EP0474598A1 - Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2 - Google Patents

Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2 Download PDF

Info

Publication number
EP0474598A1
EP0474598A1 EP91810686A EP91810686A EP0474598A1 EP 0474598 A1 EP0474598 A1 EP 0474598A1 EP 91810686 A EP91810686 A EP 91810686A EP 91810686 A EP91810686 A EP 91810686A EP 0474598 A1 EP0474598 A1 EP 0474598A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
formula
hydrogen
dye
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91810686A
Other languages
English (en)
French (fr)
Other versions
EP0474598B1 (de
Inventor
Wolfgang Dr. Schlenker
Dieter Dr. Werthemann
Peter Dr. Liechti
Angelo Della Casa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0474598A1 publication Critical patent/EP0474598A1/de
Application granted granted Critical
Publication of EP0474598B1 publication Critical patent/EP0474598B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/94General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using dyes dissolved in solvents which are in the supercritical state
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/0004General aspects of dyeing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P3/00Special processes of dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form, classified according to the material treated
    • D06P3/34Material containing ester groups
    • D06P3/52Polyesters
    • D06P3/54Polyesters using dispersed dyestuffs

Definitions

  • the present invention relates to a method for dyeing hydrophobic textile material with disperse dyes.
  • Hydrophobic textile materials are usually dyed from aqueous dyeing liquors. Complete bath exhaustion never occurs, i.e. the dyes do not draw quantitatively onto the substrate to be colored. This in turn means that the dye liquor remaining after the dyeing process still contains, depending on the respective dyes and substrates, more or less large amounts of dye. For this reason, relatively large amounts of colored waste water accumulate during dyeing, which have to be laboriously cleaned.
  • the present invention has for its object to provide a method for dyeing textile material in which no or no significant amounts of colored waste water are obtained.
  • the present invention thus relates to a process for dyeing hydrophobic textile material with disperse dyes, which is characterized in that the textile material in supercritical carbon dioxide with a dye of the formula or treated in what R is hydrogen or R and R4 together with the N atom and the two C atoms connecting them form a 5- or 6-membered ring, R1 cyan or a radical of the formula is where X is -NH, -N-C1-C4-alkyl, O or S, R2 is hydrogen or cyan, R3 is hydrogen or C1-C4 alkyl, R4 and R5 independently of one another each optionally substituted C1-C6-alkyl or R4 and R5 together with the nitrogen atom to which they are attached, a 5- or 6-membered ring, R6 and R7 are each independently C1-C12 alkyl, R8 is hydrogen, C1-C4-alkyl or C2-C4-alkenyl, R9 C1-C6 alkyl, R10 C1
  • the method according to the invention provides that instead of the aqueous liquors described above, such liquors are used in which the water is replaced by supercritical carbon dioxide.
  • supercritical CO2 means CO2 in which the pressure and the temperature of the CO2 are above the critical pressure and the critical temperature.
  • the supercritical CO2 approximately has the viscosity of the corresponding gas and a density which is approximately comparable with the density of the correspondingly liquefied gas.
  • the method according to the invention has a number of advantages. Due to the fact that the supercritical CO2 used does not get into the wastewater, but is used again after dyeing, no wastewater pollution occurs in the process according to the invention. Furthermore, in the method according to the invention, the mass transfer processes required for the dyeing of the textile substrate run much faster in comparison to aqueous systems. This in turn leads to that too dyeing textile substrate can be flowed through particularly well and quickly. When using the method according to the invention, there are no irregularities with regard to the flow through the winding body during the coloring of winding bodies, which are to be regarded as causes for edge runs or length runs, for example, in the conventional method for tree coloring of flat structures.
  • no disperse dyes can undesirably agglomerate in the process according to the invention, as is sometimes the case with conventional dispersion dyeings, so that the use of the process according to the invention avoids the brightening of disperse dyes known in conventional dyeing processes in aqueous systems and thus corresponding staining.
  • Another advantage of the process according to the invention is that disperse dyes can be used which consist exclusively of the actual dye and do not contain the usual dispersants and adjusting agents. For many dyes, there is also no need to grind the dyes.
  • a preferred embodiment of the process according to the invention consists in using a dye of the formula (1) in which R1 is cyan or a radical of the formula (11) in which X is -NH, R2 is hydrogen or cyan, R3 is hydrogen, methyl or ethyl, R4 C1-C4 alkyl, R5 C1-C4 alkyl, which by cyan, phenyl, phenoxy, phenylthio, phenylcarbonyloxy, phenylaminocarbonyloxy or a radical of the formula may be substituted, means or wherein R and R4 together with the N atom and the two C atoms connecting them forms a tetrahydropyridine ring with 0 to 4 methyl groups.
