein. Die einzelnen Schichten könnten auch reflektierend beschichtet sein oder Zwischengelegte Reflektionsfolien aufweisen. Die Beschichtung kann metallisch und/oder durch andere Reflektionsmittel geschehen, beispielsweise Metalloxyde, die in dem hauptsächlich vorliegenden Wellenlängenbereich reflektierend wirken.The lateral boundary insulation, that is to say the insulation of the edge region of the radiator, which is usually ring-shaped, can be divided into several layers which are staggered according to the desired properties. For example, the mechanically more stressed sides, for example the inside facing the radiant heating chamber, could consist of a mechanically stronger layer, and a somewhat firmer layer could also be provided on the outer circumference, so that the ring can be handled and assembled easily. On the other hand, a mechanically less strong, but thermally well insulating layer could be attached inside. The individual layers could also have a reflective coating or have interposed reflective foils. The coating can be metallic and / or by other reflection means happen, for example metal oxides, which have a reflective effect in the mainly existing wavelength range.

Der Rand könnte beispielsweise ein Vermiculit-Formkörper mit U-förmigem Querschnitt sein, der an der einer Glaskeramikplatte zugekehrten Oberseite geschlossen ist und mit seinen beiden Schenkeln auf der übrigen Isolierung des Strahlheizkörpers aufliegt. Dabei kann der Innenraum ein Luftraum sein oder auch mit einem gut isolierenden Schüttmaterial oder dgl. ausgekleidet sein. Auch eine Herstellung aus sandwichartig ausgebildeten Rohrabschnitten ist möglich. Eine horizontale Schichtenausbildung kann vorgesehen werden, wenn es hauptsächlich darum geht, die zur Strahlungsseite hin liegende Schicht mechanisch fest auszubilden.The edge could, for example, be a vermiculite molded body with a U-shaped cross section, which is closed on the upper side facing a glass ceramic plate and rests with its two legs on the rest of the insulation of the radiant heater. The interior can be an air space or can be lined with a well-insulating bulk material or the like. It is also possible to manufacture from pipe sections of sandwich-like design. A horizontal layer formation can be provided if the main concern is to mechanically form the layer lying towards the radiation side.

Es kann dadurch eine Ausbildung eines Randes geschaffen werden, die eine hervorragende Isolierung mit guter Oberflächenfestigkeit verbindet. Die übrige Isolierung kann weitgehend plan und damit relativ günstig und mit guter Wärmeisolierfähigkeit hergestellt werden. Durch die Anordnung der Schichten ist es möglich, das Wärmeleitprofil zu beeinflussen. So kann beispielsweise eine Brücke zwischen den Schichten, beispielsweise der U-Schenkel eines Profils, nahe der Glaskeramikplatte angeordnet sein, so daß die dort übertragene Wärme bevorzugt durch die Glaskeramikplatte abgeführt werden kann. Die Formbeständigkeit und Maßbeständigkeit ermöglicht es, den Rand ohne besondere Anpaßmaßnahmen in der Trägerschale anzubringen. Er kann damit auch die übrige Isolierung des Heizkörpers in der Trägerschale festhalten. Auch eine Herstellung mit fließenden Übergängen zwischen den Isolierschichten ist möglich. So kann beispielsweise durch entsprechendes Blähen bzw. Schäumen des Isoliermaterials in der Form eine einem Integralschaum ähnliche Struktur erreicht werden, bei der die Oberfläche dichter ist und zur Mitte hin die Raumgewichte abnehmen und damit die Isolierfähigkeit zunimmt.This can create an edge which combines excellent insulation with good surface strength. The rest of the insulation can be made largely flat and thus relatively inexpensive and with good thermal insulation properties. The arrangement of the layers makes it possible to influence the thermal profile. For example, a bridge between the layers, for example the U-leg of a profile, can be arranged near the glass ceramic plate, so that the heat transferred there can preferably be dissipated through the glass ceramic plate. The dimensional stability and dimensional stability make it possible to attach the edge in the carrier shell without special adaptation measures. It can also hold the rest of the radiator insulation in the carrier shell. Production with smooth transitions between the insulating layers is also possible. For example, by correspondingly blowing or foaming the insulating material in the form, a structure similar to an integral foam can be achieved in which the The surface is denser and the densities decrease towards the center and thus the insulation capacity increases.

Vorteilhaft kann der Isolierkörper teilweise oder gänzlich mit einer Außenschicht aus mechanisch festerem Material, beispielsweise Vermiculite versehen sein, die ggf. sogar die sonst übliche Blech-Trägerschale ersetzen und somit eine selbsttragende, relativ verschleißfeste und auch den Stützpunkt für Anschlüsse, Temperaturfühler etc. bildende Hülle sein. Hierbei kann es sich um einen gesonderten Formkörper handeln, in den andere Isoliermaterialien eingepreßt werden, die Verpressung kann jedoch auch gleichzeitig mit dem übrigen Isoliermaterial erfolgen, wobei in den Grenzflächen zwischen den Isoliermaterialen durchaus erwünschte Durchdringungen bzw. Untermischungen der Isoliermaterialen stattfinden. Es entsteht dadurch ein weitgehend stufenloser Übergang zwischen diesen Materialien, der für eine gute Verzahnung der Schichten sorgt.Advantageously, the insulating body can be partially or completely provided with an outer layer made of mechanically stronger material, for example vermiculite, which may even replace the otherwise customary sheet metal carrier shell and thus a self-supporting, relatively wear-resistant shell that also forms the base for connections, temperature sensors, etc. his. This can be a separate molded body into which other insulating materials are pressed, but the pressing can also take place at the same time as the rest of the insulating material, with the desired penetrations or intermixing of the insulating materials taking place in the interfaces between the insulating materials. This creates a largely seamless transition between these materials, which ensures good interlocking of the layers.

