EP0472751B1 - Rotor für eine Wälzkolbenvakuumpumpe - Google Patents

Rotor für eine Wälzkolbenvakuumpumpe Download PDF

Info

Publication number
EP0472751B1
EP0472751B1 EP90116357A EP90116357A EP0472751B1 EP 0472751 B1 EP0472751 B1 EP 0472751B1 EP 90116357 A EP90116357 A EP 90116357A EP 90116357 A EP90116357 A EP 90116357A EP 0472751 B1 EP0472751 B1 EP 0472751B1
Authority
EP
European Patent Office
Prior art keywords
rotor
rotors
profile
contour
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90116357A
Other languages
English (en)
French (fr)
Other versions
EP0472751A1 (de
Inventor
Ralf Steffens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Priority to DE59005764T priority Critical patent/DE59005764D1/de
Priority to EP90116357A priority patent/EP0472751B1/de
Priority to JP3211810A priority patent/JPH04246284A/ja
Priority to US07/750,322 priority patent/US5152684A/en
Publication of EP0472751A1 publication Critical patent/EP0472751A1/de
Application granted granted Critical
Publication of EP0472751B1 publication Critical patent/EP0472751B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type

Definitions

  • the invention relates to a rotor for a Roots vacuum pump with two identical rotors, each of which has an essentially eight-shaped profile contour consisting of four base profile sections and four head profile sections.
  • Roots vacuum pumps with rotors of this type have been widely used.
  • the rotary movement of the rotors which are synchronized by a gearbox, follows at the same speed and takes place without contact with one another and towards the housing wall.
  • the rotors are not subject to mechanical wear and can be operated at high speeds.
  • the gap width between the housing wall and the rotors and between the rotors themselves is a few tenths of a millimeter.
  • 0 for example, the slope of the tangent t o at the point of contact with the profile contour (FIG. 3) is 0.
  • FIG. 3 The typical line of engagement for the rotor profile contour according to FIGS. 1a, 2 to 4 (involute) is shown in FIG. 3 and designated E1. It has an eight-like shape with a center labeled C.
  • the line of engagement E 1 is shown in a stationary or housing-fixed coordinate system x f , y f , the 0 point of which lies in the axis 2 of a rotor.
  • the coordinate system x f , y f is shown in FIG. 3.
  • a characteristic value for the properties of a Roots vacuum pump of the type concerned here is the area utilization factor ⁇ , defined as the ratio of four times the rotor head area F to the cross-sectional area Q of the scooping area 13.
  • the volume V delivered with each half rotation of the rotors is equal to the product of the rotor scooping area F and the length l of the scooping area 13, so that the following applies to the theoretically conveyable amount of gas (suction capacity):
  • the larger F (and thus V) for a fixed cross-sectional area Q the greater the area utilization factor ⁇ and thus Q th .
  • a large area efficiency ⁇ leads to small and compact Roots vacuum pumps, which has an impact on the material and manufacturing costs and thus on the price of the pumps.
  • is defined as the ratio of the effectively extracted gas quantity Q eff to the theoretically extractable gas quantity Q th . Because of the gaps which are necessarily present in a tumbler vacuum pump of the type concerned here (contact-free movement of the rotors), backflows of the gases are inevitable and therefore Q eff is always less than Q th .
  • a relatively large ⁇ could be achieved, for example, by small gap widths at the "point of contact" on the one hand and between the rotors and the wall of the suction chamber on the other. Small gap widths result in a high temperature sensitivity of the pump. The reason for this is that the heat removal from the pistons rotating in a vacuum is limited. In the case of small gap widths, a slight increase in the temperature of the rotors leads to a gap consumption and thus to the rotor starting.
  • CH-PS 389 817 also discloses a rotor profile contour with straight, parallel longitudinal sides for the foot profile (straight rotors). According to the information in the Swiss patent mentioned, this contour enables a relatively low final pressure to be achieved. However, a significant reduction in the area utilization rate is accepted, since the rotor surface area F is larger in pumps with waisted pistons than in pumps with straight pistons (cf. surfaces 9 and 32 in FIGS. 4 b and 6 b of the CH-PS 389 817). Machines with rotor profile contours of the type proposed in CH-PS 389 817 therefore build relatively large, are correspondingly heavy and are therefore relatively expensive.
  • the present invention has for its object to improve the profile contour of the rotors for a Roots vacuum pump.
  • this object is achieved by the characterizing features of the claims.
  • the contour of a foot profile section of a first rotor and the contour of a corresponding head profile section of a second rotor are obtained. Since these sections are identical to or mirror-symmetrical to the other base or head profile sections of the rotors because of the identity of the rotors, the entire profile contour of the rotors can be developed for a Roots machine.
  • Roots machine of this type it applies that it has a high area utilization factor ⁇ (62% and higher).
  • 62% and higher.
  • a given small suction capacity results in a relatively small cross-sectional area Q and thus a compact and inexpensive construction.
  • a Roots vacuum pump with rotors of the type according to the invention has a relatively high volumetric efficiency ⁇ .
  • the reason for this is that the profile slope in the bottom of the waist (with small ⁇ values) is kept low.
  • the osculation is to be understood as the ratio of the radii of curvature of the surfaces forming the gaps. With favorable osculation values, the radii of curvature differ only slightly from one another. This practically lengthens the gaps between the pistons themselves and between the pistons and the wall of the pump chamber and thus a lower backflow rate. This extension of the column does not affect the temperature behavior of the pump.
  • the "contact point" on the line of engagement carries out a constant movement, ie a movement without regression or jumps (sudden skipping of larger profile contour sections), so that there are no dead volumes or other contaminated areas during the entire pass-through, and thus volume inclusions or volume carryovers do not occur.
  • the rotor profile contour according to the invention has a uniform and continuous course, so that there are considerable manufacturing advantages. There are no abrupt changes in incline. A minimum (tool-related) radius of curvature is not undercut.
  • Figure 5 shows a pair of rotors with a profile contour according to the invention.
  • the area utilization rate ⁇ is 64%.
  • the slope at the bottom of the waist is small over a relatively wide range. It can therefore be seen that the cuddling of the rotors to one another and to the envelope is better than with the rotors according to the prior art.
  • Figure 7 represents lines of engagement E1, E2, E3 and E4, in the fixed coordinate system x f , y f .
  • Half the waist width B and half the pitch circle diameter are shown.
  • the lines of engagement E1, E2, E3 belong to the rotor profiles according to the prior art, namely
  • the outer, sine-like line of engagement E4 characterizes a particularly advantageous embodiment of the rotor profile contour according to the invention, i.e. it is expedient if the rotor profile contour according to the invention is chosen so that its associated line of engagement E4 has the greatest possible amplitude and a sine-like shape.
  • the profile contour sections 8, 11 After the profile contour sections 8, 11 have been shaped in accordance with the present invention, the shape of the other contour sections 9, 12 and thus the complete rotor profile is fixed, since the other contour sections are identical to or mirror-symmetrical to the sections 8, 11.
  • the profile contour can be provided with an equidistant depending on the angle of rotation.

