EP0462073A2 - Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetallen - Google Patents

Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetallen Download PDF

Info

Publication number
EP0462073A2
EP0462073A2 EP91810453A EP91810453A EP0462073A2 EP 0462073 A2 EP0462073 A2 EP 0462073A2 EP 91810453 A EP91810453 A EP 91810453A EP 91810453 A EP91810453 A EP 91810453A EP 0462073 A2 EP0462073 A2 EP 0462073A2
Authority
EP
European Patent Office
Prior art keywords
mol
electrolyte
conversion layers
ethylenediamine
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91810453A
Other languages
English (en)
French (fr)
Other versions
EP0462073A3 (en
EP0462073B1 (de
Inventor
Kerstin Haupt
Jürgen Schmidt
Thomas Schwarz
Ulrich Bayer
Thomas Furche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik AG
Original Assignee
Jenoptik Jena GmbH
Jenoptik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Jena GmbH, Jenoptik AG filed Critical Jenoptik Jena GmbH
Publication of EP0462073A2 publication Critical patent/EP0462073A2/de
Publication of EP0462073A3 publication Critical patent/EP0462073A3/de
Application granted granted Critical
Publication of EP0462073B1 publication Critical patent/EP0462073B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/14Producing integrally coloured layers

Definitions

  • the invention relates to electrolytes for producing uniformly thin, matte black conversion layers as functional surfaces of components or groups made of light metal materials or their alloys by the process of anodic oxidation with spark discharge (ANOF).
  • ANOF anodic oxidation with spark discharge
  • they represent a coating variant especially for complex shaped construction parts or groups and are therefore particularly suitable for use in optical precision device construction.
  • a number of electrolytes for producing conversion layers by means of the ANOF process on lightweight materials, especially on valve metals such as Ti, Ta, Zr, Nb or AI, are known from the specialist and patent literature (see PS-DD 229 163, PS-DD 236 978 , PS-DD 142 360, PS-EP 0 280 886).
  • electrolytes are used which mainly contain subgroup elements which are bound as hydroxo, amino or complexone complexes.
  • PS-DD 229 163 describes electrolyte solutions for producing black or gray-black conversion layers on light metals, such as Al.
  • electrolyte solutions mainly contain fluorides as NaF or NH4F, dihydrogen phosphates as NaH2PO4, tetraborates as Borax Na2B4O7 and chromates as well as other foreign additives.
  • fluorides as NaF or NH4F
  • dihydrogen phosphates as NaH2PO4
  • tetraborates as Borax Na2B4O7
  • chromates as well as other foreign additives.
  • the disadvantage here is that the use of fluorides necessitates special work, environmental protection and disposal measures.
  • the PS-DD 257 275 refers to decorative coatings, inter alia, on titanium materials which are produced by means of the ANOF process and an electrolyte consisting of NaF, NaH2PO4, Na2B4O7 and potassium hexacyanoferrate-K4 [Fe [CN] 6] are produced.
  • this solution contains the great problems of health and environmental protection due to the toxic cyanide-containing electrolyte.
  • the black color is achieved only through the use of hexacyanoferrate, which, like the black iron-aluminum spinel, forms a tita spinel and only serves decorative purposes.
  • PS-DD 236 978 describes solar-selective absorption layers which consist of dark-colored, chromadotized oxide layers on valve metals such as Ti, Ta, Zr, Nb, Al and which are also produced by means of an electrolyte containing fluoride and dihydrogen phosphate, tetraborate and chromate in the ANOF process .
  • These electrolytes also have the already mentioned disadvantage of fluoride content and the layers obtained with them also have such a rough surface structure effect that when used, for example as a functional surface for complexly shaped structural parts or assemblies, there is such abrasion that dimensional accuracy is no longer guaranteed .
  • these layers have a high ABsorption capacity ⁇ , they also record multiple reflections of the incident radiation due to the rough surface structure effect, which emits its energy in the form of heat to the absorption layer and transfers it to the collector body. In relation to the optical absorption ⁇ , a very low thermal emission ⁇ is achieved.