  • a dye of the formula (2) in which R3 is hydrogen, methyl or ethyl and R6 and R7 each represent C4-C8-alkyl, or a dye of the formula (3), in which R8 is hydrogen or allyl, R9 C1-C4 alkyl and R10 C1-C4-alkyl or phenyl-C1-C4-alkyl, or used a dye of formula (4), wherein R11 and R12 each methyl or ethyl, R2 is hydrogen or cyan and Y is a residue of the formula which can be substituted in the phenyl ring by C1-C4-alkyl or chlorine, or a dye of the formula (5), in which n is 1, or a dye of the formula (6) in which R13 is C1-C4-alkoxy or C1-C4 -Alkoxy-C2-C4-alkoxycarbonyl-C2-C4-alkoxy means
  • alkyl radicals are generally understood to mean straight-chain, branched or cyclic alkyl groups. It is e.g. around methyl, ethyl, propyl, i-propyl, butyl, i-butyl, tert-butyl, amyl, tert-amyl (1,1-dimethylpropyl), 1,1,3,3-tetramethylbutyl, hexyl, 1- Methylpentyl, neopentyl, 1-, 2- or 3-methylhexyl, heptyl, n-octyl, tert.-octyl, 2-ethylhexyl, n-nonyl, isononyl, decyl, dodecyl, cyclopentyl, cyclohexyl, methylcyclohexyl and the associated isomers.
  • the alkyl radicals preferably contain 1 to 6 carbon atoms,
  • alkyl radicals can be substituted, e.g. by halogen, hydroxy, alkoxy, cyan or phenyl.
  • substituted alkyl radicals are hydroxyethyl, methoxymethyl, ethoxyethyl, cyanoethyl, propoxypropyl, benzyl, chloroethyl or cyanoethyl.
  • Suitable alkoxy radicals are preferably soclhe having 1 to 4 carbon atoms, for example methoxy, ethoxy, propoxy, iso-propoxy, n-butoxy, iso-butoxy or tert-butoxy.
  • phenyl radicals can also be substituted, e.g. by chlorine, bromine, C1-C4-alkyl, C1-C4-alkoxy, nitro or cyan.
  • R and R4 together with the nitrogen atom and the two carbon atoms connecting them can form a 5- or 6-membered ring which has another heteroatom, e.g. May contain oxygen or sulfur.
  • the ring can also be substituted, e.g. by hydroxy, alkoxy, alkyl, halogen, CN or phenyl, or another fused benzene ring.
  • Preferred rings, which are formed by R, R4 and the connecting carbon atoms and the nitrogen atom, are di-hydrooxazine and di- or tetrahydropyridine rings which carry 0 to 4 methyl groups.
  • R4 and R5 can also form a piperidine, morpholine or piperazine residue together with the N atom connecting them.
  • the piperazine radical can be substituted on the N atom not connected to the phenyl ring by C1-C4-alkyl or hydroxy-C1-C4-alkyl or amino-C1-C4-alkyl.
  • the preferred substituent is hydroxyethyl.
  • the dyes listed in the examples are very particularly preferred.
  • the dyes of the formulas (1) to (10) are known or can be prepared in a manner known per se.
  • the method according to the invention is suitable for dyeing semi-synthetic and in particular synthetic hydrophobic fiber materials, especially textile materials. Textile materials from blended fabrics which contain such semi-synthetic or synthetic hydrophobic textile materials can also be dyed by the process according to the invention.
  • Cellulose-21 ⁇ 2-acetate and cellulose triacetate are particularly suitable as semi-synthetic textile materials.
  • Synthetic hydrophobic textile materials consist mainly of linear, aromatic polyesters, for example those made of terephthalic acid and glycols, especially ethylene glycol or condensation products made of terephthalic acid and 1,4-bis (hydroxymethyl) cyclohexane; from polycarbonates, for example from ⁇ , ⁇ -dimethyl-4,4'-dihydroxy-diphenylmethane and phosgene, from fibers based on polyvinyl chloride, polypropylene or polyamide, for example polyamide 6.6, polyamide 6.10, polyamide 6, polyamide 11 or poly (1,4-phenylene terephthalamide).
  • the dyeing temperature used in the process according to the invention depends essentially on the substrate to be colored. Usually it is between about 90 and 200 ° C, preferably between about 100 and 150 ° C.
  • the pressure to be applied must be at least so high that the CO2 is in a supercritical state.
  • the pressure is preferably between about 73 and 400 bar, in particular between 150 and 250 bar.
  • the pressure is approximately 200 bar.
  • the liquor ratio (mass ratio of textile material: CO2) when dyeing according to the inventive method depends on the goods to be treated and their presentation. Usually, it varies between a value of 1: 2 to 1: 100, preferably about 1: 5 to 1:75. If, for example, polyester yarns which are wound on corresponding packages are to be dyed using the process according to the invention, this is preferably done for relatively short ones Fleet ratios, ie Fleet ratios between 1: 2 to 1: 5.
  • Such short liquor ratios generally cause difficulties in the conventional dyeing process in the aqueous system, since due to the high dye concentration there is often the risk that the finely dispersed systems agglomerate. However, this does not occur in the method according to the invention.
  • the supercritical CO2 is converted into the corresponding gas, which is then collected and used again after transferring to the supercritical state for coloring further substrates.
  • the dyes separate out as liquid or solid dyes, which accordingly can be collected and used for further staining.
  • the internal temperature quickly drops to approx. -10 ° C.
  • the contents of the autoclave are heated to 130 ° C at about 3 ° C / min.
  • the internal pressure rises to approx. 200 bar. These conditions are kept constant for 30 minutes. Thereafter, the heating is switched off with compressed air when the heating is switched off. Pressure and temperature decrease exponentially. After two hours, approx. 70 bar are reached, after which the pressure is released by opening a valve.
  • Yellow-dyed polyester fabric of a quality similar to that obtained by dyeing by conventional methods from an aqueous liquor is obtained.
  • the rubbing, light and wash fastness of the coloring are equally good.
  • Example 1 The method described in Example 1 can also be used to produce dyeings on polyester fabric using the following dyes:

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Coloring (AREA)

Abstract

Textilmaterialien aus Polyester lassen sich aus überkritischem CO2 mit speziellen Dispersionsfarbstoffen färben.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen.
  • Hydrophobe Textilmaterialien werden üblicherweise aus wässrigen Färbeflotten gefärbt. Dabei tritt niemals eine vollständige Baderschöpfung auf, d.h. die Farbstoffe ziehen nicht quantitativ auf das jeweils zu färbende Substrat. Dies wiederum führt dazu, dass die nach dem Färbevorgang verbleibende Farbstoffflotte noch, abhängig von den jeweiligen Farbstoffen und Substraten, mehr oder weniger grosse Mengen Farbstoff enthält. Daher fallen beim Färben relativ grosse Mengen an farbigen Abwässern an, die aufwendig gereinigt werden müssen.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Färben von Textilmaterial zur Verfügung zu stellen, bei dem keine oder keine nennenswerten Mengen an farbigen Abwässern anfallen.
  • Diese Aufgabe wird durch das erfindungsgemässe Verfahren gelöst.
  • Die vorliegende Erfindung betrifft somit ein Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen, das dadurch gekennzeichnet ist, dass man das Textilmaterial in überkritischem Kohlendioxid mit einem Farbstoff der Formel
    Figure imgb0001
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
    Figure imgb0007
    Figure imgb0008
    Figure imgb0009

    oder
    Figure imgb0010

    behandelt, worin
       R Wasserstoff oder R und R₄ zusammen mit dem N-Atom und den beiden sie verbindenden C-Atomen einen 5- oder 6-gliedrigen Ring,
       R₁ Cyan oder ein Rest der Formel
    Figure imgb0011

    ist, wobei X -NH, -N-C₁-C₄-Alkyl, O oder S bedeutet,
       R₂ Wasserstoff oder Cyan,
       R₃ Wasserstoff oder C₁-C₄-Alkyl,
       R₄ und R₅ unabhängig voneinander je gegebenenfalls substituiertes C₁-C₆-Alkyl oder R₄ und R₅ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5-oder 6-gliedrigen Ring,
       R₆ und R₇ unabhängig voneinander je C₁-C₁₂-Alkyl,
       R₈ Wasserstoff, C₁-C₄-Alkyl oder C₂-C₄-Alkenyl,
       R₉ C₁-C₆-Alkyl,
       R₁₀ C₁-C₆-Alkyl oder Phenyl-C₁-C₆-alkyl,
       R₁₁ und R₁₂ unabhängig voneinander je C₁-C₄-Alkyl,
       Y einen Rest der Formel (11) oder der Formel
    Figure imgb0012
       n 0 oder 1,
       R₁₃ C₁-C₆-Alkoxy, C₁-C₆-Alkoxy-C₂-C₄-alkoxy, C₁-C₄-Alkoxycarbonyl-C₂-C₄-alkoxy oder C₁-C₄-Alkoxy-C₁-C₄-alkoxycarbonyl-C₂-C₄-alkoxy und
       R₁₄ Wasserstoff, Phenoxy oder Phenylthio bedeuten.
  • Das erfindungsgemässe Verfahren sieht vor, anstelle der vorstehend beschriebenen wässrigen Flotten solche Farbflotten zu verwenden, bei denen das Wasser durch überkritisches Kohlendioxid ersetzt ist. Unter dem Begriff überkritisches CO₂ versteht man CO₂, bei dem der Druck und die Temperatur des CO₂ oberhalb des kritischen Druckes und der kritischen Temperatur liegen. Hierbei weist das überkritische CO₂ annähernd die Viskosität des entsprechenden Gases und eine Dichte auf, die näherungsweise mit der Dichte des entsprechend verflüssigten Gases vergleichbar ist.
  • Das erfindungsgemässe Verfahren weist eine Reihe von Vorteilen auf. Bedingt dadurch, dass das hierbei eingesetzte überkritische CO₂ nicht ins Abwasser gelangt, sondern nach der Färbung erneut eingesetzt wird, treten bei dem erfindungsgemässen Verfahren keine Abwasserbelastungen auf. Ferner laufen bei dem erfindungsgemässen Verfahren die für die Färbung des textilen Substrates erforderlichen Stoffaustauschvorgänge im Vergleich zu wässrigen Systemen wesentlich schneller ab. Dies wiederum führt dazu, dass das zu färbende textile Substrat besonders gut und schnell durchströmt werden kann. Bei Anwendung des erfindungsgemässen Verfahrens treten bei der Färbung von Wickelkörpern keine Ungleichmässigkeiten bezüglich der Durchströmung des Wickelkörpers auf, welche beispielsweise bei dem herkömmlichen Verfahren bei der Baumfärbung von Flächengebilden als Ursachen für Kantenabläufe beziehungsweise Längenabläufe anzusehen sind. Ebenfalls können bei dem erfindungsgemässen Verfahren keine Dispersionsfarbstoffe unerwünscht agglomerieren, wie dies bei den herkömmlichen Dispersionsfärbungen bisweilen der Fall ist, so dass somit durch Anwendung des erfindungsgemässen Verfahrens die bei herkömmlichen Färbeverfahren in wässrigen Systemen bekannten Aufhellungn von Dispersionsfarbstoffen und damit entsprechende Fleckenbildungen vermieden werden.
  • Ein weiterer Vorteil des erfindungsgemässen Verfahrens besteht darin, dass man Dispersionsfarbstoffe einsetzen kann, die ausschliesslich aus dem eigentlichen Farbstoff bestehen und nicht die üblichen Dispergatoren und Stellmittel enthalten. Bei vielen Farbstoffen kann zudem auf eine Mahlung der Farbstoffe verzichtet werden.
  • Eine bevorzugte Ausführungsform des erfindungsgemässen Verfahren besteht darin, dass man einen Farbstoff der Formel (1) verwendet, worin
       R₁ Cyan oder ein Rest der Formel (11) ist, worin X -NH bedeutet,
       R₂ Wasserstoff oder Cyan,
       R₃ Wasserstoff, Methyl oder Ethyl,
       R₄ C₁-C₄-Alkyl,
       R₅ C₁-C₄-Alkyl, welches durch Cyan, Phenyl, Phenoxy, Phenylthio, Phenylcarbonyloxy, Phenylaminocarbonyloxy oder einen Rest der Formel
    Figure imgb0013