Description

  • Die Erfindung bezieht sich auf einen Rotor für eine Wälzkolbenvakuumpumpe mit zwei identischen Rotoren, welche jeweils eine im wesentlichen achtförmige, aus vier Fußprofilabschnitten und vier Kopfprofilabschnitten bestehende Profilkontur aufweisen.
  • Wälzkolbenvakuumpumpen mit Rotoren dieser Art haben eine breite Anwendung gefunden. Die mit gleicher Drehzahl folgende Drehbewegung der durch ein Getriebe synchronisierten Rotoren erfolgt gegeneinander und zur Gehäusewand hin berührungsfrei. Die Rotoren unterliegen keinem mechanischem Verschleiß und können mit hohen Drehzahlen betrieben werden. Die Spaltbreite zwischen der Gehäusewand und den Rotoren sowie zwischen den Rotoren selbst beträgt wenige Zehntel Millimeter.
  • Die Figuren 1 bis 5 zeigen Schnitte durch bekannte Rotoren bzw. Rotorpaare von Wälzkolbenpumpen der hier betroffenen Gattung. Figur 1a zeigt eine aus einer Evolventen entwickelte Rotorprofilkontur. Die Rotorprofilkontur nach Figur 1b ist aus der CH-PS 389 817 (Figuren 3, 6, "gerade" Rotoren) bekannt. Die Profilkontur nach Figur 1c hat Abschnitte, die der Form einer Zykloiden entsprechen. Die Figuren 2, 3 und 4 zeigen nochmals die Profilkontur nach Figur 1a. Die in diese Figuren eingetragenen Buchstaben und Zahlen haben im einzelnen die folgenden Bedeutungen:
  • 1:
    Rotoren
    2:
    Drehachsen der Rotoren
    3:
    kurze Achse der Rotoren
    4:
    lange Achse der Rotoren
    5:
    Wälzkreis
    6:
    Fußprofil des Rotors (innerhalb des Wälzkreises 5 liegende Rotorkontur)
    7:
    Kopfprofil des Rotors (außerhalb des Wälzkreises 5 liegende Rotorkontur)
    8, 9:
    Fußprofilabschnitte
    11, 12:
    Kopfprofilabschnitte
    13:
    Umhüllende bzw. Kontur des Schöpfraumes
    a:
    Wälzkreisdurchmesser bzw. Abstand der Drehachsen 2
    B:
    kurzer Durchmesser des Rotors (Taillenbreite)
    C:
    Berührungspunkt der Wälzkreise 5
    D:
    langer Durchmesser des Rotors
    E₁-E₄:
    Eingriffslinien
    F:
    Rotorschöpffläche
    Q:
    Querschnittsfläche des Schöpfraumes
    to, t:
    Tangenten durch einen "Berührungspunkt"
    x, y:
    rotorfestes Koordinatensystem (Figur 4)
    xf,yf:
    orts-(gehäuse-)festes Koordinatensystem (Figur 3)
    φ:
    Zentridrehwinkel
    α(φ):
    Steigung der Tangente an die Profilkontur im "Berührungspunkt" der beiden Rotoren im Koordinatensystem x/y

    Die Figuren 2, 3, 4 zeigen, daß sich die Profilkontur eines Rotors 1 aus vier Fußprofilabschnitten 8, 9 und vier Kopfprofilabschnitten 11, 12 zusammensetzt. Die Fußprofilabschnitte 8, 9 erstrecken sich vom Fußgrund (Schnittpunkt der Kontur mit der kurzen Rotorachse 3) bis zum Schnittpunkt der Kontur mit dem Wälzkreis 5. Die vier Fußabschnitte sind paarweise (Paarungen 8, 8 und 9, 9) einander gleich bzw. spiegelsymmetrisch (Paarungen 8, 9). Die Kopfprofilabschnitte erstrecken sich jeweils vom Schnittpunkt der Kontur mit der langen Rotorachse 4 bis zum Schnittpunkt mit dem Wälzkreis 5. Auch die vier Kopfprofilabschnitte sind paarweise einander gleich (Paarungen 11, 11 und 12, 12) bzw. spiegelsymmetrisch (Paarungen 11, 12). Die in den Figuren 1a und 2 bis 4 dargestellten Profilkonturen entsprechen der Kontur von Rotoren nach dem Stand der Technik (Evolvente), welche in der Vakuumtechnik vielfache Anwendung gefunden haben.
  • Bei jeder Stellung der beiden Rotoren im Schöpfraum gibt es eine Engstelle, die - obwohl die Rotoren einander nicht berühren - im weiteren als Berührungspunkt bezeichnet werden soll. Im Berührungspunkt bilden jeweils ein Punkt eines Fußprofilabschnittes des ersten Rotors mit einem Punkt eines korrespondierenden Kopfprofilabschnittes des zweiten Rotors die Engstelle. In einem rotorfesten kartesischen x-y-Koordinatensystem (Fig. 4) entspricht jedem Wert des Zentriwinkels φ ein