Es ist auch möglich, Mischungen aus Isoliermaterialen, insbesondere Vermiculite mit pyrogenem Kieselsäureaerogel, zu verwenden, die sich beide trocken verpressen lassen und ein thermisch gut dämmendes, jedoch mechanisch festeres Material bilden als das Aerogel allein. Aus diesem Material könnte dann auch, vorzugsweise einstückig mit einer Randschicht, eine Trägerschicht gebildet werden, die die Heizwiderstände trägt. Sie können darauf in beliebiger Weise befestigt werden, wobei eine aus der EP 0 355 388 A1 hervorgehende Methode besonders bevorzugt ist. Auf diese Schrift wird wegen der Einzelheiten Bezug genommen.It is also possible to use mixtures of insulating materials, in particular vermiculite with pyrogenic silica airgel, which can both be pressed dry and form a thermally well-insulating but mechanically stronger material than the airgel alone. A carrier layer which carries the heating resistors could then also be formed from this material, preferably in one piece with an edge layer. They can be attached to it in any manner, a method which is derived from EP 0 355 388 A1 being particularly preferred. This document is referred to for the details.

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher erläutert. In den Zeichnungen zeigen:

Fig. 1 bis 7
mehrere Varianten von Heizkörpern, jeweils in einem Teilschnitt,
Fig. 8
einen Teilschnitt durch die Ausführungsform nach Fig. 7 im Anschlußbereich,
Fig. 9
ein Detail aus Fig. 7,
Fig. 10
eine andere Ausführung einer Festlegung der Begrenzungsisolierung,
Fig. 11
die schematische Draufsicht auf einen Zweikreis-Heizkörper,
Fig. 12
einen Teilschnitt durch einen Zweikreis-Heizkörper.
Preferred embodiments of the invention are shown in the drawings and are explained in more detail below. The drawings show:
1 to 7
several variants of radiators, each in a partial section,
Fig. 8
7 shows a partial section through the embodiment according to FIG. 7 in the connection area,
Fig. 9
7 shows a detail from FIG. 7,
Fig. 10
another version of defining the boundary insulation,
Fig. 11
the schematic plan view of a two-circuit radiator,
Fig. 12
a partial section through a two-circuit radiator.

Fig. 1 zeigt einen elektrischen Strahlheizkörper 11, der unter einer Glaskeramik-Kochplatte 12 angebracht und mit einer Begrenzungsisolierung 13 an deren Unterseite angedrückt ist. In einer Trägerschale 14 ist eine untere Isolierschicht 15 angeordnet, die durch in die Blech-Trägerschale 14 eingeschüttetes und danach verpreßtes pyrogenes Kieselsäureaerogel gebildet ist. Dieses Isoliermaterial ist bei guter Temperaturbeständigkeit bestens wärmedämmend, jedoch mechanisch nicht sehr fest. Auf der Isolierschicht 15 ist eine weitere Isolierschicht 16 aus einem mechanisch festeren Isoliermaterial, beispielsweise aus einem Fasermaterial, wie es unter dem Handelsnamen "Fiberfrax" im Handel ist, oder einem anderen keramischen Fasermaterial, das mit Bindemitteln verpreßt ist, angeordnet. In diese Schicht 16 sind mit ihren unteren Scheiteln Heizwendeln 17 aus elektrischem Widerstandsmaterial eingebettet, und zwar in einem deutlichen Abstand zu der Glaskeramikplatte 12, auf die Kochgefäße aufgesetzt werden können. Der Heizkörper ist jedoch auch zu anderen Beheizungszwecken geeignet, beispielsweise zur Strahlungsbeheizung von Backöfen oder zur Beheizung anderer Gegenstände, beispielsweise Metall-Kochplatten.Fig. 1 shows an electric radiant heater 11, which is attached under a glass ceramic hotplate 12 and is pressed with a boundary insulation 13 on the underside. Arranged in a carrier shell 14 is a lower insulating layer 15, which is formed by pyrogenic silica airgel poured into the sheet metal carrier shell 14 and then compressed. With good temperature resistance, this insulating material is extremely heat-insulating, but mechanical not very firm. On the insulating layer 15 there is another insulating layer 16 made of a mechanically stronger insulating material, for example of a fiber material, such as that sold under the trade name "Fiberfrax", or another ceramic fiber material, which is pressed with binders. In this layer 16, heating coils 17 made of electrical resistance material are embedded with their lower vertices, namely at a clear distance from the glass ceramic plate 12 on which the cooking vessels can be placed. However, the radiator is also suitable for other heating purposes, for example for radiant heating of ovens or for heating other objects, for example metal hot plates.

Der über den Heizwiderständen 17 gebildete Strahlungsraum 18 wird von der Begrenzungsisolierung 13 umgeben. Sie bildet einen um den Heizkörper umlaufenden Rand, der etwas über den Rand 19 der Blech-Trägerschale übersteht und somit den Kontakt zur Glaskeramikplatte herstellt.The radiation space 18 formed above the heating resistors 17 is surrounded by the boundary insulation 13. It forms an edge running around the radiator, which protrudes somewhat beyond the edge 19 of the sheet metal carrier shell and thus makes contact with the glass ceramic plate.

Die Begrenzungsisolierung 13 weist eine horizontale Schichtung auf. Sie besteht aus einem ringförmigen Formkörper, der an seiner der Strahlungsseite zugekehrten, d.h. beispielsweise an der Glaskeramikplatte anliegenden Oberseite eine festere Schicht 22 aus verpreßtem Vermiculit aufweist, während der übrige Teil 26 des Formkörpers, der den größten Teil der Ring-Höhe einnimmt, aus einer Mischung aus Vermiculit, pyrogenem Kieselsäureaerogel und Verstärkungsfasern bestehen kann. Darin eingepreßt, und zwar im Bereich der Grenzfläche zwischen den Schichten 22 und 26, ist eine Sensorspule 27 aus einem oxydations-isolierten Aluminiumdraht, die im Rand umläuft und somit relativ dicht unter der Glaskeramikplatte, jedoch thermisch abgeschirmt liegt. Sie ist der Fühler einer Topferkennungseinrichtung, die bei Veränderung der Induktion in der Spule 27 durch einen aufgesetzten oder geschobenen Topf diesen erkennt und den Strahlheizkörper einschaltet.The boundary insulation 13 has a horizontal stratification. It consists of an annular shaped body, which has a firmer layer 22 of compressed vermiculite on its upper side facing the radiation side, ie, for example, on the glass ceramic plate, while the remaining part 26 of the shaped body, which takes up most of the ring height, consists of one Mixture of vermiculite, pyrogenic silica airgel and reinforcing fibers can exist. Pressed into it, in the area of the interface between the layers 22 and 26, is a sensor coil 27 made of an oxidation-insulated aluminum wire, which runs around the edge and is therefore relatively close under the glass ceramic plate, but is thermally shielded. It is the sensor of a pot detection device that changes the induction recognizes this in the coil 27 by an attached or pushed pot and switches on the radiant heater.