    substituiert sein kann, bedeutet oder worin R und R₄ zusammen mit dem N-Atom und den beiden sie verbindenden C-Atomen einen Tetrahydropyridinring mit 0 bis 4 Methylgruppen bildet.
  • Weitere bevorzugte Ausführungsformen des erfindungsgemässen Verfahrens bestehen darin, dass man einen Farbstoff der Formel (2) verwendet, worin
       R₃ Wasserstoff, Methyl oder Ethyl und
       R₆ und R₇ je C₄-C₈-Alkyl bedeuten, oder einen Farbstoff der Formel (3), worin
       R₈ Wasserstoff oder Allyl,
       R₉ C₁-C₄-Alkyl und
       R₁₀ C₁-C₄-Alkyl oder Phenyl-C₁-C₄-alkyl bedeutet, oder einen Farbstoff der Formel (4) verwendet, worin
       R₁₁ und R₁₂ je Methyl oder Ethyl,
       R₂ Wasserstoff oder Cyan und
       Y einen Rest der Formel
    Figure imgb0014

    der im Phenylring durch C₁-C₄-Alkyl oder Chlor substituiert sein kann, bedeutet, oder einen Farbstoff der Formel (5), worin n 1 bedeutet, oder einen Farbstoff der Formel (6) worin R₁₃ C₁-C₄-Alkoxy oder C₁-C₄-Alkoxy-C₂-C₄-alkoxycarbonyl-C₂-C₄-alkoxy bedeutet, oder einen Farbstoff der Formel (7), worin R₁₄ Wasserstoff oder Phenylthio bedeutet.
  • Unter Alkylresten sind erfindungsgemäss generell geradkettige, verzweigte oder cyclische Alkylgruppen zu verstehen. Es handelt sich z.B. um Methyl, Ethyl, Propyl, i-Propyl, Butyl, i-Butyl, tert.-Butyl, Amyl, tert.-Amyl(1,1-Dimethylpropyl), 1,1,3,3-Tetramethylbutyl, Hexyl, 1-Methylpentyl, Neopentyl, 1-, 2- oder 3- Methylhexyl, Heptyl, n-Octyl, tert.-Octyl, 2-Ethylhexyl, n-Nonyl, Isononyl, Decyl, Dodecyl, Cyclopentyl, Cyclohexyl, Methylcyclohexyl sowie die dazugehörenden Isomeren. Die Alkylreste enthalten vorzugsweise 1 bis 6 C-Atome, vor allem 1 bis 4 C-Atome.
  • Diese Alkylreste können substituiert sein, z.B. durch Halogen, Hydroxy, Alkoxy, Cyan oder Phenyl. Beispiele für solche substituierten Alkylreste sind Hydroxyethyl, Methoxymethyl, Ethoxyethyl, Cyanethyl, Propoxypropyl, Benzyl, Chlorethyl oder Cyanoethyl.
  • Geeignete Alkoxyreste sind vorzugsweise soclhe mit 1 bis 4 C-Atomen z.B. Methoxy, Ethoxy, Propoxy, iso-Propoxy, n-Butoxy, iso-Butoxy oder tert.-Butoxy.
  • Auch die Phenylreste können substituiert sein, z.B. durch Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Nitro oder Cyan.
  • R und R₄ können zusammen mit dem Stickstoffatom und den beiden sie verbindenden Kohlenstoffatomen einen 5- oder 6-gliedrigen Ring bilden, welcher ein weiteres Heteroatom, z.B. Sauerstoff oder Schwefel, enthalten kann. Ausserdem kann der Ring substituiert sein, z.B. durch Hydroxy, Alkoxy, Alkyl, Halogen, CN oder Phenyl, oder einen weiteren ankondensierten Benzolring tragen. Bevorzugte Ringe, welche durch R, R₄ und die verbindenden Kohlenstoffatome und das Stickstoffatom gebildet werden, sind Di-hydrooxazin- und Di- oder Tetrahydropyridinringe, welche 0 bis 4 Methylgruppen tragen.
  • R₄ und R₅ können auch zusammen mit dem sie verbindenden N-Atom einen Piperidin-, Morpholin- oder Piperazinrest bilden. Der Piperazinrest kann am nicht mit dem Phenylring verbundenen N-Atom durch C₁-C₄-Alkyl oder Hydroxy-C₁-C₄-alkyl oder Amino-C₁-C₄-alkyl substituiert sein. Der bevorzugte Substituent ist Hydroxyethyl.
  • Wegen ihrer guten färberischen Eigenschaften im erfindungsgemässen Verfahren sind die in den Beispielen aufgeführten Farbstoffe ganz besonders bevorzugt.
  • Die Farbstoffe der Formeln (1) bis (10) sind bekannt oder können auf an sich bekannte Art hergestellt werden.
  • Das erfindungsgemässe Verfahren eignet sich zum Färben von halbsynthetischen und insbesondere synthetischen hydrophoben Fasermaterialien, vor allem Textilmaterialien. Textilmaterialien aus Mischgeweben, die derartige halbsynthetische beziehungsweise synthetische hydrophobe Textilmaterialien enthalten, können ebenfalls nach dem erfindungsgemässen Verfahren gefärbt werden.
  • Als halbsynthetische Textilmaterialien kommen vor allem Cellulose-2½-Acetat und Cellulosetriacetat in Frage.
  • Synthetische hydrophobe Textilmaterialien bestehen vor allem aus linearen, aromatischen Polyestern, beispielsweise solchen aus Terephthalsäure und Glykolen, besonders Ethylenglykol oder Kondensationsprodukten aus Terephthalsäure und 1,4-Bis-(hydroxymethyl)-cyclohexan; aus Polycarbonaten, z.B. aus α,α-Dimethyl-4,4′-dihydroxy-diphenylmethan und Phosgen, aus Fasern auf Polyvinylchlorid-, Polypropylen- oder Polyamid-Basis, z.B. Polyamid 6.6, Polyamid 6.10, Polyamid 6, Polyamid 11 oder Poly(1,4-phenylentere-phthalamid).
  • Die bei dem erfindungsgemässen Verfahren angewendete Färbetemperatur richtet sich im wesentlichen nach dem zu färbenden Substrat. Normalerweise liegt sie etwa zwischen 90 und 200°C, vorzugsweise zwischen etwa 100 und 150°C.
  • Der anzuwendende Druck muss mindestens so gross sein, dass das CO₂ in überkritischem Zustand vorliegt. Vorzugsweise liegt der Druck zwischen etwa 73 und 400 bar, insbesondere zwischen 150 und 250 bar. Bei der bevorzugten Färbetemperatur für Polyestermaterial von ca. 130°C beträgt der Druck etwa 200 bar.
  • Das Flottenverhältnis (Massenverhältnis Textilmaterial: CO₂) beim Färben nach dem erfindungsgemässen Verfahren richtet sich nach der zu behandelnden Ware und deren Aufmachung. Ueblicherweise variiert es zwischen einem Wert von 1 : 2 bis 1 : 100, vorzugsweise etwa 1 : 5 bis 1 : 75. Sollen beispielsweise Polyestergarne, die auf entsprechende Kreuzspulen aufgewickelt sind, nach dem erfindungsgemässen Verfahren gefärbt werden, so geschieht dies vorzugsweise bei relativ kurzen Flottenverhältnissen, d.h. Flottenverhältnissen zwischen 1 : 2 bis 1 : 5. Derartige kurze Flottenverhältnisse bereiten in der Regel bei dem herkömmlichen Färbeverfahren im wässrigen System Schwierigkeiten, da hierbei bedingt durch die hohe Farbstoffkonzentration häufig die Gefahr besteht, dass die feindispersen Systeme agglomerieren. Dies tritt jedoch bei dem erfindungsgemässen Verfahren nicht auf.
  • Zur Reinigung des überkritischen CO₂ nach der Färbung bestehen mehrere Möglichkeiten. Man kann z.B. den in dem überkritischen CO₂ verbleibenden Farbstoffrest über entsprechende Filter ad- beziehungsweise absorbieren. Hierfür eignen sich insbesondere die an sich bekannten Kieselgel-, Kieselgur-, Kohle-, Zeolith- und Aluminiumoxidfilter.
  • Darüberhinaus besteht die Möglichkeit, die nach der Färbung in dem überkritischen CO₂ verbleibenden Farbstoffe durch eine Temperatur- und/oder Druckerniedrigung und/oder eine Volumenvergrösserung zu entfernen. Hierbei wandelt sich das überkritische CO₂ in das entsprechende Gas um, das dann aufgefangen wird und erneut nach Ueberführung in den überkritischen Zustand zur Färbung von weiteren Substraten verwendet wird. Hierbei scheiden sich die Farbstoffe als flüssige oder feste Farbstoffe ab, die entsprechend gesammelt und für weitere Färbungen weiterverwendet werden können.
  • Die nachfolgenden Beispiele erläutern die Erfindung, ohne sie darauf zu beschränken.
  • Beispiel 1
  • 24,5 µmol des Farbstoffes der Formel
    Figure imgb0015