    f(φ) = Y(φ) = α( )
    Figure imgb0001


    α(φ) ist die Steigung der Tangente in einem Berührungspunkt an die Profilkontur. Bei einem Zentrierwinkel φ = 0 ist beispielsweise die Steigung der Tangente to im Berührungspunkt an die Profilkontur (Fig. 3) gleich 0.
  • Während des Betriebs der Pumpe bzw. während der Drehung der Rotoren wandert der Berührungspunkt auf einer geschlossenen Linie. Die für die Rotorprofilkontur nach den Figuren 1a, 2 bis 4 (Evolvente) typische Eingriffslinie ist in Figur 3 dargestellt und mit E₁ bezeichnet. Sie hat eine der Form einer acht ähnliche Gestalt mit einem mit C bezeichneten Zentrum. Die Darstellung der Eingriffslinie E₁ erfolgt in einem orts- bzw. gehäusefesten Koordinatensystem xf, yf, dessen 0-Punkt in der Achse 2 eines Rotors liegt. Das Koordinatensystem xf, yf ist in Figur 3 eingezeichnet.
  • Ein charakteristischer Wert für die Eigenschaften einer Wälzkolbenvakuumpumpe der hier betroffenen Art ist der Flächennutzungsgrad µ, definiert als Verhältnis der vierfachen Rotorschöpffläche F zur Querschnittsfläche Q des Schöpfraumes 13. Das bei jeder Halbdrehung der Rotoren geförderte Volumen V ist gleich dem Produkt aus der Rotorschöpffläche F und der Länge l des Schöpfraumes 13, so daß für die theoretisch förderbare Gasmenge (Saugvermögen) gilt:

    Q th = 4·V·n = 4·F·l·n
    Figure imgb0002


    wobei n die Drehzahl der Kolben ist. Je größer F (und damit V) bei fest vorgegebener Querschnittsfläche Q ist, desto größer ist der Flächennutzungsgrad µ und damit Qth. Bei vorgegebenem Saugvermögen führt deshalb ein großer Flächennutzungsgrad µ zu kleinen und kompakten Wälzkolbenvakuumpumpen, was Auswirkungen auf die Material- und Herstellkosten und damit auf den Preis der Pumpen hat.
  • Ein weiterer charakteristischer Wert für die Eigenschaften einer Wälkolbenvakuumpumpe ist der volumetrische Wirkungsgrad η . Er ist definiert als das Verhältnis von effektiv geförderter Gasmenge Qeff zur theoretisch förderbaren Gasmenge Qth. Wegen der in einer Wälkolbenvakuumpumpe der hier betroffenen Art (berührungsfreie Bewegung der Rotoren) notwendigerweise vorhandenen Spalte sind Rückströmungen der Gase unvermeidlich und damit Qeff stets kleiner als Qth. Je größer η ist, desto günstiger ist das Kompressionsverhalten einer Wälzkolbenvakuumpumpe. Ein relativ großes η ließe sich beispielsweise durch kleine Spaltbreiten im "Berührungspunkt" einerseits und zwischen den Rotoren und der Schöpfraumwandung andererseits erreichen. Kleine Spaltbreiten haben aber eine hohe Temperaturempfindlichkeit der Pumpe zur Folge. Der Grund dafür liegt darin, daß die Abfuhr der Wärme von den im Vakuum rotierenden Kolben begrenzt ist. Bei kleinen Spaltbreiten führt bereits eine geringfügige Temperaturerhöhung der Rotoren zu einer Spaltaufzehrung und damit zum Anlaufen der Rotoren.
  • In Bezug auf die Optimierung der Eigenschaften einer Wälzkolbenpumpe sind möglichst große Werte für µ und η erstrebenswert.
  • Gleichzeitig ist zu berücksichtigen, daß zur Fertigung insbesondere der Rotoren wegen ihrer besonderen Profilkonturen und wegen der geringen Spaltbreiten aufwendige Bearbeitungsverfahren erforderlich sind. Wegen dieser aufwendigen Bearbeitungsverfahren war deshalb in der Vergangenheit die Herstellung größerer Wälzkolbenmaschinen mit weniger günstigen µ- und η-Werten häufig kostengünstiger als die Herstellung kleinerer Maschinen mit besseren µ- und η-Werten, im übrigen aber gleichen Leistungsdaten.
  • Zum Stand der Technik wird auf das Buch von G. Niemann und H. Winter "Maschinenelemente", Bd. 2, 1985 sowie auf den Inhalt der erwähnten CH-PS 389 817 hingewiesen. Diese Literaturstellen zeigen zum einen, daß eine Vielzahl von Rotorprofilkonturen bekannt ist (CH-PS), welche sich zum großen Teil auf dem Markt nicht durchgesetzt haben. Zum anderen zeigen diese Literaturstellen, daß die Profilkontur der Rotoren von auf dem Markt eingeführten Rootsgebläsen bzw. -pumpen mit Hilfe von Rollkurven (Zykloide, Evolvente) erzeugt werden (CH-PS 389 817, Figur 2; "Maschinenelemente", Bd. 2, S. 142). Wälzkolbenpumpen mit derartigen Rotoren haben einen nicht wesentlich über 50 Prozent hinausgehenden Flächennutzungsgrad µ.
  • Durch die CH-PS 389 817 ist weiterhin eine Rotorprofilkontur mit geraden, parallel zueinander sich erstreckenden Längsseiten für das Fußprofil (gerade Rotoren) bekannt. Nach den Angaben in der genannten CH-Patentschrift ermöglicht diese Kontur das Erreichen eines relativ niedrigen Enddruckes. Dabei wird jedoch eine deutliche Reduzierung des Flächennutzungsgrades in Kauf genommen, da die Rotorschöpffläche F bei Pumpen mit taillierten Kolben größer ist als bei Pumpen mit geraden Kolben (vgl. die Flächen 9 bzw. 32 in den Figuren 4 b und 6 b der CH-PS 389 817). Maschinen mit Rotorprofilkonturen der in der CH-PS 389 817 vorgeschlagenen Art bauen deshalb relativ groß, sind entsprechend schwer und damit zwangsweise relativ kostspielig.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Profilkontur der Rotoren für eine Wälzkolbenvakuumpumpe zu verbessern.
  • Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche gelöst. Durch die Anwendung dieser Merkmale erhält man zunächst die Kontur eines Fußprofilabschnittes eines ersten Rotors sowie die Kontur eines korrespondierenden Kopfprofilabschnittes eines zweiten Rotors. Da diese Abschnitte wegen der Identität der Rotoren identisch mit oder spiegelsymmetrisch zu den übrigen Fuß- bzw. Kopfprofilabschnitten der Rotoren sind, läßt sich die gesamte Profilkontur der Rotoren für eine Wälzkolbenmaschine entwickeln.
  • Für eine Wälzkolbenmaschine dieser Art gilt, daß sie einen hohen Flächennutzungsgrad µ (62% und höher) hat. Infolge dieses hohen Flächennutzungsgrades ergibt sich bei vorgegebenem Saugvermögen eine relativ kleine Schöpfraumquerschnittsfläche Q und damit eine kompakte sowie kostengünstige Bauweise.
  • Gleichzeitig hat eine Wälzkolbenvakuumpumpe mit Rotoren der erfindungsgemäßen Art einen relativ hohen volumetrischen Wirkungsgrad η . Der Grund dafür liegt darin, daß die Profilsteigung im Taillengrund (bei kleinen φ-Werten) gering gehalten wird. Dadurch ergeben sich sowohl zwischen den Rotoren selbst als auch zwischen den Rotoren sowie der Schöpfraumwandung günstige Schmiegungswerte. Unter der Schmiegung soll das Verhältnis der Krümmungsradien der die Spalte bildenden Flächen verstanden werden. Bei günstigen Schmiegungswerten weichen die Krümmungsradien nur wenig voneinander ab. Dadurch wird praktisch eine Verlängerung der zwischen den Kolben selbst sowie zwischen den Kolben und der Schöpfraumwandung vorhandenen Spalte und damit eine geringere Rückströmungsrate erzielt. Diese Verlängerung der Spalte beeinträchtigt nicht das Temperaturverhalten der Pumpe.
  • Zur Verringerung der Rückströmungsraten und damit zur Verbesserung des volumetrischen Wirkungsgrades trägt weiterhin bei, daß trotz hoher µ-Werte der "Berührungspunkt" auf der Eingriffslinie eine stetige Bewegung, d.h., eine Bewegung ohne Rückschritt oder Sprünge (schlagartiges Überspringen größerer Profilkonturabschnitte) ausführt, so daß während der gesamten Abwälzung Totvolumina oder andere Schadräume nicht vorhanden sind und damit Volumeneinschlüsse oder Volumenverschleppungen nicht eintreten.
  • Die erfindungsgemäße Rotorprofilkontur hat einen gleichförmigen und stetigen Verlauf, so daß sich erhebliche Fertigungsvorteile ergeben. Abrupte Steigungsänderungen treten nicht auf. Ein minimaler (werkzeugbedingter) Krümmungsradius wird nicht unterschritten.
  • Weitere Vorteile und Einzelheiten der Erfindung sollen anhand der Figuren 5 bis 7 erläutert werden.
  • Figur 5 zeigt ein Rotorpaar mit einer Profilkontur nach der Erfindung. Der Flächennutzungsgrad µ beträgt 64%. Die Steigung im Taillengrund ist in einem relativ weiten Bereich gering. Es ist deshalb ersichtlich, daß die Schmiegung der Rotoren zueinander und zur Umhüllenden besser ist als bei den Rotoren nach dem Stand der Technik.
  • Figur 6 zeigt den Verlauf der Kurve α(φ) in Abhängigkeit vom Zentriwinkel φ von 0° bis 45°. Bis auf den Anfangs- und Endbereich (jeweils etwa 5°) ist α(φ) größer als φ . Die Gerade α(φ) = φ
    Figure imgb0003
    ist gestrichelt eingezeichnet.
  • Figur 7 stellt Eingriffslinien E₁, E₂, E₃ und E₄ dar, und zwar im ortsfesten Koordinatensystem xf, yf. Die halbe Taillenbreite B und der halbe Wälzkreisdurchmesser sind eingezeichnet. Die Eingriffslinien E₁, E₂, E₃ gehören zu den Rotorprofilen nach dem Stand der Technik, und zwar