  • the aim of the invention is to provide an easy-to-use electrolyte for the production of uniformly thin, matte black conversion layers as functional surfaces of components or groups, which open up a large amount of constructive freedom even in the case of complicatedly shaped structural parts or groups.
  • the invention has for its object to develop a low-pollutant, environmentally friendly electrolyte that enables the production of optically black layers with a layer thickness ⁇ 10 microns and almost the same optical absorption and thermal emissivity using the ANOF process.
  • the object is achieved by an electrolyte for producing thin black conversion layers on light metals or their alloys by means of anodic oxidation with spark discharge in that the electrolyte consists of an aqueous solution which contains potassium dihydrogen phosphate, potassium chromate, acetates, ammonium citrate and ethylenediamine.
  • mol / l potassium dihydrogen phosphate 0.03 to 0.08 mol / l potassium chromate; Acetations in concentrations from 0.08 to 0.5 mol / l; 0.1 to 0.3 mol / l ammonium citrate and 0.5 to 0.9 mol / l ethylenediamine mixed to form an aqueous solution.
  • An advantageous embodiment of the solution consists in that the ions of the copper acetate are used as acetations.
  • An essential result of the use of the electrolyte according to the invention is that it can be used to produce the thin black conversion layers by the light metal or its alloys using plasma-chemical anodic oxidation in an aqueous electrolyte at a current density of 0.005 to 0.05 A. cm ⁇ 2 and a voltage of 100 - 200 V is coated.
  • a degreased and alkaline pickled sheet made of AlMg 5 was also made using plasma-chemical anodic oxidation with spark discharge in an already known aqueous electrolyte, consisting of a 4.5% by volume ammoniacal solution with 0.5 mol / l KH2PO4; 0.1 mol / l K2crO4 and 0.35 mol / l Cu [CH3COO] 2 at a current density of 0.045 A. cm ⁇ 2 coated.
  • a deep black colored conversion layer is also obtained in the one-step process.
  • the new electrolyte gives a conversion layer of approximately 4 ⁇ m in thickness. It is therefore about 30% of the layer thickness of conventional black ANOF layers. This is particularly advantageous for constructive solutions in which coatings have to be applied without changing the fit tolerances. Even thread fits up to H6 tolerances are manageable. The release of particles when fitting parts is minimized. The good spreading capacity of cylindrical parts up to an inner diameter / length ratio of 1:10.
  • the reflectance at 540 nm is 6% and is therefore comparable to conventional black ANOF layers.
  • the roughness number is 1.6 ⁇ m, while for conventional black ANOF layers it is 5.4 ⁇ m - with the same initial roughness of 0.7 ⁇ m.
  • the layers obtained therefore have a lower particle generation and are therefore suitable as a coating variant for complexly shaped construction parts or assemblies with higher requirements for their dimensional accuracy.
  • the dielectric strength test is to be understood here as a laboratory method for determining the current / voltage curve up to the breakdown of the layer under high vacuum conditions (10 ⁇ 2Pa). The results obtained show that the dielectric strength is maintained or even increases slightly as the layer thickness decreases due to the specific morphology of the layer. However, it would have been assumed that the dielectric strength of layers of chemically similar composition decreases with decreasing layer thickness (see Kahle, M.-Elektro Isoliertechnik, VEB Verlagtechnik, Berlin, 1988).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die Erfindung betrifft einen ammoniak-, cyanid- und fluoridfreien, und damit schadstoffarmen, umweltfreundlichen Elektrolyten, der die Herstellung optisch schwarzer Schichten auf Leichtmetallen oder deren Legierungen mit einer Schichtdicke <10 µm und nahezu gleichem optischen Absorptions- und thermischen Emissionsvermögen mittels ANOF-Verfahren ermöglicht. Diese Schichten besitzen im Vergleich zu den bisher bekannten, im ANOF-Verfahren erzielten Konversionsschichten eine wesentliche geringere Rauhzahl und damit eine geringere Partikelgenerierung. Durch den Einsatz des Elektrolyten im ANOF-Verfahren wird somit eine Beschichtungsvariante besonders für kompliziert geformte Konstruktionsteile oder -gruppen mit höheren Anforderungen an ihre Masshaltigkeit gegeben.

Description

  • Die Erfindung betrifft Elektrolyte zur Erzeugung gleichmässig dünner mattschwarzer Konversionsschichten als Funktionsflächen von Bauteilen bzw. -gruppen aus Leichtmetallwerkstoffen oder deren Legierungen nach dem Verfahren der anodischen Oxidation unter Funkenentladung (ANOF). Sie stellen in ihrer Anwendung eine Beschichtungsvariante besonders für kompliziert geformte Konstruktionsteile oder -gruppen dar und sind daher besonders für den Einsatz im optischen Präzisisionsgerätebau geeignet.
  • Aus der Fach- und Patentliteratur sind eine Anzahl Elektrolyte zur Erzeugung von Konversionsschichten mittels ANOF-Verfahren auf Leichtgewichtswerkstoffen, speziell auf Ventilmetallen, wie Ti, Ta, Zr, Nb oder AI bekannt (s. PS-DD 229 163, PS-DD 236 978, PS-DD 142 360, PS-EP 0 280 886). Hierbei werden Elektrolyte verwendet, die vorwiegend Nebengruppenelemente enthalten, die als Hydroxo-, Amino- oder Komplexonkomplexe gebunden sind. Beispielsweise beschreibt die PS-DD 229 163 Elektrolytlösungen zur Erzeugung schwarzer bzw. grau-schwarzer Konversionsschichten auf Leichtmetallen, wie AI. Diese Elektrolytlösungen enthalten hauptsächlichst Fluoride als NaF oder NH₄F, Dihydrogenphosphate als NaH₂PO₄, Tetraborate als Borax Na₂B₄O₇ und Chromate sowie andere Fremdzusätze. Nachteilig ist dabei, dass durch die Verwendung der Fluoride besondere Arbeits-, Umweltschutz- und Entsorgungsmassnahmen erforderlich sind.
  • Die PS-DD 257 275 verweist auf dekorative Ueberzüge u.a. auf Titanwerkstoffen, die mittels ANOF-Verfahren und einem Elektrolyten, bestehend aus NaF, NaH₂PO₄, Na₂B₄O₇ und Kaliumhexacyanoferrat-K₄ [Fe[CN]₆] hergestellt werden. Neben den bereits erwähnten Nachteilen der Fluoridhaltigkeit des Elektrolyten birgt diese Lösung in sich die grosse Problematik des Gesundheits- und Umweltschutzes aufgrund des toxisch wirkenden cyanidhaltigen Elektrolyten. Die schwarze Farbe wird lediglich durch den Einsatz des Hexacyanoferrats erzielt, was ähnlich dem schwarzen Eisen-Aluminiumspinell ein Tita-Spinell bildet und lediglich dekorative Zwecke erfüllt.
  • Die PS-DD 236 978 beschreibt solarselektive Absorptionsschichten, die aus dunkelgefärbten, chromadotierten Oxidschichten auf Ventilmetallen, wie Ti, Ta, Zr, Nb, Al bestehen und die ebenfalls mittels eines fluoridhaltigen und Dihydrogenphosphat, Tetraborat sowie Chromat enthaltenen Elektrolyten im ANOF-Verfahren erzeugt werden. Diese Elektrolyten besitzen auch den bereits erwähnten Nachteil der Fluoridhaltigkeit und die damit erzielten Schichten weisen ausserdem einen derart rauhen Oberflächenstruktureffekt auf, dass bei ihrer Anwendung beispielsweise als Funktionsfläche für kompliziert geformte Konstruktionsteile oder Baugruppen ein solcher Abrieb zu verzeichnen ist, dass eine Masshaltigkeit nicht mehr gegeben ist. Diese Schichten besitzen zwar ein hohes ABsorptionsvermögen α, verzeichnen jedoch ebenfalls, bedingt durch den rauhen Oberflächenstruktureffekt, Mehrfachreflexionen der einfallenden Strahlung, die dabei ihre Energie in Form von Wärme an die Absorptionsschicht abgibt und diese auf den Kollektorkörper übertragen wird. Es wird im Verhältnis zur optischen Absorption α eine sehr geringe thermische Emission ε erzielt.
  • Seit kurzem sind cyanid- und fluoridfreie und damit verbunden gesundheits- und umweltfreundliche Elektrolyte zur Erzeugung feimattierter, tiefschwarzer Konversionsschichten mit nahezu gleichem optischen Absorptions- und thermischen Emissionsvermögen auf Leichtmetallen oder deren Legierungen bekannt, die mittels ANOF-Verfahren realisiert werden. Die so erzeugten Schichten sind 10 ... 12 µm stark, garantieren damit eine grosse Anwendungsbreite, sind jedoch für Konstruktionsteile (z.B. Passungen, Gewinde) mit höheren Anforderungen an Masshaltigkeit als Funktionsflächen nicht geeignet. Da der Elektrolyt u.a. aus einer 2 bis 6-volumenprozentigen ammoniakalischen Lösung besteht, tritt eine deutliche Geruchsbelästigung auf, die erhöhte Anforderungen an die Produktionstechnologie stellt.
  • Das Ziel der Erfindung liegt in der Bereitstellung eines einfach zu handhabenden Elektrolyten zur Erzeugung gleichmässig dünner mattschwarzer Konversionsschichten als Funktionsflächen von Bauteilen bzw. -gruppen, die auch bei kompliziert geformten Konstruktionsteilen oder -gruppen einen grossen konstruktiven Spielraum eröffnen.
  • Der Erfindung liegt die Aufgabe zugrunde, einen schadstoffarmen, umweltfreundlichen Elektrolyten zu entwickeln, der die Herstellung optisch schwarzer Schichten mit einer Schichtdicke <10 µm und nahezu gleichem optischen Absorptions- und thermischen Emissionsvermögen mittels ANOF-Verfahren ermöglicht.
  • Erfindungsgemäss wird die Aufgabe durch einen Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetallen oder deren Legierungen mittels anodischer Oxidation unter Funkenentladung dadurch gelöst, dass der Elektrolyt aus einer wässrigen Lösung besteht, die Kaliumdihydrogenphosphat, Kaliumchromat, Acetationen, Ammoniumcitrat und Ethylendiamin enthält. Zur Herstellung des Elektrolyten werden 0,4 bis 0,7 mol/l Kaliumdihydrogenphosphat; 0,03 bis 0,08 mol/l Kaliumchromat; Acetationen in Konzentrationen von 0,08 bis 0,5 mol/l; 0,1 bis 0,3 mol/l Ammoniumcitrat und 0,5 bis 0,9 mol/l Ethylendiamin zu einer wässrigen Lösung vermischt. Eine vorteilhafte Ausgestaltung der Lösung besteht darin, dass als Acetationen die Ionen des Kupferacetats verwendet werden. Ein wesentliches Ergebnis der Anwendung des erfindungsgemässen Elektrolyten besteht darin, dass mit ihm die dünnen schwarzen Konversionsschichten hergestellt werden können, indem das Leichtmetall oder dessen Legierungen mittels plasmachemischer anodischer Oxidation in einem wässrigen Elektrolyten bei einer Stromdichte von 0,005 bis 0,05 A . cm⁻² und einer Spannung von 100 - 200 V beschichtet wird.
  • Die Vorteile der Lösung ergeben sich im wesentlichen dadurch, dass ein Elektrolyt entwickelt wurde,
    • der die Herstellung optisch schwarzer Schichten mit einer Schichtdicke <10 µm und nahezu gleichem optischen Absorptions- und thermischen Emissionsvermögen ermöglicht,
    • Welcher ammoniak-, cyanid- und fluoridfrei und daher gesundheits- und umweltfreundlich ist, d.h. es sind keine zusätzlichen Umweltschutz- und arbeitsschutztechnischen Massnahmen erforderlich,
    • bei dessen Anwendung im ANOF-Verfahren eine Konversionsschicht erreicht wird, die im Vergleich zu den bisherig bekannten, im ANOF-Verfahren erzielten Konversionsschichten eine wesentlich geringere Rauhzahl und damit eine geringere Partikelgenerierung besitzt,
    • durch dessen Einsatz im ANOF-Verfahren somit eine Beschichtungsvariante für kompliziert geformte Konstruktionsteile oder Baugruppen mit höheren Anforderungen an ihre Masshaltigkeit gegeben ist,
    • der ein Schichtsystem erzeugt, welches eine sehr gute Thermovakuumstabilität, verbunden mit einer hohen Langzeitstabilität durch eine minimale Abgabe flüchtiger Bestandteile des Schichtsystems ermöglicht. Damit werden funktionsbeeinträchtigende Kontaminationserscheinungen in Baugruppen, beispielsweise in optischen Systemen, ausgeschlossen.
    Ausführungsbeispiele
  • Die Erfindung soll nachfolgend an einem Beispiel erläutert werden.
  • Ein entfettetes und alkalisch gebeiztes Blech aus AlMg 5 wird in einem Elektrolysebad, bestehend aus einer wässrigen Lösung aus 0,59 mol/l=80 g/l KH₂PO₄; 0,05 mol/l=10 g/l K₂CrO₄, 0,35 mol/ml=70 g/l Cu[CH₃COO]₂ . H₂O; 0,22 mol/l=50 g/l NH₄ . citrat und 0,38 ml/l=100 ml Ethylendiamin als Anode geschaltet und mit Hilfe der anodischen Oxidation unter Funkenentladung bei einer Stromdichte von 0,05A . cm⁻² und bei einer Spannung von 170V beschichtet. Man erhält eine tiefschwarze, matte Konversionsschicht.
  • Im Vergleich dazu wurde ebenfalls ein entfettetes und alkalisch gebeiztes Blech aus AlMg 5 mittels plasmachemischer anodischer Oxidation unter Funkenentladung in einem bereits bekannten wässrigen Elektrolyten, bestehend aus einer 4,5-volumenprozentigen ammoniakalischen Lösung mit 0,5 mol/l KH₂PO₄; 0,1 mol/l K₂crO₄ und 0,35 mol/l Cu[CH₃COO]₂ bei einer Stromdichte von 0,045 A . cm⁻² beschichtet.
  • Man erhält auch im Einstufenprozess eine tiefschwarz gefärbte Konversionsschicht.
  • Die signifikanten Unterschiede beider Lösungen sind in Tabelle 1 dargestellt:
    Figure imgb0001
    Figure imgb0002
  • Es ist zu entnehmen, dass man mit dem neuen Elektrolyten eine Konversionsschicht von ca. 4 µm Schichtdicke erhält. Sie beträgt somit etwa 30 % der Schichtdicke von konventionellen schwarzen ANOF-Schichten. Die ist besonders für konstruktive Lösungen vorteilhaft, bei denen Beschichtungen ohne Veränderungen der Passungstoleranzen erfolgen müssen. So sind selbst Gewindepassungen bis H6-Toleranzen beherrschbar. Das Freisetzen von Partikeln beim Einpassen von Teilen wird minimiert. Das gute Streuvermögen von zylinderförmigen Teilen bis zu einem Innendurchmesser-/Längenverhältnis 1:10.
  • Die Remission bei 540 nm beträgt 6 % und ist damit mit herkömmlichen schwarzen ANOF-Schichten vergleichbar.
  • Die Rauhigkeit (Rz) . Rauhzahl beträgt 1,6 µm, während sie für konventionelle schwarze ANOF-Schichten 5,4 µm beträgt - bei gleicher Ausgangsrauhigkeit von 0,7 µm. Die erzielten Schichten besitzen deshalb eine geringere Partikelgenerierung und sind deshalb als Beschichtungsvariante für kompliziert geformte Konstruktionsteile oder Baugruppen mit höheren Anforderungen an ihre Masshaltigkeit geeignet.
  • Die Prüfung der Durchschlagfestigkeit ist hier zu verstehen als labormässige Methode zur Ermittlung des Strom-/Spannungsverlaufes bis zum Durchschlag der Schicht unter Hochvakuumbedingungen (10⁻²Pa). Die ermittelten Ergebnisse zeigen, dass mit abnehmender Schichtdicke aufgrund der spezifischen Morphologie der Schicht die Durchschlagfestigkeit erhalten bleibt, bzw. sich sogar etwas erhöht. Anzunehmen wäre jedoch gewesen, dass bei Schichten chemisch ähnlicher Zusammensetzung sich die Durchschlagfestigkeit mit abnehmender Schichtdicke verringert (s. Kahle, M.-Elektrische Isoliertechnik, VEB Verlag Technik, Berlin, 1988).
  • Weiterhin tritt beim Beschichtungsprozess durch die Verwendung eines ammoniakfreien Elektrolyten keinerlei Geruchsbelästigung auf. Ein anschliessendes Spülen mit ammoniakalischer wässriger Lösung entfällt.

Claims (8)

  1. Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetallen oder deren Legierungen mittels anodischer Oxidation unter Funkenentladung, dadurch gekennzeichnet, dass der Elektrolyt aus einer wässrigen Lösung besteht, die Kaliumdihydrogenphosphat, Kaliumchromat, Acetationen, Ammoniumcitrat und Ethylendiamin enthält.
  2. Elektrolyt gemäss Anspruch 1, dadurch gekennzeichnet, dass die wässrige Lösung
       0,4 bis 0,7 mol/l Kaliumdihydrogenphosphat,
       0,3 bis 0,08 mol/l Kaliumchromat,
       0,08 bis 0,5 mol/l Acetationen,
       0,1 bis 0,3 mol/l Ammoniumcitrat,
       0,5 bis 0,9 mol/l Ethylendiamin
    enthält.
  3. Elektrolyt gemäss Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Acetationen in Form von Kupferacetat vorliegen.
  4. Elektrolyt gemäss Anspruch 3, dadurch gekennzeichnet, dass die wässrige Lösung
       0,59 mol/l KH₂PO₄,
       0,05 mol/l K₂CrO₄,
       0,35 mol/l Cu[CH₃COO]₂,
       0,22 mol/l Ammoniumcitrat,
       0,38 mol/l Ethylendiamin,
    enthält.
  5. Verfahren zur Herstellung eines Elektrolyten nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine wässrige Lösung hergestellt wird, indem Kaliumdihydrogenphosphat, Kaliumchromat, Acetationen, Ammoniumcitrat und Ethylendiamin in Wasser aufgelöst werden.
  6. Verfahren zur Herstellung von Elektrolyten gemäss einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass pro Liter Wasser
       55 bis 97 g Kaliumdihydrogenphosphat,
       60 bis 1,6 g Kaliumchromat,
       26 bis 100 g Cu[CH₃COO]₂·H₂O,
       22 bis 68 g Ammoniumcitrat,
       131 bis 237 ml Ethylendiamin,
    aufgelöst werden.
  7. Verfahren zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetall oder deren Legierungen, dadurch gekennzeichnet, dass das Leichtmetall oder deren Legierungen mittels plasmachemischer, anodischer Oxidation in einem wässrigen Elektrolyten gemäss einem der Ansprüche 1 bis 4 bei einer Stromdichte von 0,005 bis 0,05 A . cm⁻² und einer Spannung von 100 bis 200 V beschichtet wird.
  8. Verfahren nach Anspruch 7 zur Herstellung von schwarzen Konversionsschichten mit einer Schichtdicke von 3,8 ± 0,5 µm und einer Rauhzahl von 1,8 ± 0,1 µm, einer Remission von ca. 6,0 % und einer Durchschlagfestigkeit von ca. 800 V, dadurch gekennzeichnet, dass ein Elektrolyt gemäss Anspruch 4 verwendet wird.
EP91810453A 1990-06-14 1991-06-13 Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetallen Expired - Lifetime EP0462073B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DD34163790A DD295198B5 (de) 1990-06-14 1990-06-14 Elektrolyt zur erzeugung duenner schwarzer konversionsschichten auf leichtmetallen
DD341637 1990-06-14

Publications (3)

Publication Number Publication Date
EP0462073A2 true EP0462073A2 (de) 1991-12-18
EP0462073A3 EP0462073A3 (en) 1993-01-20
EP0462073B1 EP0462073B1 (de) 1994-11-30

Family

ID=5619162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91810453A Expired - Lifetime EP0462073B1 (de) 1990-06-14 1991-06-13 Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetallen

Country Status (3)

Country Link
US (1) US5094727A (de)
EP (1) EP0462073B1 (de)
DD (1) DD295198B5 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033300A1 (en) * 1995-04-18 1996-10-24 Harbin Huanya Micro - Arc Co. Ltd. Process for producing ceramic layer by plasma enhanced electrolysis and product thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245436B1 (en) * 1999-02-08 2001-06-12 David Boyle Surfacing of aluminum bodies by anodic spark deposition
DE102008026557A1 (de) 2008-06-03 2009-12-17 Königsee Implantate und Instrumente zur Osteosynthese GmbH Elektrochemisch hergestellte, biologisch degradationsstabile, duktile und haftfeste Titanoxid-Oberflächenschicht auf Titan oder Titanbasislegierungen
DE102008026558B4 (de) 2008-06-03 2010-04-01 Königsee Implantate und Instrumente zur Osteosynthese GmbH Elektrochemisches Tauchverfahren in einem wässrigen Elektrolyt zur Erzeugung einer biologisch degradationsstabilen Oberflächenschicht auf Grundkörpern aus Titan oder Titanbasislegierungen
CN103088387B (zh) * 2012-12-13 2016-04-20 陕西华银科技有限公司 氧化铜/氧化铝复合催化剂及其制备方法和专用微弧氧化电解液

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3870925D1 (de) * 1987-02-02 1992-06-17 Friebe & Reininghaus Ahc Verfahren zur herstellung dekorativer ueberzuege auf metallen.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
METALLOBERFLäCHE Bd. 40, Nr. 12, Dezember 1986, Seiten 539 - 540 KURZE 'beschichten durch anodische oxidation unter funkenentladungen (anof)' *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996033300A1 (en) * 1995-04-18 1996-10-24 Harbin Huanya Micro - Arc Co. Ltd. Process for producing ceramic layer by plasma enhanced electrolysis and product thereof
CN1034522C (zh) * 1995-04-18 1997-04-09 哈尔滨环亚微弧技术有限公司 等离子体增强电化学表面陶瓷化方法及其制得的产品

Also Published As

Publication number Publication date
DD295198B5 (de) 1996-06-27
EP0462073A3 (en) 1993-01-20
EP0462073B1 (de) 1994-11-30
US5094727A (en) 1992-03-10

Similar Documents

Publication Publication Date Title
DE69732102T2 (de) Oberflächenbehandelter metallischer korrosionsbeständiger Werkstoff und Mittel zur Oberflächenbehandlung
DE4019964C2 (de)
DE4317217A1 (de) Chromfreie Konversionsbehandlung von Aluminium
DE3808610A1 (de) Verfahren zur oberflaechenveredelung von magnesium und magnesiumlegierungen
EP0090268B1 (de) Verfahren zum Anodisieren von Aluminiumwerkstoffen und aluminierten Teilen
EP0410497B1 (de) Verfahren zur passivierenden Nachspülung von Phosphatschichten
EP0462073B1 (de) Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten auf Leichtmetallen
DE2516842A1 (de) Mit einer keramischen beschichtung versehener gegenstand mit einer fuer eine elektrophoretische beschichtung elektrochemisch nicht genuegend aktiven metallischen oberflaeche und verfahren zu seiner herstellung
DE2815955A1 (de) Verfahren zur herstellung einer elektrode durch beschichten eines metallsubstrates
EP1302565B1 (de) Beschichtungsverfahren für Leichtmetalllegierungsoberflächen
DE2917019C2 (de) Verfahren zur Metallisierung von Verbundmaterial und dazu geeignete Badzusammensetzung
DD142360A1 (de) Verfahren zur erzeugung alpha-al tief 2 o tief 3-haltiger schichten auf aluminiummetallen
WO1997014828A1 (de) Kurzzeit-heissverdichtung anodisierter metalloberflächen
EP0409785A1 (de) Elektrolyt zur Erzeugung schwarzer Konversionsschichten auf Leichtmetallen
EP0815293B1 (de) Chromfreies verfahren zur verbesserung der lackhaftung nach dünnschicht-anodisierung
DE3734596A1 (de) Verfahren zum erzeugen von phosphatueberzuegen
DE102011055644B4 (de) Verfahren zur Erzeugung einer schwarzen oxidkeramischen Oberflächenschicht auf einem Bauteil aus einer Leichtmetalllegierung
EP0459550B1 (de) Verfahren zur Nachspülung von Konversionsschichten
EP0648863B1 (de) Emaillierbare Oxidschicht
DE2432044C3 (de) Verfahren zur elektrolytischen Nachbehandlung von chromatisierten oder metallisch verchromten Stahlblechoberflächen
DD295198A5 (de) Elektrolyt zur Erzeugung dünner schwarzer Konversionsschichten aufLeichtmetallen
DE1925029B2 (de) Verfahren zur herstellung einer korrosionsfesten, metallteilchen enthaltenden chromatierungsschicht auf einem grundmetall und deren verwendung
DE1170747B (de) Verfahren zur Vorbehandlung von Titan oder einer Titanlegierung vor dem Aufbringen galvanischer UEberzuege
DE4037392C2 (de) Elektrolyt und Verfahren zur Erzeugung weißer oxidkeramischer Oberflächenschichten sowie Verwendung des Elektrolyten
EP0355525B1 (de) Verfahren zur Erzeugung von Überzügen auf Zink

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH FR GB LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JENOPTIK GMBH

17P Request for examination filed

Effective date: 19930429

17Q First examination report despatched

Effective date: 19940304

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH FR GB LI

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: JENOPTIK GMBH TRANSFER- PTS GESELLSCHAFT FUER PHYS

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: PTS GESELLSCHAFT FUER PHYSIKALISCH-TECHNISCHE STUD

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 711B

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: REAKTIVIERUNG NACH IRRTUEMLICHER LOESCHUNG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: AHC OBERFLAECHENTECHNIK GMBH & CO. OHG

Free format text: AHC OBERFLAECHENTECHNIK GMBH & CO. OHG#BOELCKESTRASSE 25#50171 KERPEN (DE) -TRANSFER TO- AHC OBERFLAECHENTECHNIK GMBH & CO. OHG#BOELCKESTRASSE 25#50171 KERPEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101231

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101230

Year of fee payment: 20

Ref country code: FR

Payment date: 20110127

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110612