Die Begrenzungsisolierung kann dadurch hergestellt werden, daß in eine rinnenförmige Formvertiefung zuerst Vermiculit mit entsprechendem Bindemittel eingebracht wird, darauf die Spule gelegt wird und schließlich das den Teil 26 bildende Material eingelegt und das ganze verpreßt wird.The boundary insulation can be produced by first introducing vermiculite with the appropriate binder into a trough-shaped recess, then placing the coil on top and finally inserting the material forming part 26 and compressing the whole.

Es ist zu erkennen, daß aus dem Material des Randes 19 der Trägerschale 14 ein Blechlappen 30 ausgestanzt und etwas nach innen gebogen ist, der beim Einsetzen des Ringes federnd nachgibt, sich jedoch mit seiner nach unten gerichteten freien Kante widerhakenartig in das Material der Begrenzungsisolierung eingräbt und sie damit sicher in der Trägerschale festhält (s. Fig. 10).It can be seen that a sheet metal tab 30 is punched out of the material of the edge 19 of the carrier shell 14 and bent slightly inward, which yields resiliently when the ring is inserted, but digs barb-like into the material of the boundary insulation with its downward-pointing free edge and thus securely holds it in the carrier shell (see Fig. 10).

Die Begrenzungsisolierung 13 besteht bei Fig. 2 aus einem Formkörper aus verpreßtem Vermiculit (Blähglimmer). Dieses wird in körniger Form, mit einem Bindemittel versetzt, verpreßt, wie es auch schon in dem DE-U-87 02 714, auf das hierfür Bezug genommen wird, beschrieben ist. Der Querschnitt des Formkörpers ist umgekehrt U-förmig, so daß die Begrenzungsisolierung 13 einen inneren Schenkel 20, einen äußeren Schenkel 21, einen oberen Verbindungsabschnitt 22 und eine in vertikaler Richtung langgestreckte innere Ringausnehmung 23 hat. In ihrem oberen Teil ist die Sensorspule 27 angeordnet. Auch dort ist sie nahe an der Glaskeramikplatte. Der übrige Teil der Ringausnehmung 23 ist wiederum mit Isoliermaterial gefüllt. Die Sensorspule 27 besteht aus einem spiralförmigen Wickel aus flach bandförmigen oxydisolierten Leitungsmaterial, ähnlich einer eng gespannten Uhrfeder. Die Leiterbänder stehen senkrecht. Diese Wicklungsart lässt eine große Dichte des Spulenkörpers bei geringen Verlusten zu. Die Wände, insbesondere im Inneren der Ringausnehmung 23, können reflektierend beschichtet sein, z.B. durch Metallaufdampfung oder durch Aufbringen reflektierender Metalloxyde, so daß Strahlungswärmeübertragung durch den Ringraum 23 behindert wird. Die Ringausnehmung 23 in der Begrenzungsisolierung 13 ist mit einer Isoliermaterialfüllung 24 gefüllt, deren Material sich von dem des U-förmigen Formkörpers unterscheidet. Es kann sich dabei insbesondere um das gleiche Material handeln, wie die untere Isolierschicht 15 oder es kann ein noch leichteres und besser isolierendes Material verwendet werden, das in die Ringausnehmung eingefüllt und ggf. dort etwas eingepreßt ist, um den Ring leichter handhabbar zu machen. Bei Fig. 2 wird eine Schnur aus keramischen Fasern verwendet. Die Isolierung ist dadurch um vieles besser als dies bei einem massiven Formkörper der Fall wäre. Die einzige Stelle, wo der Formkörper von der Innen- zur Außenseite durchgeht, ist im Bereich des Verbindungsabschnittes 22, wo jedoch die Wärme leicht durch die Glaskeramikplatte 12 abgeführt werden kann.The boundary insulation 13 in FIG. 2 consists of a molded body made of pressed vermiculite (expanded mica). This is pressed in granular form, mixed with a binder, as is also described in DE-U-87 02 714, to which reference is made here. The cross section of the molded body is reversely U-shaped, so that the boundary insulation 13 has an inner leg 20, an outer leg 21, an upper connecting section 22 and an inner annular recess 23 which is elongated in the vertical direction. The sensor coil 27 is arranged in its upper part. There, too, it is close to the glass ceramic plate. The remaining part of the ring recess 23 is in turn filled with insulating material. The sensor coil 27 consists of a spiral-shaped winding made of flat band-shaped oxide-insulated line material, similar to a tightly tensioned clock spring. The conductor strips are vertical. This type of winding allows a high density of the coil body with low losses. The walls, in particular in the interior of the ring recess 23, can be coated with a reflective coating, for example by metal vapor deposition or by applying reflective metal oxides, so that radiation heat transfer through the annular space 23 is impeded. The ring recess 23 in the boundary insulation 13 is filled with an insulating material filling 24, the material of which differs from that of the U-shaped molded body. It can in particular be the same material as the lower insulating layer 15 or an even lighter and better insulating material can be used, which is filled into the ring recess and, if necessary, pressed in a little there to make the ring easier to handle. In Fig. 2, a cord made of ceramic fibers is used. The insulation is much better than would be the case with a solid molded body. The only place where the molded body passes from the inside to the outside is in the area of the connecting section 22, where, however, the heat can easily be dissipated through the glass ceramic plate 12.