    Figure imgb0004
  • Die äußere, sinusähnliche Eingriffslinie E₄ kennzeichnet eine besonders vorteilhafte Ausführungsform der erfindungsgemäßen Rotorprofilkontur, d.h., es ist zweckmäßig, wenn die erfindungsgemäße Rotorprofilkontur so gewählt wird, daß ihre zugehörige Eingriffslinie E₄ eine möglichst große Amplitude und eine sinusähnliche Form hat.
  • Nach der Formgebung der Profilkonturabschnitte 8, 11 entsprechend der vorliegenden Erfindung liegt die Form der übrigen Konturabschnitte 9, 12 und damit das vollständige Rotorprofil fest, da die übrigen Konturabschnitte identisch mit oder spiegelsymmetrisch zu den Abschnitten 8, 11 sind. Zur Einstellung anwendungsspezifischer Spiele (Spaltbreiten) kann die Profilkontur drehwinkelabhängig mit einer den Anforderungen entsprechenden Äquidistanten versehen werden.
  • Der Einsatz von Rotoren mit der erfindungsgemäßen Profilkontur in Wälzkolbenvakuumpumpen führt zu einer optimierten Lösung mit wesentlichen Verbesserungen gegenüber dem Stand der Technik. Trotz relativ großem Flächennutzungsgrad können ein stetiger Konturverlauf erreicht und minimale Krümmungsradien vermieden werden.Dadurch ergeben sich nicht nur eine kompakte Bauweise (kleiner, leichter) sondern auch eine vereinfachte Fertigung. Der verbesserte Schmiegungsverlauf und die relativ gleichmäßige Profilberührungspunkt-Bewegung führen zu einem günstigen volumetrischen Wirkungsgrad. Insgesamt wird eine Verbesserung der Pumpeigenschaften bei gleichzeitiger Reduzierung der Herstellkosten erreicht.

Claims (3)

  1. Wälzkolbenvakuumpumpe mit zwei identischen Rotoren, die eine im wesentlichen achtförmige, aus vier Fußprofilabschnitten (8, 9) und vier Kopfprofilabschnitten (11, 12) bestehende Profilkontur aufweisen, dadurch gekennzeichnet , daß
    a) die Fußprofilkontur (8) der Rotoren (1) in einem rotorfesten Koordinatensystem (x, y, φ) die folgenden Eigenschaften hat
    - der bei φ = x = o
    Figure imgb0005