    werden auf dem Boden eines Autoklaven mit einem Innenvolumen von 500 ml vorgelegt. 330 g CO₂ werden in fester Form (Trockenreis) eingewogen. Ein Streifen Polyestergewebe von 5 g wird um die im Deckel des Autoklaven eingebauten Sensoren für Druck und Temperatur gewickelt und mit einem Faden zusammengeheftet.
  • Nach dem Verschliessen des Autoklaven geht die Innentemperatur sehr schnell auf ca. -10°C zurück. Nachdem die Innentemperatur 0°C erreicht hat, wird der Inhalt des Autoklaven mit etwa 3°C/min auf 130°C aufgeheizt. Der Innendruck steigt dabei auf ca. 200 bar an. Diese Bedingungen werden 30 Minuten lang konstant gehalten. Danach wird bei ausgeschalteter Heizung mit Druckluft gekühlt. Druck und Temperatur nehmen dabei exponentiell ab. Nach zwei Stunden werden ca. 70 bar erreicht, danach wird durch Oeffnen eines Ventils entspannt.
  • Man erhält gelb gefärbtes Polyestergewebe in ähnlicher Qualität wie beim Färben nach üblichen Methoden aus wässriger Flotte. Insbesondere die Reib-, Licht- und Waschechtheit der Färbung sind gleich gut.
  • Beispiele 2 bis 15
  • Nach der im Beispiel 1 beschriebenen Methode lassen sich Färbungen auf Polyestergewebe auch mit den folgenden Farbstoffen herstellen:
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029

Claims (18)