Es ist zu erkennen, daß der die Begrenzungsisolierung bildende Formkörper ein stabiler und mit scharfen Begrenzungsflächen herstellbarer Formkörper ist, der jedoch an der oberen Innenseite eine Faser 53 enthält, um eine gegen Scharten gesicherte optische Begrenzungsfläche zu bilden.It can be seen that the shaped body forming the boundary insulation is a stable shaped body which can be produced with sharp boundary surfaces, but which contains a fiber 53 on the upper inner side in order to form an optical boundary surface secured against nicks.

Die ringförmige Begrenzungsisolierung sichert auch die Isolierschichten 15, 16 und drückt sie in die Trägerschale 14 hinein.The annular boundary insulation also secures the insulating layers 15, 16 and presses them into the carrier shell 14.

Der Strahlheizkörper eignet sich auch hervorragend für die Verwendung von quarzgekapselten Hochtemperaturheizstrahlern, wie beispielsweise Halogen-Glühlampen. Auch dafür kann man die einschichtige Isolierungsausführung wählen, bei der auf die obere Isolierschicht 16 verzichtet wird. Die Heizwendeln 17 und die Begrenzungsisolierung 13 sind dort direkt auf der Isolierschicht 15 angeordnet, sie liegen auf deren Oberfläche und können beispielsweise durch Metallklammern dort befestigt sein.The radiant heater is also ideal for the use of quartz-encapsulated high-temperature radiant heaters, such as halogen incandescent lamps. The single-layer insulation version can also be selected for this, in which the upper insulating layer 16 is dispensed with. The heating coils 17 and the boundary insulation 13 are arranged there directly on the insulating layer 15, they lie on the surface thereof and can be fastened there, for example by metal clips.

Fig. 3 zeigt eine Randausführung mit einem Formkörper wie in Fig. 2, jedoch mit einer Runddrahtspule 27 und einer eingepreßten, die Ausnehmung 23 füllenden Isolierung 24 aus Schüttmaterial. Die Isolierschicht 16 hat einen erhöhten Randbereich 28, der etwa in der Höhe der Oberseite der Heizwendeln 17 liegt. Dadurch läßt sich die Isolierschicht 16 leichter herstellen, weil sie mit den eingepreßten Heizwendeln flach auf eine Trockenplatte aufgelegt werden kann, ohne daß Verformungen zu befürchten sind.FIG. 3 shows an edge design with a shaped body as in FIG. 2, but with a round wire coil 27 and a pressed-in insulation 24 made of bulk material filling the recess 23. The insulating layer 16 has an elevated edge region 28, which lies approximately at the height of the top of the heating coils 17. As a result, the insulating layer 16 can be produced more easily because it can be placed flat on a drying plate with the pressed-in heating coils without fear of deformation.

In der Grenzfläche 29 zwischen der Isolierschicht 16 und der Begrenzungsisolierung 13 können auch die Anschlußleitungen der Heizwiderstände 17 herausgeführt werden, wie Fig. 4 zeigt. Dort ist allerdings der U-Querschnitt der im übrigen Fig. 3 entsprechenden Begrenzungsisolierung ungleichschenklig, indem der innere Schenkel 20 länger ist als der äußere. Dementsprechend hat der innere Schenkel 20 an seiner Unterseite eingepreßte Aussparungen 31, durch die Anschlußleitungen 32 hindurchgreifen können.The connecting lines of the heating resistors 17 can also be led out in the interface 29 between the insulating layer 16 and the boundary insulation 13, as shown in FIG. 4. There, however, the U cross-section of the boundary insulation corresponding to FIG. 3 is unequal leg, in that the inner leg 20 is longer than the outer leg. Accordingly, the inner leg 20 has pressed-in recesses 31 on its underside, through which the connecting lines 32 can reach.

Fig. 5 zeigt einen aus Isoliermaterial bestehenden ringförmigen Rand 26 ohne innere Ausnehmung. Auf ihm liegt ein flacher aus mechanisch festerem Isoliermaterial, z.B. Vermiculite bestehender Ring 22, in den eine flach ringförmige Sensorspule aus nebeneinander angeordneten Drähten eingebettet ist. Er schützt nicht nur die Spule ideal, sondern auch die obere Fläche des Randes 26.Fig. 5 shows an annular edge 26 made of insulating material without an internal recess. On top of it lies a flat ring 22 made of mechanically stronger insulating material, for example vermiculite, in which a flat ring-shaped sensor coil made of wires arranged next to one another is embedded. It not only ideally protects the coil, but also the upper surface of the edge 26.

In Fig. 6 ist ein ähnlicher Ring 22 mit einer Ausnehmung 23 vorgesehen, in der eine übliche Spule auf der Oberfläche des Randes 26 liegt, d.h. in der Begrenzungsfläche von Rand 26 und Ring 22 eingebettet bzw. eingeschlossen ist.In Fig. 6 a similar ring 22 is provided with a recess 23 in which a common coil lies on the surface of the rim 26, i.e. is embedded or enclosed in the boundary surface of edge 26 and ring 22.

Fig. 7 zeigt eine Ausführung mit einer Begrenzungsisolierung entsprechend Fig. 3 und 4. Es ist eine Schnappverbindung 33 zwischen dem Schalenrand 19 und der Begrenzungsisolierung 13 vorgesehen, die aus einem schräg nach unten und innen ragenden federnden Lappen 30 besteht, der beim Hereindrücken der Begrenzungsisolierung 13 zurückgedrückt wird und dann in am Außenumfang des Schenkels 21 eingeformte Nuten 34 einfällt, die nur über einen Teil der Höhe reichen. (Detail siehe Fig. 9)Fig. 7 shows an embodiment with a boundary insulation corresponding to FIGS. 3 and 4. A snap connection 33 is provided between the shell edge 19 and the boundary insulation 13, which consists of a resilient tab 30 which projects obliquely downwards and inwards and which presses in the boundary insulation 13 is pushed back and then falls into grooves 34 formed on the outer circumference of the leg 21, which extend only over part of the height. (For details see Fig. 9)

Fig. 8 zeigt die Ausführung nach Fig. 7 an der Stelle, an der die Anschlußleitungen für die Heizwendeln 17 und die Sensorspule 27 nach außen geführt sind. Es ist zu erkennen, daß dort die beiden Schenkel 20, 21 des Formkörpers Aussparungen 35 aufweisen, durch die die Anschlußleitungen 32 der Heizwendeln 17 und die Sensorspulen-Anschlußleitungen 36 hindurch nach außen ragen. Sie führen zu einem Anschlußkörper 37, der Flachsteckzungen 38 für die Zuleitungen aufweist. Der Anschlußkörper ist an der Trägerschale befestigt, kann jedoch ebenfalls in eine Aussparung 35 der Begrenzungsisolierung 13 eingreifen. Auch eventuelle durch den Strahlungsraum 18 reichende Temperaturfühler von Temperaturbegrenzungs- und Regeleinrichtungen können durch Aussparungen in der Begrenzungsisolierung hindurchgeführt werden. Es ist zu erkennen, daß der relativ formbeständige und trotzdem gut isolierende Rand eine ideale Möglichkeit schafft, die Anschlüsse nach außen zu führen, wobei die Aussparungen bei der Formung des Randes bereits eingearbeitet werden können. Zusammen mit einer insgesamt guten Form- und Maßbeständigkeit ergibt sich damit eine erhebliche Montageerleichterung.FIG. 8 shows the embodiment according to FIG. 7 at the point at which the connecting lines for the heating coils 17 and the sensor coil 27 are led to the outside. It can be seen that there the two legs 20, 21 of the molded body have cutouts 35 through which the connecting lines 32 of the heating coils 17 and the sensor coil connecting lines 36 project outwards. They lead to a connector body 37 which has tabs 38 for the leads. The connector body is attached to the carrier shell, but can also engage in a recess 35 in the boundary insulation 13. Any temperature sensors of temperature limiting and regulating devices reaching through the radiation space 18 can also be passed through cutouts in the limiting insulation. It can be seen that the relatively dimensionally stable and nevertheless well-insulating edge creates an ideal possibility for leading the connections to the outside, the cutouts being able to be worked in when the edge is formed. Together with a total good dimensional and dimensional stability, this makes installation considerably easier.

Fig. 11 zeigt die Draufsicht auf einen Zweikreis-Heizkörper, bei dem zwei ggf. gesondert steuer- oder regelbare kreisförmige Heizzonen zu einer ovalen bzw. langlochförmigen Platte zusammengefaßt sind. Die beiden Zonen 40, 41 werden durch einen Mittelabschnitt 43 voneinander getrennt, der, ebenso wie der ovale Außenrand 13, nach Art der vorher beschriebenen Begrenzungsisolierungen mehrschichtig aufgebaut sein kann. So kann beispielsweise der doppelkonkavförmige Mittelabschnitt 43 ein einfach- oder doppelt-U-förmiges Profil haben, in das ggf. auch andere Sensoren als Topferkennungssensoren eingelagert sein können, beispielsweise Temperaturfühler oder dgl..Fig. 11 shows the top view of a two-circuit radiator, in which two optionally separately controllable or adjustable circular heating zones are combined to form an oval or slot-shaped plate. The two zones 40, 41 are separated from one another by a central section 43 which, like the oval outer edge 13, can be constructed in multiple layers in the manner of the boundary insulation described above. For example, the double-concave central section 43 can have a single or double U-shaped profile, in which sensors other than pot detection sensors may also be incorporated, for example temperature sensors or the like.

Zum Herstellungsverfahren ist noch zu bemerken, daß die Sensorspule 27 beispielsweise bei der Ausführung nach den Figuren 2 bis 4 bereits bei der Herstellung des Formkörpers mit eingeformt sein kann. So kann die Spule beispielsweise auf die vordere Kante eines Formkerns gewickelt werden, der in eine rinnenförmige Form eingebracht wird und die Ausnehmung 23 formt. Nach dem Verpressen wird er herausgezogen und läßt die Spule in der Ausnehmung zurück. Dieses bevorzugte Herstellungsverfahren schafft eine besonders gute Einbettung der Sensorspule 27 dicht unterhalb der Glaskeramikplatte.Regarding the manufacturing process, it should also be noted that the sensor coil 27, for example in the embodiment according to FIGS. 2 to 4, can already be molded in during the manufacture of the shaped body. For example, the coil can be wound on the front edge of a mandrel, which is introduced into a trough-shaped shape and forms the recess 23. After pressing, it is pulled out and leaves the coil in the recess. This preferred manufacturing method creates a particularly good embedding of the sensor coil 27 just below the glass ceramic plate.

Fig. 12 zeigt einen Schnitt durch einen Zweikreis-Heizkörper 11 entsprechend Fig. 11. Es ist dort zu sehen, daß auch der Mittelsteg 43 einen Arm einer Sensorspule 27 tragen kann, die hier entsprechend Fig. 2 ausgebildet ist. Bei einer konzentrischen Anordnung der Heizzonen 40, 41 kann auch nur der die Begrenzungsisolierung 13 der inneren Heizzone bildende Rand mit der Sensorspule 27 versehen sein.FIG. 12 shows a section through a two-circuit heating element 11 corresponding to FIG. 11. It can be seen there that the central web 43 can also carry an arm of a sensor coil 27, which is designed here according to FIG. 2. If the heating zones 40, 41 are arranged concentrically, only the edge forming the boundary insulation 13 of the inner heating zone can be provided with the sensor coil 27.

Die Sensorspule ist an ein mit einem Induktionsmessprinzip arbeitendes Topferkennungssystem angeschlossen. Ändert sich beim Aufsetzen des Topfes die Bedämpfung der Induktionsspule, so wird der Strahlheizkörper eingeschaltet. Da sich die Spulen-Induktivitätswerte bei Temperaturänderungen verändern, ist eine möglichst gute Temperaturabschirmung der Spule wichtig, auch für die Wahl eines günstigen Spulenmaterials. Zwar schaffen gute Topferkennungssysteme, z.B. nach der EP 0 442 275 A2 (entsprechend USA s.n. 650 489) einen Ausgleich für das temperaturbedingte Abdriften der Spulenwerte, aber die gute thermische Abschirmung verbessert die Funktion.The sensor coil is connected to a pot detection system that works with an induction measuring principle. If the damping of the induction coil changes when the pot is put on, the radiant heater is switched on. As the coil inductance values change with temperature changes, the best possible temperature shielding of the coil is important, also for the selection of a cheap coil material. Good pot detection systems, e.g. according to EP 0 442 275 A2 (corresponding to USA s.n. 650 489) a compensation for the temperature-related drift of the coil values, but the good thermal shielding improves the function.

Beim Abnehmen des Topfes werden die Induktionswerte wieder verändert und das Topferkennungssystem wirkt auf die Heizkörpersteuerung zur Abschaltung ein.When the pot is removed, the induction values are changed again and the pot detection system acts on the radiator control to switch it off.

Claims (14)

  1. Electric heater, particularly radiant heater, with a thermal boundary insulation (13), characterized in that a sensor coil (27) for a pot detection system is embedded on all sides in the boundary insulation (13).
  2. Heater according to claim 1, characterized in that the boundary insulation (13) comprises a separate ring surrounding a heater interior (18) and which is located on an insulating layer and/or itself comprises several insulating layers (20 to 24, 26).
  3. Heater according to claim 1 or 2, characterized in that the boundary insulation (13) has a substantially U-shaped cross-section, whose annular space (23) located between the U-legs (20, 21) contains the sensor coil and optionally an insulating medium (24), the annular space (23) preferably being closed to the emission side (25) of the radiant heater (11).
  4. Heater according to one of the preceding claims, characterized in that the boundary insulation (13) contains a shaped body, preferably of pressed vermiculite and in said shaped body are optionally shaped recesses (35) for electric lines (32, 36) to the radiant heater and/or a sensor coil (27), as well as optionally for a connecting body (37).
  5. Heater according to one of the preceding claims, characterized in that an insulating layer (21) on the side directed towards the exterior of the radiant heater (11) projects less far downwards and optionally rests there on a raised marginal area (28) of an insulating layer (16) and in said height are provided line recesses (35) in said boundary insulation (13) and/or said insulating layer (16).
  6. Heater according to one of the preceding claims, characterized in that the boundary insulation is connected to one rim (19) of a support tray (14) of the radiant heater (11) by snapping in, bending in or barb-like clawing over marginal portions.
  7. Heater according to one of the preceding claims, characterized in that the boundary insulation (13) is bevelled on its edge (53) facing the emission side and towards the radiation zone (18).
  8. Heater according to one of the preceding claims, characterized in that the boundary insulation (13) comprises pressed together insulating layers with a shaped in sensor coil (27) and preferably the layer (22) towards the emission side is mechanically stronger and is made from a material such as vermiculite, whereas the layer (26) connected thereto is made from a less strong, but firmly better insulating material, such as pyrogenic silica aerogel mixed with additives and optionally vermiculite and preferably the insulating layers (22, 26) made from different insulating materials, preferably by joint pressing, in their boundary areas form a transition zone in which the insulating materials of both layers are present.
  9. Heater according to one of the preceding claims, characterized in that the boundary installation (13) incorporates a control portion (43) between two optionally separately controllable or regulatable heater portions (40, 41).
  10. Heater according to one of the preceding claims, characterized in that an insulating layer (23) of the boundary insulation (13) is constructed in one piece with a carrier layer (16) carrying heating resistors.
  11. Heater according to one of the claims 2 to 10, characterized in that at least two and preferably all the insulating layers are jointly dry pressed, heating resistor coils (17) being partly pressed in therewith and optionally heater coils during the embedding process are partly filled with a filler removable following the embedding process.
  12. Heater according to one of the preceding claims, characterized in that the sensor coil (27) comprises a flat conductor band winding.
  13. Heater according to one of the preceding claims, characterized in that the sensor coil is enclosed in a flat ring mounted on a marginal portion (26), or in the vicinity of a separating face between the latter and a marginal portion (26) and/or comprises a flat coil with juxtaposed conductor wires.
  14. Method for the manufacture of a heater with a thermal boundary insulation, characterized in that a sensor coil is wound onto a mould core or is fitted thereon and around it is pressed on all sides a shaped body forming the boundary insulation (13).
EP91120964A 1990-12-11 1991-12-06 Electric heater particularly radiant heater Expired - Lifetime EP0490289B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4039501A DE4039501A1 (en) 1990-12-11 1990-12-11 ELECTRIC RADIATOR, IN PARTICULAR RADIANT RADIATOR
DE4039501 1990-12-11

Publications (2)

Publication Number Publication Date
EP0490289A1 EP0490289A1 (en) 1992-06-17
EP0490289B1 true EP0490289B1 (en) 1995-04-12

Family

ID=6420060

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91120964A Expired - Lifetime EP0490289B1 (en) 1990-12-11 1991-12-06 Electric heater particularly radiant heater

Country Status (7)

Country Link
US (1) US5223697A (en)
EP (1) EP0490289B1 (en)
JP (1) JPH05326121A (en)
AT (1) ATE121256T1 (en)
DE (3) DE4039501A1 (en)
ES (1) ES2071196T3 (en)
YU (1) YU190391A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788293A2 (en) 1996-02-05 1997-08-06 E.G.O. ELEKTRO-GERÄTEBAU GmbH Electric radiant heater with active sensor for cooking vessel detection
GB2320573A (en) * 1996-12-19 1998-06-24 Ceramaspeed Ltd Electric heater and sensor
US5900174A (en) * 1996-12-19 1999-05-04 Ceramaspeed Limited Cooking utensil detection method
DE202008005112U1 (en) * 2008-04-12 2009-05-20 Porextherm-Dämmstoffe Gmbh Heat-insulating molded body and thus equipped exhaust gas cleaning system

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397873A (en) * 1993-08-23 1995-03-14 Emerson Electric Co. Electric hot plate with direct contact P.T.C. sensor
US5658478A (en) * 1994-05-03 1997-08-19 Roeschel; Hans E. Automatic heating assembly with selective heating
DE4425911A1 (en) * 1994-07-21 1996-01-25 Wacker Chemie Gmbh Method for fixing an annular shaped body in a radiator
US5553189A (en) * 1994-10-18 1996-09-03 Shell Oil Company Radiant plate heater for treatment of contaminated surfaces
DE19500351A1 (en) * 1995-01-07 1996-07-11 Philips Patentverwaltung Cooking utensil
DE19527823A1 (en) * 1995-07-29 1997-01-30 Ego Elektro Blanc & Fischer Hob unit with several hotplates arranged below a plate
DE19527824A1 (en) * 1995-07-29 1997-01-30 Ego Elektro Blanc & Fischer Electric cooker hob - has several cooking points contg. electrical heating elements in heating zone and thermal insulation
DE19527826C2 (en) * 1995-07-29 2002-05-08 Ego Elektro Geraetebau Gmbh Radiant cooking unit
DE29702590U1 (en) * 1997-02-14 1997-04-03 E.G.O. Elektro-Gerätebau Gmbh, 75038 Oberderdingen Heat insulating spacer for radiant heaters
FR2763116B1 (en) * 1997-05-07 1999-07-30 Europ Equip Menager COOKING FIREPLACE WITH DETECTION OF A CONTAINER
DE19806945A1 (en) * 1998-02-19 1999-09-09 Ego Elektro Geraetebau Gmbh Method for reinforcing insulated support ring of radiant heating unit in ceramic cooker hob
GB2340714A (en) * 1998-08-14 2000-02-23 Ceramaspeed Ltd Securing insulation in support dish
GB0314929D0 (en) * 2003-06-26 2003-07-30 Ceramaspeed Ltd Electric heater incorporating a device for detecting a cooking utensil
GB2407747A (en) * 2003-10-31 2005-05-04 Ceramaspeed Ltd Wall for an electric heater and process for the production thereof
GB0811980D0 (en) * 2008-07-07 2008-07-30 Ceramaspeed Ltd Radiant electric heater
ES2382431B1 (en) 2009-07-29 2013-05-08 BSH Electrodomésticos España S.A. COOKING DEVICE WITH AT LEAST TWO HEATING AREAS
ES1135492Y (en) * 2014-12-11 2015-04-13 Eika S Coop Radiant light adapted to a cooking hob
US20210041108A1 (en) * 2019-08-09 2021-02-11 Eidon, Llc Apparatuses for radiant heating
GB2593468B (en) * 2020-03-23 2022-04-13 Equip Line Ltd An apparatus for heating a pot of food or beverage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3129239A1 (en) * 1981-07-24 1983-02-10 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen ELECTRIC RADIATOR FOR HEATING A PLATE AND METHOD FOR THE PRODUCTION THEREOF

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT238331B (en) * 1963-03-26 1965-02-10 Burger Eisenwerke Ag Cooking area with switching device operated by the cooking vessel
DE7132382U (en) * 1971-08-25 1972-04-27 Esslinger H Self-deactivating hotplate
GB1433478A (en) * 1972-08-05 1976-04-28 Mcwilliams J A Electrical heating apparatus
DE2551137C2 (en) * 1975-11-14 1986-04-24 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen Electric radiant heater for glass ceramic hotplates
DE2760339C3 (en) * 1975-11-14 1994-04-14 Ego Austria Elektrogeraete Electric radiant heater for glass ceramic hot plates
SE8000898L (en) * 1979-02-07 1980-08-08 Micropore International Ltd DEVICE FOR DELETING COOKERS
DE3008505C2 (en) * 1980-03-05 1983-08-25 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Device for the thermal insulation of a heat source
US4334135A (en) * 1980-12-22 1982-06-08 General Electric Company Utensil location sensor for induction surface units
DE3129939C2 (en) * 1981-07-29 1985-03-28 Vjačeslav N. Bukarev Process for the two-stage nitriding of parts made of iron
DE3229380C3 (en) * 1981-08-08 1995-06-29 Micropore International Ltd Radiant heater for electric cookers with glass ceramic cover plates
US4394565A (en) * 1981-11-23 1983-07-19 General Electric Company Power disconnect assembly for electric heating elements
DE3219392A1 (en) * 1982-05-24 1983-12-01 Gruenzweig Hartmann Glasfaser THERMAL INSULATION PLATE FOR THE STORAGE OF AN ELECTRIC HEATER, AND METHOD FOR THE PRODUCTION THEREOF
EP0176027B1 (en) * 1984-09-22 1989-02-01 E.G.O. Elektro-Geräte Blanc u. Fischer Radiative heating body for a cooking apparatus
US4577181A (en) * 1985-03-04 1986-03-18 Bernard Lipscher Alarm system for electric range
GB8517401D0 (en) * 1985-07-10 1985-08-14 Redring Electric Ltd Electric hobs
EP0234373A3 (en) * 1986-02-26 1988-03-02 E.G.O. Elektro-Geräte Blanc u. Fischer Cooking unit with radiant heating element
DE3622415A1 (en) * 1986-07-03 1988-01-07 Ego Elektro Blanc & Fischer BEAM RADIATOR
GB8625556D0 (en) * 1986-10-25 1986-11-26 Micropore International Ltd Radiant heaters
DE3703768A1 (en) * 1987-02-07 1988-08-18 Fissler Gmbh DEVICE FOR DETECTING THE TEMPERATURE OF A GLASS CERAMIC PLATE HEATED BY HEATING WINDINGS OR HALOGEN LAMPS
DE8702714U1 (en) * 1987-02-21 1987-04-16 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen Radiant heaters for cooking appliances
DE3711589A1 (en) * 1987-04-06 1988-10-27 Kueppersbusch Cooking appliance
DE3804170A1 (en) * 1987-04-06 1989-08-24 Kueppersbusch Cooking apparatus
DD264208A1 (en) * 1987-09-15 1989-01-25 Cottbus Ing Hochschule ELECTRICALLY INSULATING MOERTEL
DE3735179A1 (en) * 1987-10-17 1989-05-03 Ego Elektro Blanc & Fischer Radiant-heating unit and method for the production of a radiant-heating unit
KR900008588B1 (en) * 1988-12-13 1990-11-26 삼성전자 주식회사 A reflector of heat insulating and method for producing there off
DE4005128A1 (en) * 1989-02-22 1990-08-23 Anton Trum Gmbh & Co Kg Fire resistant inspection opening cover - for walls and ceilings, having swellable sealing strip
GB8926289D0 (en) * 1989-11-21 1990-01-10 Ceramaspeed Ltd Radiant electric heaters
DE4004129A1 (en) * 1990-02-10 1991-08-14 Ego Elektro Blanc & Fischer DEVICE FOR RECOGNIZING A COOKING VESSEL SET UP IN A HEATING ZONE OF A COOKING OR HEATING APPLIANCE

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3129239A1 (en) * 1981-07-24 1983-02-10 E.G.O. Elektro-Geräte Blanc u. Fischer, 7519 Oberderdingen ELECTRIC RADIATOR FOR HEATING A PLATE AND METHOD FOR THE PRODUCTION THEREOF

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788293A2 (en) 1996-02-05 1997-08-06 E.G.O. ELEKTRO-GERÄTEBAU GmbH Electric radiant heater with active sensor for cooking vessel detection
DE19603845A1 (en) * 1996-02-05 1997-08-07 Ego Elektro Blanc & Fischer Electric radiant heater with an active sensor for cooking vessel detection
US5893996A (en) * 1996-02-05 1999-04-13 E.G.O. Elektro-Geratebau Gmbh Electric radiant heater with an active sensor for cooking vessel detection
DE19603845B4 (en) * 1996-02-05 2010-07-22 E.G.O. Elektro-Gerätebau GmbH Electric radiant heater with an active sensor for cooking vessel detection
GB2320573A (en) * 1996-12-19 1998-06-24 Ceramaspeed Ltd Electric heater and sensor
US5900174A (en) * 1996-12-19 1999-05-04 Ceramaspeed Limited Cooking utensil detection method
DE202008005112U1 (en) * 2008-04-12 2009-05-20 Porextherm-Dämmstoffe Gmbh Heat-insulating molded body and thus equipped exhaust gas cleaning system

Also Published As

Publication number Publication date
DE4039501A1 (en) 1992-06-17
DE9101759U1 (en) 1992-04-09
ATE121256T1 (en) 1995-04-15
JPH05326121A (en) 1993-12-10
YU190391A (en) 1994-06-24
DE59105171D1 (en) 1995-05-18
US5223697A (en) 1993-06-29
EP0490289A1 (en) 1992-06-17
ES2071196T3 (en) 1995-06-16

Similar Documents

Publication Publication Date Title
EP0490289B1 (en) Electric heater particularly radiant heater
AT398874B (en) ELECTRIC RADIATION HEATING DEVICE FOR COOKING APPLIANCES WITH LEVEL COOKING SURFACE
DE2551137C2 (en) Electric radiant heater for glass ceramic hotplates
DE68928596T2 (en) Electric radiant heaters
DE2339768C3 (en) Electric hotplate
EP0056150B1 (en) Electric heater
EP0288915B2 (en) Electric radiant heating element for heating a plate, in particular a glass-ceramic plate
DE2205132C3 (en) Electric cooker
DE19527826C2 (en) Radiant cooking unit
DE2165569A1 (en) ELECTRIC COOKING APPLIANCE WITH A TOP PLATE MADE OF HEAT-RESISTANT GLASS-LIKE OR. CERAMIC MATERIAL
EP0047490A2 (en) Electric cooking plate
EP0544244A2 (en) Temperature - detector
EP0416335B1 (en) Temperature switch
DE3812490A1 (en) BEAM RADIATOR
EP0757508B1 (en) Cooking hob with a plurality of cooking zones disposed underneath a plate
EP0303854B1 (en) Radiant heater
DE4122106A1 (en) Radiation heating element for electric cooking hob - has separation ribs inserted between adjacent windings of spiral heating coil
EP0467111A2 (en) Electrical radiant heating element
EP0771134A2 (en) Radiant heater
DE19527824A1 (en) Electric cooker hob - has several cooking points contg. electrical heating elements in heating zone and thermal insulation
EP0383014A2 (en) Electric radiant heating element
DE3116771A1 (en) Electrical heating unit for cookers having a glass-ceramic plate
DE19527825A1 (en) Electric cooker hob - has least one heating element mounted on carrier and with annular bounding part consisting of several ring sectors at least partially enclosing it and itself enclosed by clamp ring
DE29718419U1 (en) Electric radiant heating
DE9318832U1 (en) Radiant heater

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19920715

17Q First examination report despatched

Effective date: 19931213

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: E.G.O. ELEKTRO-GERAETE BLANC UND FISCHER GMBH & CO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 121256

Country of ref document: AT

Date of ref document: 19950415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59105171

Country of ref document: DE

Date of ref document: 19950518

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2071196

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950612

PLAV Examination of admissibility of opposition

Free format text: ORIGINAL CODE: EPIDOS OPEX

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DIEHL GMBH & CO.

Effective date: 19960108

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19960823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19971222

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980107

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: E.G.O. ELEKTRO-GERAETE BLANC UND FISCHER GMBH & CO. KG TRANSFER- E.G.O. ELEKTRO-GER-TEBAU GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021122

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021217

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021227

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031206

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20071220

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071224

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071221

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20081209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081206