    dem halben kurzen Rotordurchmesser B entsprechende y-Wert liegt zwischen 0,5 a (a = Wälzkreisdurchmesser) und a (1- √2/2),
    - für den Tangentensteigungswinkel α(φ) gilt für die Werte zwischen φ = 0° und φ = 45° folgendes:
    bis ≈ 5° : α(φ) < φ
    von ≈ 5° bis ≈ 40° : α(φ) > φ
    ab ≈ 40° : α(φ) < φ
    und
    b) die Kontur des mit der Fußprofilkontur (8) des ersten Rotors (1) korrespondierenden Kopfprofiles (11) des zweiten Rotors (1) einer Abwälzung der Kontur des Fußprofiles (8) des ersten Rotors entspricht.
  2. Wälzkolbenvakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, daß für den Tangentensteigungswinkel α(φ) in Abhängigkeit von φ folgendes gilt:
    für φ ≧ 15° ist α(φ) > 40°
  3. Wälzkolbenvakuumpumpe nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß zur Bildung von Rotorspielwerten eine Äquidistante berücksichtigt wird.
EP90116357A 1990-08-27 1990-08-27 Rotor für eine Wälzkolbenvakuumpumpe Expired - Lifetime EP0472751B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59005764T DE59005764D1 (de) 1990-08-27 1990-08-27 Rotor für eine Wälzkolbenvakuumpumpe.
EP90116357A EP0472751B1 (de) 1990-08-27 1990-08-27 Rotor für eine Wälzkolbenvakuumpumpe
JP3211810A JPH04246284A (ja) 1990-08-27 1991-08-23 ルーツ形真空ポンプ用のロータ
US07/750,322 US5152684A (en) 1990-08-27 1991-08-27 Rotor profile for a roots vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90116357A EP0472751B1 (de) 1990-08-27 1990-08-27 Rotor für eine Wälzkolbenvakuumpumpe

Publications (2)

Publication Number Publication Date
EP0472751A1 EP0472751A1 (de) 1992-03-04
EP0472751B1 true EP0472751B1 (de) 1994-05-18

Family

ID=8204376

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90116357A Expired - Lifetime EP0472751B1 (de) 1990-08-27 1990-08-27 Rotor für eine Wälzkolbenvakuumpumpe

Country Status (4)

Country Link
US (1) US5152684A (de)
EP (1) EP0472751B1 (de)
JP (1) JPH04246284A (de)
DE (1) DE59005764D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110091B3 (de) * 2013-09-13 2015-02-12 Pfeiffer Vacuum Gmbh Wälzkolbenpumpe mit zwei Rotoren

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6095781A (en) * 1997-09-11 2000-08-01 Viking Pump, Inc. Timed element, high pressure, industrial rotary lobe pump
US5992230A (en) * 1997-11-15 1999-11-30 Hoffer Flow Controls, Inc. Dual rotor flow meter
US8118024B2 (en) 2003-08-04 2012-02-21 Carefusion 203, Inc. Mechanical ventilation system utilizing bias valve
US7527053B2 (en) 2003-08-04 2009-05-05 Cardinal Health 203, Inc. Method and apparatus for attenuating compressor noise
US20050112013A1 (en) * 2003-08-04 2005-05-26 Pulmonetic Systems, Inc. Method and apparatus for reducing noise in a roots-type blower
WO2005013879A2 (en) 2003-08-04 2005-02-17 Pulmonetic Systems, Inc. Portable ventilator system
US7607437B2 (en) 2003-08-04 2009-10-27 Cardinal Health 203, Inc. Compressor control system and method for a portable ventilator
US8156937B2 (en) 2003-08-04 2012-04-17 Carefusion 203, Inc. Portable ventilator system
US7553143B2 (en) * 2004-04-19 2009-06-30 The Regents Of The University Of California Lobe pump system and method of manufacture
JP4677892B2 (ja) * 2005-12-07 2011-04-27 トヨタ自動車株式会社 ルーツ型ポンプおよび燃料電池システム
DE102006041633A1 (de) * 2006-09-05 2008-03-13 Herold & Co. Gmbh Pumpe
US7997885B2 (en) 2007-12-03 2011-08-16 Carefusion 303, Inc. Roots-type blower reduced acoustic signature method and apparatus
US8888711B2 (en) 2008-04-08 2014-11-18 Carefusion 203, Inc. Flow sensor
CN103334928B (zh) * 2013-06-09 2016-08-10 李锦上 节能摇摆活塞压缩机
JP2018168714A (ja) * 2017-03-29 2018-11-01 株式会社豊田自動織機 燃料電池用水素循環ポンプ
CN109555681B (zh) * 2018-12-28 2019-12-24 江南大学 一种确定罗茨泵转子型线合理设计区域的方法及其应用
RU2730769C1 (ru) * 2020-02-19 2020-08-25 Акционерное общество "Вакууммаш" (АО "Вакууммаш") Двухроторная машина
CN115076104B (zh) * 2022-06-24 2023-10-20 宁波爱发科真空技术有限公司 罗茨真空泵转子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE100312C (de) *
US3089638A (en) * 1958-12-01 1963-05-14 Dresser Ind Impellers for fluid handling apparatus of the rotary positive displacement type
GB953799A (en) * 1959-08-11 1964-04-02 Heraeus Gmbh W C Improvements in or relating to mechanical high vacuum pumps of the roots blower type
US3275225A (en) * 1964-04-06 1966-09-27 Midland Ross Corp Fluid compressor
DD100312A1 (de) * 1972-12-06 1973-09-12
JP2761233B2 (ja) * 1989-02-17 1998-06-04 富士重工業株式会社 ルーツ型ブロワ
US4938670A (en) * 1989-10-02 1990-07-03 Tocew Lee Rotary fluid machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013110091B3 (de) * 2013-09-13 2015-02-12 Pfeiffer Vacuum Gmbh Wälzkolbenpumpe mit zwei Rotoren