  1. Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen, dadurch gekennzeichnet, dass man das Textilmaterial in überkritischem Kohlendioxid mit einem Färbstoff der Formel
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    oder
    Figure imgb0039
    behandelt, worin
       R Wasserstoff oder R und R₄ zusammen mit dem N-Atom und den beiden sie verbindenden C-Atomen einen 5- oder 6-gliedrigen Ring,
       R₁ Cyan oder ein Rest der Formel
    Figure imgb0040
    ist, wobei X -NH, -N-C₁-C₄-Alkyl, O oder S bedeutet,
       R₂ Wasserstoff oder Cyan,
       R₃ Wasserstoff oder C₁-C₄-Alkyl,
       R₄ und R₅ unabhängig voneinander je gegebenenfalls substituiertes C₁-C₆-Alkyl oder R₄ und R₅ zusammen mit dem Stickstoffatom, an das sie gebunden sind, einen 5-oder 6-gliedrigen Ring,
       R₆ und R₇ unabhängig voneinander je C₁-C₁₂-Alkyl,
       R₈ Wasserstoff, C₁-C₄-Alkyl oder C₂-C₄-Alkenyl,
       R₉ C₁-C₆-Alkyl,
       R₁₀ C₁-C₆-Alkyl oder Phenyl-C₁-C₆-alkyl,
       R₁₁ und R₁₂ unabhängig voneinander je C₁-C₄-Alkyl,
       Y einen Rest der Formel (11) oder der Formel
    Figure imgb0041
       n 0 oder 1,
       R₁₃ C₁-C₆-Alkoxy, C₁-C₆-Alkoxy-C₂-C₄-alkoxy, C₁-C₄-Alkoxycarbonyl-C₂-C₄-alkoxy oder C₁-C₄-Alkoxy-C₁-C₄-alkoxycarbonyl-C₂-C₄-alkoxy und
       R₁₄ Wasserstoff, Phenoxy oder Phenylthio bedeuten.
  2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man einen Farbstoff der Formel (1) verwendet, worin
       R₁ Cyan oder ein Rest der Formel (11) ist, worin X -NH bedeutet,
       R₂ Wasserstoff oder Cyan,
       R₃ Wasserstoff, Methyl oder Ethyl,
       R₄ C₁-C₄-Alkyl,
       R₅ C₁-C₄-Alkyl, welches durch Cyan, Phenyl, Phenoxy, Phenylthio, Phenylcarbonyloxy, Phenylaminocarbonyloxy oder einen Rest der Formel
    Figure imgb0042
    substituiert sein kann, bedeutet oder worin R und R₄ zusammen mit dem N-Atom und den beiden sie verbindenden C-Atomen einen Tetrahydropyridinring mit 0 bis 4 Methylgruppen bildet.
  3. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man einen Farbstoff der Formel (2) verwendet, worin
       R₃ Wasserstoff, Methyl oder Ethyl und
       R₆ und R₇ je C₄-C₈-Alkyl bedeuten.
  4. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man einen Farbstoff der Formel (3) verwendet, worin
       R₈ Wasserstoff oder Allyl,
       R₉ C₁-C₄-Alkyl und
       R₁₀ C₁-C₄-Alkyl oder Phenyl-C₁-C₄-alkyl bedeutet.
  5. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man einen Farbstoff der Formel (4) verwendet, worin
       R₁₁ und R₁₂je Methyl oder Ethyl,
       R₂ Wasserstoff oder Cyan und
       Y einen Rest der Formel
    Figure imgb0043
    der im Phenylring durch C₁-C₄-Alkyl oder Chlor substituiert sein kann, bedeutet.
  6. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man einen Farbstoff der Formel (5) verwendet, worin 1 bedeutet.
  7. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man einen Farbstoff der Formel (6) verwendet, worin R₁₃ C₁-C₄-Alkoxy oder C₁-C₄-Alkoxy-C₂-C₄-alkoxy-carbonyl-C₂-C₄-alkoxy bedeutet.
  8. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man einen Farbstoff der Formel (7) verwendet, worin R₁₄ Wasserstoff oder Phenylthio bedeutet.
  9. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man einen Farbstoff der Formel (8), (9) oder (10) verwendet.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man einen Farbstoff einsetzt, der frei von Zusätzen, insbesondere frei von Stellmitteln und Dispergiermitteln, ist.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man bei Temperaturen zwischen etwa 90°C und etwa 200°C, vorzugsweise zwischen etwa 100°C und etwa 150°C, färbt.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass man bei einem Druck zwischen etwa 73 bar und etwa 400 bar, vorzugsweise zwischen etwa 150 bar und etwa 250 bar, färbt.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass man das Substrat in einem Flottenverhältnis zwischen etwa 1 : 2 bis etwa 1 : 100, vorzugsweise zwischen etwa 1 : 5 und etwa 1 : 75, färbt.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass man nach der Färbung das verwendete überkritische CO₂ reinigt und erneut zum Färben verwendet.
  15. Verfahren nach einem der Anspruch 14, dadurch gekennzeichnet, dass man das überkritische CO₂ mittels eines Filters reinigt.
  16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass man das überkritische CO₂ durch eine Temperatur- und/oder Druckerniedrigung und/oder Volumenvergrösserung reinigt.
  17. Anwendung des Verfahren gemäss einem der Ansprüche 1 bis 16 zum Färben von Textilmaterial aus Polyester.
  18. Das nach dem Verfahren gemäss einem der Ansprüche 1 bis 16 gefärbte Textilmaterial.
EP91810686A 1990-09-03 1991-08-27 Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2 Expired - Lifetime EP0474598B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH283890 1990-09-03
CH2838/90 1990-09-03

Publications (2)

Publication Number Publication Date
EP0474598A1 true EP0474598A1 (de) 1992-03-11
EP0474598B1 EP0474598B1 (de) 1994-12-21

Family

ID=4242736

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91810686A Expired - Lifetime EP0474598B1 (de) 1990-09-03 1991-08-27 Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2

Country Status (3)

Country Link
EP (1) EP0474598B1 (de)
AT (1) ATE116018T1 (de)
DE (1) DE59103971D1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250078A (en) * 1991-05-17 1993-10-05 Ciba-Geigy Corporation Process for dyeing hydrophobic textile material with disperse dyes from supercritical CO2 : reducing the pressure in stages
US5269815A (en) * 1991-11-20 1993-12-14 Ciba-Geigy Corporation Process for the fluorescent whitening of hydrophobic textile material with disperse fluorescent whitening agents from super-critical carbon dioxide
US6048369A (en) * 1998-06-03 2000-04-11 North Carolina State University Method of dyeing hydrophobic textile fibers with colorant materials in supercritical fluid carbon dioxide
US6261326B1 (en) 2000-01-13 2001-07-17 North Carolina State University Method for introducing dyes and other chemicals into a textile treatment system
US6676710B2 (en) 2000-10-18 2004-01-13 North Carolina State University Process for treating textile substrates
CN113832752A (zh) * 2021-10-27 2021-12-24 天津工业大学 一种基于超临界二氧化碳的染整方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3906724A1 (de) * 1989-03-03 1990-09-13 Deutsches Textilforschzentrum Faerbeverfahren

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3906724A1 (de) * 1989-03-03 1990-09-13 Deutsches Textilforschzentrum Faerbeverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF ORGANIC CHEMISTRY. Bd. 49, Nr. 26, 1984, EASTON US Seiten 5097 - 5101; JOHN A. HYATT: 'Liquid and supercritical carbon dioxide as organic solvents' *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250078A (en) * 1991-05-17 1993-10-05 Ciba-Geigy Corporation Process for dyeing hydrophobic textile material with disperse dyes from supercritical CO2 : reducing the pressure in stages
US5269815A (en) * 1991-11-20 1993-12-14 Ciba-Geigy Corporation Process for the fluorescent whitening of hydrophobic textile material with disperse fluorescent whitening agents from super-critical carbon dioxide
US6048369A (en) * 1998-06-03 2000-04-11 North Carolina State University Method of dyeing hydrophobic textile fibers with colorant materials in supercritical fluid carbon dioxide
US6261326B1 (en) 2000-01-13 2001-07-17 North Carolina State University Method for introducing dyes and other chemicals into a textile treatment system
US6615620B2 (en) 2000-01-13 2003-09-09 North Carolina State University Method for introducing dyes and other chemicals into a textile treatment system
US6676710B2 (en) 2000-10-18 2004-01-13 North Carolina State University Process for treating textile substrates
CN113832752A (zh) * 2021-10-27 2021-12-24 天津工业大学 一种基于超临界二氧化碳的染整方法

Also Published As

Publication number Publication date
ATE116018T1 (de) 1995-01-15
DE59103971D1 (de) 1995-02-02
EP0474598B1 (de) 1994-12-21

Similar Documents

Publication Publication Date Title
JP3253649B2 (ja) 分散染料で疎水性繊維材料を染色する方法
EP0543779A1 (de) Verfahren zum optischen Aufhellen von hydrophobem Textilmaterial mit dispersen optischen Aufhellern in überkritischem CO2
EP1141138B1 (de) Phthalimidyl-azofarbstoffe, verfahren zu deren herstellung und deren verwendung
EP0474599B1 (de) Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen in überkritischem CO2
EP0555179A1 (de) Azofarbstoffe
EP0474598B1 (de) Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen aus überkritischem CO2
EP0033296A1 (de) Färbestabiler Dispersionsfarbstoff und dessen Verwendung zum Färben synthetischer und halbsynthetischer Fasermaterialien
EP0474600B1 (de) Verfahren zum Färben von hydrophobem Textilmaterial mit Dispersionsfarbstoffen in überkritischem CO2
DE1266272B (de) Verfahren zum Faerben hydrophober Fasermaterialien
EP0539836A2 (de) Reaktivfarbstoff-Blaumischung mit verbesserter Kombinierbarkeit
EP0864615A1 (de) Azofarbstoffmischungen
DE1769263C3 (de) Von in Wasser ionogen-salzbildenden Gruppen freie Monoazofarbstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
CH638549A5 (de) Azoverbindungen.
EP0083313B1 (de) Farbstoffmischung, Verfahren zu ihrer Herstellung und Verwendung zum Färben und Bedrucken von hydrophobem Fasermaterial
EP0238443B1 (de) Dicyanobenzanthronverbindungen
DE1644351B2 (de) Blaue Disazofarbstoffe und deren Verwendung zum Farben von Mischgeweben aus Polyester und Baumwollfasern
DE2035002C3 (de) Monoazo-Dispersionsf arbstoffe, Verfahren zu deren Herstellung und ihre Verwendung
EP0040582B1 (de) Azoverbindungen
DE2317946A1 (de) Faerbeverfahren
DE2015587B2 (de) In wasser schwer loesliche anthrachinonfarbstoffe und deren verwendung
DE4238231A1 (de)
DE2338816A1 (de) Faerbeverfahren
DE1234893B (de) Verfahren zur Herstellung von Farbstoffen der Naphthoxidinreihe
DE2011051C (de) In Wasser schwerlösliche Monoazofarbstoffe
DE2101912C3 (de) In Wasser schwerlösliche Monoazofarbstoffe und deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19940215

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941221

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19941221

REF Corresponds to:

Ref document number: 116018

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59103971

Country of ref document: DE

Date of ref document: 19950202

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950321

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951115

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960831

Ref country code: CH

Effective date: 19960831

BECN Be: change of holder's name

Effective date: 19961129

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990628

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990709

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990720

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990831

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991013

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000827

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000831

BERE Be: lapsed

Owner name: CIBA SPECIALTY CHEMICALS HOLDING INC.

Effective date: 20000831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050827