EP0489801A1 - A method and apparatus for use in the manufacture of hollow glass objects - Google Patents

A method and apparatus for use in the manufacture of hollow glass objects

Info

Publication number
EP0489801A1
EP0489801A1 EP19900913019 EP90913019A EP0489801A1 EP 0489801 A1 EP0489801 A1 EP 0489801A1 EP 19900913019 EP19900913019 EP 19900913019 EP 90913019 A EP90913019 A EP 90913019A EP 0489801 A1 EP0489801 A1 EP 0489801A1
Authority
EP
European Patent Office
Prior art keywords
cooling
bottle
probe
mould
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP19900913019
Other languages
German (de)
English (en)
French (fr)
Inventor
Ante Brunskog
Sten Norlen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGA AB
Original Assignee
AGA AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGA AB filed Critical AGA AB
Publication of EP0489801A1 publication Critical patent/EP0489801A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/38Means for cooling, heating, or insulating glass-blowing machines or for cooling the glass moulded by the machine
    • C03B9/3841Details thereof relating to direct cooling, heating or insulating of the moulded glass
    • C03B9/385Details thereof relating to direct cooling, heating or insulating of the moulded glass using a tube for cooling or heating the inside, e.g. blowheads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • C03B9/30Details of blowing glass; Use of materials for the moulds
    • C03B9/44Means for discharging combined with glass-blowing machines, e.g. take-outs
    • C03B9/447Means for the removal of glass articles from the blow-mould, e.g. take-outs

Definitions

  • the present invention relates to a method in the manu- facture of hollow glass objects, such as glass bottles and jars, with the aid of at least one mould arrange ⁇ ment, in which subsequent to being removed from the mould, but prior to being placed in position for trans ⁇ portation to a cooling chamber or the like, each object is cooled, both externally and internally, with the aid of a fluid coolant.
  • the invention also relates to ap ⁇ paratus for use when carrying out the method.
  • the manufacture of, for instance, glass bottles is typically effected in two stages, the neck of the bottle being formed in the first stage and the final bottle shape being achieved in the second stage, by blowing in a two-part mould.
  • the bottle is removed from the mould with the aid of an arm-carried gripping de- vice which grips around the neck of the bottle, so that the bottle hangs vertically from said arm.
  • the finished bottle is lifted from the mould and suspended for some seconds above an upwardly strea ⁇ ming air flow, so as to cool the bottle externally, and particularly so as to stablize the bottom of the bottle prior to placing the bottle onto a conveyor belt for transportation to a cooling chamber.
  • the temperature of the molten glass during bottle manufacture is about 1100-1200°c , and it is necessary to cool the formed bottle to a temperature of about 600°C before it can be placed on the conveyor belt. If the bottle is not cool- ed down to this temperature, there is a risk that the bottle will be deformed, and particularly that the lower part of the bottle will become crooked or warped in relation to the remainder of the bottle.
  • EP-A2-0 071 825 describes a glass bottle manufacturing machine, in which the glass bottles are cooled inter ⁇ nally to some extent with the aid of air or or some other gas.
  • air is sprayed into the bottle th ⁇ rough a nozzle positioned above the mouth of the bott ⁇ le.
  • This method cannot result in effective cooling of the bottle, particularly the bottom of the bottle, since the temperature of the air used is the same as ambient temperature and since the air is passed freely through the same narrow opening as that through which the return air exits.
  • the pressure under which the air can be sprayed into the bottle is limited by the risk of further blowing the bottle and the risk of deforming the readily de-for- mable bottle.
  • a primary object of the present invention is to provide a method by means of which the interior of a bottle and the bottom of said bottle can be cooled much more effectively than was hitherto the case, without risk of deforming the bottom of the bottle. This will enable the production rate to be increased and/or the quality of the finished product to be improved.
  • Another object is to provide apparatus for use when carrying out the method.
  • the primary object of the present invention is achieved by introducing a liquefied gas into the interior of the hollow glass object, where the liquefied gas vapourizes while taking-up heat from the glass.
  • the gas used must be chosen so that the pressure within the bottle or object will not increase to any appreciable extent.
  • the gas will preferably have a high ther ⁇ mal capacity, so that a small volume of gas will pro ⁇ vide effective cooling of the object.
  • a method of the kind defined in the first paragraph of the description and which fulfills the aforesaid requirements is particu ⁇ larly characterized in that internal cooling of the hollow glass object is effected by introducing a con- densed gas, such as condensed carbon dioxide or nitro ⁇ gen, into the hollow of said object, where said con ⁇ densed gas vapourizes while cooling the glass.
  • a con- densed gas such as condensed carbon dioxide or nitro ⁇ gen
  • the fluid coolant used is liquid carbon dioxide, of which at least a part first converts to a solid state and then vapourizes, and that the carbon dioxide is sprayed through a probe which is configured with at least one fluid passageway and which is intro ⁇ pokerd into the hollow of the glass object to a depth such as to achieve internal cooling of the bottom part of said object.
  • the carbon dioxide is sprayed in mutually different direc ⁇ tions over the bottom of the object.
  • carbon dioxide is highly beneficial, since it can be introduced, for instance, at a pressure of about 15 bars, which signifies a temperature of about -40° C.
  • the condensed carbon dioxide is sprayed into the bottle, in which atmospheric pressure prevails, the solid phase obtained, i.e. carbon-dioxide snow, has a lower temperature of about -76° C, which affords an effective cooling action, since the amount of energy required to vapourize the carbon-dioxide snow is very high per unit of weight.
  • the probe is inserted into the cavity of said object while moving the object from the mould to a position in which external cooling of the bottom of the object takes place, therewith to increase the production rate.
  • Figure 1 illustrates schematically the two first stages of a conventional bottle manufacturing process .
  • Figure 2 illustrates schematically the inventive ap ⁇ paratus for cooling a bottle manufactured in accordance with Figure 1 , with the aid of a liquid carbon dioxide coolant.
  • Figure 3 illustrates in larger scale a probe included in the apparatus of Figure 2.
  • the reference numeral 1 identifies a bot ⁇ tle blank moulded from molten glass introduced into a first mould.
  • the bottle blank 1 is formed in an upside- down position and is held firmly by its neck, even when the mould (not shown) has been removed.
  • the bottle blank 1 is transferred to a separatable finishing mould 5, with the aid of an arm 4 pivotally mounted on a pivot shaft 3.
  • the bottle blank is blown to its final bottle form in the finishing mould.
  • the finishing mould is then opened and the bottle is gripped around its neck and transferred to a cooling chamber, where the bottle is cooled.
  • apparatus for transferring the finished bot- tie from the mould 5 to the cooling chamber (not shown) .
  • the illustrated apparatus comprises a box 6 which, among other things, supports gripping means 7 for coaction with a finished bottle 8.
  • the box 6 also carries a probe 9 which can be inserted down into a bottle gripped by the gripping means 7.
  • the probe 9 is connected to a flexible, low-temperature hose 10 so as to permit the requisite vertical movement of the probe.
  • the end of the hose 10 distal from the probe 9 is con ⁇ nected to an insulated supply hose 11 which leads from a carbon-dioxide container 12 and which is also flex ⁇ ible so as to permit the box 6 to move.
  • the box 6 is carried by an arm 14 which is pivotally mounted on a pivot shaft 13 and which is operative to move the box 6 between a collecting position and a cooling and laying-off position.
  • the illustrated embodiment of apparatus for trans ⁇ ferring and cooling a bottle operates in the following manner.
  • th box 6 is lowered towards the bottle, so that the gripping means 7 are able to grip around the neck of the bottle.
  • the probe 9 is lowered comparatively deeply into the bottle 8.
  • a valve (not shown) is then opened, so that liquid carbon dioxide will flow from the container 12 into the interior of the bottle, through the probe 9, at the same time as the bottle is being transferred by means of the arm 4 to the laying-off position shown in full lines in Figure 2, in which position the bottle 8 hangs above a nozzle means 15 which functions to blow cooling air onto the outer surfaces of the bottom of the bottle.
  • the bottle is held in this position for some seconds, whereafter the bottle 8 is moved, e.g. with the aid of a pusher 16, to a conveyor belt 17 which transports the bottle to a cooling chamber (not shown) .
  • the probe 9 of the illustrated embodiment includes four separate passageways, suitably in the form of separate pipes 18 of small dimensions in order to maintain a low outlet pressure and therewith avoid blowing the bottle to a larger sixe and deforming the bottle.
  • the lower parts of the pipes 18 are bent outwards, so as to a- chieve effective spreading of the carbon dioxide over the bottom of the bottle.
  • the use of carbon dioxide as a coolant is highly advantageous, since carbon dioxide can be introduced at relatively low temperatures at a manageable pressure, and also since when carbon dioxide is sprayed into the bottle in which atmospheric pressure prevails, part of the carbon dioxide will convert to carbon-dioxide snow which has a lower temperature than the carbon dioxide supplied. Consequently, there is obtained in the bottle interior a temperature which is lower than the temperature for which the conduits and components used to supply carbon dioxide to the bottle need to be adapted, this lower temperature providing more effective cooling of the bottle interior.
  • liquid carbon dioxide can be supplied at a temperature of about -40°c and a pressure of 15 bars. Conversion of the liquid carbon dioxide to carbon dioxide snow, or dry ice, inside the bottle lowers the temperature to about -76°C, which results in highly effective cooling of the bottle interior.
  • Carbon dioxide snow also has a very high thermal capacity and it can be mentioned by way of example that 199 kJ are consumed when fuming-off 1 kg of liquid nitrogen at atmospheric pressure, where- as 573 kJ are consumed when fuming-off 1 kg of carbon dioxide snow.
  • the use of carbon dioxide also affords considerable advantages from a cost aspect.
  • the carbon dioxide snow that forms within the bottle will be vapourized and depart in vapour or gas form before it reaches the bottom of the bottle.
  • the increase in pressure in the bottle will be extremely moderate, will not exceed about 0.02 bar, and consequently there is no risk of the bottle being deformed.
  • the invention has been described with reference to the exemplifying embodiment illus ⁇ trated in the drawing, where carbon dioxide is used as the cooling agent. Cooling can also be effected advan ⁇ tageously with other cryogen gases, such as condensed nitrogen, while obtaining several of the aforementioned advantages. Other variations and modifications can also be made within the scope of the following Claims.
  • the means for gripping and moving the bottle may have a form different to that shown, as can also the means by which condensed gas is supplied to the bottle.
  • the only essential criterion in this respect is that the condensed gas can be introduced into the bot ⁇ tle effectively, so as to cool the internal surfaces of the bottle and particularly the bottom part thereof immediately the bottle has been formed, although with ⁇ out extending the time in the finishing mould.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
EP19900913019 1989-08-31 1990-08-16 A method and apparatus for use in the manufacture of hollow glass objects Ceased EP0489801A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8902891A SE464472B (sv) 1989-08-31 1989-08-31 Saett och anordning foer tillverkning av ihaaliga foeremaal av glas
SE8902891 1989-08-31

Publications (1)

Publication Number Publication Date
EP0489801A1 true EP0489801A1 (en) 1992-06-17

Family

ID=20376785

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900913019 Ceased EP0489801A1 (en) 1989-08-31 1990-08-16 A method and apparatus for use in the manufacture of hollow glass objects

Country Status (6)

Country Link
EP (1) EP0489801A1 (sv)
JP (1) JPH04507232A (sv)
BR (1) BR9007625A (sv)
CA (1) CA2065358A1 (sv)
SE (1) SE464472B (sv)
WO (1) WO1991003430A1 (sv)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9403560D0 (en) * 1994-02-24 1994-04-13 Emhart Glass Mach Invest Piping arrangement
DE19610928C2 (de) * 1996-03-20 1999-09-23 Oberland Glas Verfahren und Greifeinrichtung zum Umsetzen von Glasartikeln aus Fertigformen einer Glasmaschine zu einer Kühleinrichtung
DE19706014A1 (de) * 1997-02-07 1998-08-13 Heiko Prof Dr Hessenkemper Verfahren zur Viskositätserhöhung von Hohlglaskörper-Schmelzen zum Zweck der effektiveren Abkühlung
DE19843807C2 (de) * 1998-09-24 2002-06-27 Tettauer Glashuettenwerke Ag Verfahren zum Herstellen von hohlen geblasenen Glasartikeln
DE19959506A1 (de) * 1999-12-10 2001-06-21 Messer Technogas S R O Verfahren zur Herstellung eines Glaskörpers
RU2639564C2 (ru) 2011-12-16 2017-12-21 Браскем С.А. Модифицированные микроорганизмы и способы получения бутадиена с их применением

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929442A (en) * 1974-05-07 1975-12-30 Ppg Industries Inc Tempering glass sheets by heat of sublimation
SE407179B (sv) * 1977-01-25 1979-03-19 Aga Ab Anordning for framstellning av plastbehallare genom uppblasning medelst gaser, av vilka atminstone en er djupkyld

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9103430A1 *

Also Published As

Publication number Publication date
JPH04507232A (ja) 1992-12-17
BR9007625A (pt) 1992-07-07
SE8902891L (sv) 1991-03-01
WO1991003430A1 (en) 1991-03-21
SE464472B (sv) 1991-04-29
CA2065358A1 (en) 1991-03-01

Similar Documents

Publication Publication Date Title
JPS62270316A (ja) ポリエチレンテレフタレート製容器を製造するための方法及び装置
CA1257095A (en) Methods and apparatus for forming glass articles
US4708730A (en) Apparatus for blow molding glass articles
US4367187A (en) Process for the production of blow molded articles
EP0908292A4 (en) METHOD AND APPARATUS FOR PRODUCING A BLOW MOLDED ARTICLE
CN1025427C (zh) 玻璃制品的制造
US5145632A (en) Process for the manufacture of pet containers designed to be filled with a hot liquid
EP0489801A1 (en) A method and apparatus for use in the manufacture of hollow glass objects
CA1329879C (fr) Procede de fabrication d'objets en verre comportant une etape de refroidissement
AU659694B2 (en) Method and apparatus for reinforcing inner surface of glass containers
JP7472889B2 (ja) 無菌充填方法及び無菌充填機
US4840656A (en) Methods and apparatus for forming glass articles
CN213357324U (zh) 一种制瓶模具用吹气冷却器锁环
US4729779A (en) Method and apparatus for manufacturing glass articles
JP2022093895A (ja) 無菌充填方法及び無菌充填機
ATE11667T1 (de) Vorrichtung zur herstellung von hohlglasartikeln.
JPH11198916A (ja) 無菌充填方法および無菌充填システム
JPH08290460A (ja) 把手付ボトルの成形方法及び把手付ボトル
JPH0592476A (ja) ブロー成形ボトルの製造法
EP0370042B1 (en) Methods and apparatus for forming pressed glass articles
JPS61251525A (ja) ガラス容器のブロ−成形方法
IT1282433B1 (it) Procedimento ed apparato monostadio per la produzione di contenitori in resina termoplastica
JPH03284931A (ja) ブロー成形法
DE69118704D1 (de) Verfahren zur Herstellung eines mehrschichtigen Kunststoffbehälters mit einem Griff
JPS63100026A (ja) ガラス容器のブロ−成形方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUNSKOG, ANTE

Inventor name: NORLEN, STEN

17Q First examination report despatched

Effective date: 19921203

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19930607