Also Published As

Publication number Publication date
EP0472751A1 (de) 1992-03-04
JPH04246284A (ja) 1992-09-02
DE59005764D1 (de) 1994-06-23
US5152684A (en) 1992-10-06

Similar Documents

Publication Publication Date Title
EP0472751B1 (de) Rotor für eine Wälzkolbenvakuumpumpe
DE4330609C2 (de) Rotationskolbenmaschine in Spiralbauweise
DE19613833B4 (de) Innenzahnradmaschine, insbesondere Innenzahnradpumpe
DE3800324C2 (de)
DE1428277C3 (de) Zweistufiger Schraubenverdichter der Tandembauart
EP1070848A1 (de) Verdrängermaschine für kompressible Medien
DE2560045B1 (de) Parallel- und aussenachsiger Rotationskolbenverdichter mit Kaemmeingriff
EP3507497B1 (de) Vakuumpumpen-schraubenrotor
DE2409554A1 (de) Schraubenkompressor mit in einem gehaeuse befindlichen rotoren
WO2000047897A1 (de) Zwillings-förderschrauben zum einbau in verdrängermaschinen, insbesondere pumpen
DE3034299A1 (de) Schraubenverdichter bzw. -motor
EP0209099B1 (de) Stator für Exzenterschneckenpumpen
DE69928172T2 (de) Vacuumpumpe
DE3321718A1 (de) Waelzkolbenpumpe
DE60101752T2 (de) Verbundvakuumpumpen
WO2009024262A1 (de) Mehrstufige drehkolbenvakuumpumpe bzw. -verdichter
DE3831283C2 (de)
EP3507495B1 (de) Schraubenvakuumpumpe
DE2523298A1 (de) Rotationsverdraengerpumpe bzw. -motor
DE3401589A1 (de) Verdichter
DE3526517A1 (de) Turbomolekularpumpe
DE2443727A1 (de) Trommel-molekularpumpe
DE2134241A1 (de) Mehrstufige außenachsige Drehkolben maschine fur elastische Arbeitsmedien
EP0189560B1 (de) Zahnradmaschine (Pumpe oder Motor)
DE102019103974A1 (de) Flüssigkeitsförderpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR GB LI

17P Request for examination filed

Effective date: 19920818

17Q First examination report despatched

Effective date: 19931108

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940518

REF Corresponds to:

Ref document number: 59005764

Country of ref document: DE

Date of ref document: 19940623

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960711

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960723

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960724

Year of fee payment: 7

Ref country code: CH

Payment date: 19960724

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST