EP0455193B1 - Verwirbeltes Multifilamentgarn aus Hochmodul-Einzelfilamenten und Verfahren zum Herstellen eines solchen Garns - Google Patents

Verwirbeltes Multifilamentgarn aus Hochmodul-Einzelfilamenten und Verfahren zum Herstellen eines solchen Garns Download PDF

Info

Publication number
EP0455193B1
EP0455193B1 EP91106917A EP91106917A EP0455193B1 EP 0455193 B1 EP0455193 B1 EP 0455193B1 EP 91106917 A EP91106917 A EP 91106917A EP 91106917 A EP91106917 A EP 91106917A EP 0455193 B1 EP0455193 B1 EP 0455193B1
Authority
EP
European Patent Office
Prior art keywords
yarn
intermingling
high modulus
monofilaments
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91106917A
Other languages
English (en)
French (fr)
Other versions
EP0455193A1 (de
Inventor
Josef Geirhos
Ingolf Dr. Jacob
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Invista Technologies SARL Switzerland
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0455193A1 publication Critical patent/EP0455193A1/de
Application granted granted Critical
Publication of EP0455193B1 publication Critical patent/EP0455193B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/047Blended or other yarns or threads containing components made from different materials including aramid fibres
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • D02G1/165Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam characterised by the use of certain filaments or yarns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/908Jet interlaced or intermingled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • Y10T428/2976Longitudinally varying

Definitions

  • the invention relates to a method for producing a multifilament yarn with a total denier of 500-4000 dtex, preferably 700-3000 dtex, in which at least part of the yarn consists of high-modulus individual filaments of an initial modulus of more than 50 GPa, preferably more than 80 GPa which method the yarn is swirled by a swirling medium, in particular air, and such a multifilament yarn.
  • Such high modulus yarns made from liquid crystalline or special high polymers with less flexible chains, e.g. Aramid, carbon and glass are generally very stiff.
  • the conventional method of air interlacing, such as is used to increase the thread closure or to mix with other yarn components leads to considerable difficulties, especially with a high degree of interlacing, because the individual filaments are difficult to intermingle due to their stiffness and tend to break due to their brittleness , which results in a significant reduction in the fineness-related maximum tensile strength (fineness strength).
  • fineness strength fineness strength
  • the thread closure of these yarns is then insufficient, and because of the large number of breaks in the individual filaments, it is not possible to produce a smooth, lint-free yarn.
  • a strong air turbulence of such high modulus yarns therefore does not lead to results that are acceptable in practice.
  • the present invention is intended to create a method for producing a high-modulus multifilament yarn and such a multifilament yarn which has a high thread closure and is as smooth and lint-free as possible.
  • a reduction in the fineness-related maximum tensile force due to the intermingling should be avoided as far as possible.
  • a method with the features specified at the outset is characterized in that the intermingling is carried out at a temperature of (0.25-0.9) T s , in which T s is the melting or decomposition temperature of the high-modulus individual filaments , measured in ° C.
  • the multifilament yarn is characterized in that the average intermingling distance of the yarn, measured in the needle test (using the ROTHSCHILD ENTANGLEMENT TESTER 2050), is less than 150 mm and the number of breaks in the individual filaments, measured in the light barrier method on one side of the yarn, is less than 20 /damn.
  • the intermingling basic patent US 29 85 995 already contains the general information that the intermingling of yarns can be carried out at elevated temperature and that, in particular when the yarn tension is too high and / or the intermingling medium pressure is too low, a certain plasticization of the yarn by moistening and / or warming favors the vortex.
  • This idea is taken up in US Pat. Nos. 30 69 836 and 30 83 523, in which yarns made of polyester or polyamide are interlaced with heated air in order to produce yarns with particularly low shrinkage.
  • EP-PS 01 64 624 a polyester yarn is swirled with heated air so that the yarn can be wound up in the heated state.
  • DD-PS 240 032 describes the production of a yarn made of polyamide, polyester or polyolefin, in which the yarn is treated with steam or moist hot air in a thread-closing device in order to obtain a silk that can be wound up perfectly.
  • the present invention is based on the knowledge that, in the case of particularly high-modulus multifilament yarns, warm intermingling, in contrast to cold intermingling, has practically no reduction in the fineness-related maximum tensile force and can even lead to an increase in the maximum tensile force.
  • the invention succeeded for the first time in producing a highly intermingled multifilament yarn with a starting modulus of more than 50 GPa, which has a high thread closure has, smooth and practically lint-free and its fineness-related maximum tensile strength is not or not significantly less than that of the unwired yarn.
  • the yarn is expediently interlaced so strongly that the average interlacing distance of the yarn, measured in the needle test, is less than 150 mm, preferably less than 70 mm or 50 mm.
  • swirl nozzles can be used for swirling.
  • the swirl distance or swirl density is primarily determined by the pressure of the swirl medium and the special type of nozzle. Therefore, in order to achieve a desired swirl distance, an appropriate swirl pressure must be selected for a specific nozzle type.
  • the working pressure is expediently in the range from 1 to 10 bar, preferably 1.5 to 8 bar and in particular 2 to 4 bar.
  • the fluidization temperature is preferably (0.5-0.9) T s , in particular (0.7-0.8) T s .
  • the fluidization temperature is expediently in the range of 200-360 ° C, preferably at 300 ° C. In the case of carbon, the fluidization temperature should be between 200 ° and 500 ° C, preferably between 300 ° and 500 ° C.
  • the swirl temperature is 300 ° -600 ° C, preferably 300 ° -500 ° C.
  • the invention can be used not only with one-component yarns, but also with so-called commingled yarns, in which only part of the yarn is made of high-modulus individual filaments and the other part is made of thermoplastic Individual filaments of a lower initial module exist.
  • commingled yarn is explained, for example, in chemical fibers / textile industry (industrial textiles), 39/91, T 185 (1989). In this case, only the high modulus individual filaments are preheated to the fluidization temperature, while the lower melting thermoplastic individual filaments are not preheated and the fluidization medium is not heated.
  • the multifilament yarn produced according to the invention is characterized in that the number of breaks in the individual filaments is less than 20 per meter.
  • the number of breaks is preferably even less than 10 / m and can even be almost zero, in particular less than 3 / m and very particularly preferably less than 0.1 / m.
  • the breaks of the individual filaments are measured by the usual light barrier method, which detects the broken ends of the individual filaments projecting on one side of the yarn (for example with a Shirley Hairiness Meter, Shirley Institute, Manchester).
  • the fineness-related maximum tensile force is significantly higher than in the case of a cold intermingling of the yarn. On the one hand, this may be due to the lower number of breaks in the individual filaments and, on the other hand, in a more advantageous alignment of the individual filaments. If it is a one-component yarn that consists of the high modulus single filaments, the fineness-related maximum tensile strength of the interlaced yarn should be at least 80% of that of the non-interlaced yarn. It is often possible to achieve a fineness-related maximum tensile strength of at least 90% and in certain cases more than 100% of that of the non-interlaced yarn.
  • the invention leads to an increase in fineness-related maximum tensile force compared to cold-twisted yarns.
  • the commingled yarns are also characterized by high thread closure and great smoothness, which can even make the yarns suitable for weaving.
  • FIGS. 1-5 diagrams in which the relationship between the fineness-related maximum tensile strength (fineness strength) and the warm intermingling provided according to the invention is shown for aramid multifilament yarns;
  • FIGS. 6 and 7 are diagrams which, for glass and carbon multifilament yarns, show the relationship between the tenacity and the warm intermingling provided according to the invention
  • FIG. 8 shows a diagram in which the tenacity of single-component yarns and commingled yarns according to the invention is shown.
  • FIG. 1 shows the tenacity (in cN / tex) of a commercially available aramid yarn, the broken curve a for a yarn with a twist Z100 and the curve b for an unthreaded yarn examined for experimental purposes.
  • the left ends of the two curves refer to the non-swirled feed yarn, while the middle of the curves apply to a cold-swirled yarn and the right ends of the curves apply to a yarn according to the invention, which was swirled after preheating to 300 ° C.
  • the fineness of strength drops considerably in the case of cold swirling, while it is essentially retained in the case of the warm swirling provided according to the invention.
  • the intermingling distance (in mm) of the yarn is shown, which in the case of the cold-twisted yarn is 32 mm and in the case of warm-twisted yarn is 19 mm.
  • the diagram in FIG. 2 shows the relationship between the tenacity and the intermingling temperature, specifically for another commercial aramid yarn with twist Z100.
  • the tenacity increases with the turbulence temperature.
  • the intermingling distance is largely independent of the intermingling temperature.
  • the diagram in FIG. 3 shows the relationship between the tenacity and different types of heating for the aramid yarn used in FIG.
  • the yarn was preheated to 300 ° C with godet or preheated to 300 ° C or 400 ° C with hot air, and as a further possibility, the interlacing air was heated to 300 ° C.
  • This diagram also makes it clear that the fineness of strength drops significantly in the case of cold swirling, while it remains practically the same or increases in the case of the warm swirling provided according to the invention.
  • the diagram in FIG. 4 also shows the elongation (in%, curve II) for the aramid yarn used in FIG.
  • the four breakpoints of the two curves apply to the non-swirled feed yarn without twist, the non-swirled feed yarn with twist Z100 and the warm-twirled yarn with and without twist. With this yarn too, the warm interlacing leads to a certain increase in the tenacity, while the elongation remains almost constant.
  • FIG. 5 shows a series of measurements corresponding to curve I in FIG. 4 in the form of a bar diagram for another commercially available aramid yarn. It can be seen in the diagram that the swirling according to the invention does not lead to a decrease in strength. It can also be seen that when the yarns are twisted (non-intermingled and intermingled) there is an increase in strength occurs, which is larger in the interlaced yarn than in the non-interlaced yarn.
  • the diagram in FIG. 6 shows the tenacity of a multi-filament yarn made of glass, which was present once as an untreated master yarn, then as a cold-twisted yarn and finally as a warm-twisted yarn.
  • the yarn was preheated with hot air, once to 300 ° C and the other to 600 ° C.
  • the swirl pressure was 1.0 bar in each case.
  • FIG. 8 shows the tenacity for intermingled and non-intermingled single-component yarns of different materials as well as for different commingled yarns.
  • the cross-hatched columns apply to non-interlaced yarns made of aramid, carbon, glass or PEEK.
  • the cross-hatched columns apply to warm-twisted yarns of the same materials.
  • the columns hatched with dashed lines apply to commingled yarns made of aramid, carbon or glass, to which PEEK has been added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Inorganic Fibers (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines Multifilamentgarnes eines Gesamttiters von 500 - 4000 dtex, vorzugsweise 700 - 3000 dtex, bei dem zumindest ein Teil des Garnes aus Hochmodul-Einzelfilamenten eines Anfangsmoduls von mehr als 50 GPa, vorzugsweise mehr als 80 GPa besteht, bei welchem Verfahren das Garn durch ein Verwirbelungsmedium, insbesondere Luft, verwirbelt wird, sowie ein derartiges Multifilamentgarn.
  • Derartige Hochmodulgarne, die aus flüssigkristallinen oder speziellen Hochpolymeren mit wenig flexiblen Ketten wie z.B. Aramid, Kohlenstoff und Glas bestehen, sind im allgemeinen sehr steif. Das herkömmliche Verfahren der Luftverwirbelung, wie es beispielsweise zur Erhöhung des Fadenschlusses oder zum Mischen mit anderen Garnkomponenten eingesetzt wird, führt insbesondere bei einem hohen Verwirbelungsgrad zu erheblichen Schwierigkeiten, weil die Einzelfilamente wegen ihrer Steifheit nur schwer zu verwirbeln sind und wegen ihrer Sprödigkeit zum Bruch neigen, was sich insbesondere in einer beträchtlichen Verringerung der feinheitsbezogenen Höchstzugkraft (Feinheitsfestigkeit) auswirkt. Der Fadenschluß dieser Garne ist dann unzureichend, und wegen der großen Anzahl von Brüchen der Einzelfilamente ist es nicht möglich, ein glattes flusenfreies Garn herzustellen. Eine starke Luftverwirbelung derartiger Hochmodulgarne führt daher zu keinen in der Praxis akzeptablen Resultaten.
  • Durch die vorliegende Erfindung sollen ein Verfahren zum Herstellen eines Hochmodul-Multifilamentgarnes sowie ein derartiges Multifilamentgarn geschaffen werden, das einen hohen Fadenschluß erhält und möglichst glatt und flusenfrei ist. Insbesondere soll eine Verringerung der feinheitsbezogenen Höchstzugkraft durch die Verwirbelung möglichst vermieden werden.
  • Zur Lösung dieser Aufgabe ist ein Verfahren mit den eingangs angegebenen Merkmalen erfindungsgemäß dadurch gekennzeichnet, daß die Verwirbelung bei einer Temperatur von (0,25-0,9)Ts durchgeführt wird, worin Ts die Schmelz- bzw. Zersetzungstemperatur der Hochmodul-Einzelfilamente, gemessen in °C, ist.
  • Das Multifilamentgarn ist erfindungsgemäß dadurch gekennzeichnet, daß der durchschnittliche Verwirbelungsabstand des Garns, gemessen im Nadeltest (mittels ROTHSCHILD ENTANGLEMENT TESTER 2050), kleiner als 150 mm ist und die Anzahl von Brüchen der Einzelfilamente, gemessen im Lichtschrankenverfahren auf einer Seite des Garns, kleiner als 20/m ist.
  • Das Verwirbelungs-Grundpatent US 29 85 995 enthält bereits den allgemeinen Hinweis, daß die Verwirbelung von Garnen bei erhöhter Temperatur durchgeführt werden kann und daß insbesondere bei zu hoher Garnspannung und/oder einem zu niedrigen Druck des Verwirbelungsmediums eine gewisse Plastifizierung des Garns durch Befeuchten und/oder Erwärmen die Verwirbelung begünstigt. Dieser Gedanke wird in den US-PSen 30 69 836 und 30 83 523 aufgegriffen, in denen Garne aus Polyester oder Polyamid mit erwärmter Luft verwirbelt werden, um besonders schrumpfarme Garne herzustellen. In der EP-PS 01 64 624 wird ein Polyestergarn mit erwärmter Luft verwirbelt, damit das Garn in erwärmtem Zustand aufgewickelt werden kann. Die DD-PS 240 032 schließlich beschreibt die Herstellung eines Garns aus Polyamid, Polyester oder Polyolefin, bei dem das Garn in einer Fadenschlußeinrichtung mit Dampf oder feuchter heißer Luft behandelt wird, um eine einwandfrei aufspulbare Seide zu erhalten.
  • Im Gegensatz zu diesem Stand der Technik beruht die vorliegende Erfindung auf der Erkenntnis, daß bei besonders hochmoduligen Multifilamentgarnen eine Warmverwirbelung im Gegensatz zu einer Kaltverwirbelung praktisch keine Verringerung der feinheitsbezogenen Höchstzugkraft zur Folge hat und sogar zu einer Erhöhung der Höchstzugkraft führen kann. Tatsächlich ist es durch die Erfindung erstmals gelungen, ein stark verwirbeltes Multifilamentgarn eines Anfangmoduls von mehr als 50 GPa herzustellen, das einen hohen Fadenschluß hat, glatt und praktisch flusenfrei ist und dessen feinheitsbezogene Höchstzugkraft nicht bzw. nicht wesentlich geringer als die des unverwirbelten Garnes ist.
  • Zweckmäßigerweise wird das Garn so stark verwirbelt, daß der durchschnittliche Verwirbelungsabstand des Garns, gemessen im Nadeltest, kleiner als 150 mm, vorzugsweise kleiner als 70 mm bzw. 50 mm ist.
  • Zur Verwirbelung können herkömmliche Verwirbelungsdüsen verwendet werden. Der Verwirbelungsabstand bzw. die Verwirbelungsdichte wird in erster Linie durch den Druck des Verwirbelungsmediums und den speziellen Düsentyp bestimmt. Um daher einen erwünschten Verwirbelungsabstand zu erzielen, muß für einen bestimmten Düsentyp ein entsprechender Verwirbelungsdruck gewählt werden. Zweckmäßigerweise liegt der Arbeitsdruck im Bereich von 1 bis 10 bar, vorzugsweise 1,5 bis 8 bar und insbesondere 2 bis 4 bar.
  • Die Verwirbelungstemperatur beträgt vorzugsweise (0,5-0,9)Ts, insbesondere (0,7-0,8)Ts, Bestehen z.B. die Hochmodul- Einzelfilamente aus Aramid, so liegt die Verwirbelungstemperatur zweckmäßigerweise im Bereich von 200-360°C, vorzugsweise bei 300°C. Im Fall von Kohlenstoff sollte die Verwirbelungstemperatur zwischen 200° und 500°C, vorzugsweise zwischen 300° und 500°C liegen. Bestehen die Hochmodul-Einzelfilamente aus Glas, so beträgt die Verwirbelungstemperatur 300°-600°C, vorzugsweise 300°-500°C.
  • Die Hochmodul-Einzelfilamente können vor dem Verwirbeln auf die Verwirbelungstemperatur erwärmt werden, wobei die Erwärmung durch Galette, Heizfläche, Heizrohr, Strahlungsheizung unter Vorspannung oder Heißluft erfolgen kann. Besteht das gesamte Garn aus den Hochmodul-Einzelfilamenten, so kann auch das Verwirbelungsmedium auf die Verwirbelungstemperatur erwärmt werden.
  • Die Erfindung ist nicht nur bei Einkomponentengarnen verwendbar, sondern auch bei sog. commingled Garnen, bei denen nur ein Teil des Garns aus den Hochmodul-Einzelfilamenten und der andere Teil aus thermoplastischen Einzelfilamenten eines geringeren Anfangsmoduls bestehen. Der Begriff "commingled Garn" wird z.B. in Chemiefasern/Textilindustrie (Industrie Textilien), 39/91, T 185 (1989) erläutert. In diesem Fall werden nur die Hochmodul-Einzelfilamente auf die Verwirbelungstemperatur vorerwärmt, während die niedriger schmelzenden thermoplastischen Einzelfilamente nicht vorerwärmt werden und auch das Verwirbelungsmedium nicht erwärmt wird.
  • Als thermoplastische Einzelfilamente geringeren Anfangsmoduls kommen z.B. PEEK (Polyetheretherketon), PEI (Polyetherimid), PET (Polyethylenterephtalat) und PPS (Polyphenylensulfid) in Frage.
  • Wie bereits erwähnt, ist das gemäß der Erfindung hergestellte Multifilamentgarn dadurch gekennzeichnet, daß die Anzahl von Brüchen der Einzelfilamente kleiner als 20 pro Meter ist. Vorzugsweise ist die Anzahl der Brüche sogar kleiner als 10/m und kann sogar nahezu Null, insbesondere kleiner als 3/m und ganz besonders bevorzugt kleiner als 0,1/m werden. Die Brüche der Einzelfilamente werden durch das übliche Lichtschrankenverfahren gemessen, das die auf einer Seite des Garns abstehenden gebrochenen Enden der Einzelfilamente erfaßt (beispielsweise mit einem Shirley Hairiness Meter, Shirley Institute, Manchester).
  • Ein wichtiges Merkmal des erfindungsgemäß ausgebildeten Multilfilamentgarnes besteht darin, daß die feinheitsbezogene Höchstzugkraft wesentlich höher ist als bei einer Kaltverwirbelung des Garns. Dies dürfte zum einen auf die geringere Anzahl von Brüchen der Einzelfilamente und zum anderen auf eine vorteilhaftere Ausrichtung der Einzelfilamente zurückzuführen sein. Handelt es sich um ein Einkomponentengarn, das insgesamt aus den Hochmodul-Einzelfilamenten besteht, so sollte die feinheitsbezogene Höchstzugkratt des verwirbelten Garns mindestens 80 % desjenigen des unverwirbelten Garns betragen. Häufig läßt sich sogar eine feinheitsbezogene Höchstzugkraft von mindestens 90 % und in bestimmten Fällen von mehr als 100 % derjenigen des unverwirbelten Garnes erzielen.
  • Auch im Fall von commingled Garnen führt die Erfindung zu einer Erhöhung der feinheitsbezogenen Höchstzugkraft im Vergleich zu kaltverwirbelten Garnen. Tatsächlich zeichnen sich auch die commingled Garne durch einen hohen Fadenschluß und große Glätte aus, die die Garne sogar webtauglich machen können.
  • Anhand von in den Figuren dargestellten Diagrammen werden Beispiele der Erfindung erläutert. Es zeigen:
  • Figuren 1-5 Diagramme, in denen für Aramid-Multifilamentgarne der Zusammenhang zwischen der feinheitsbezogenen Höchstzugkraft (Feinheitsfestigkeit) und der erfindungsgemäß vorgesehenen Warmverwirbelung dargestellt ist;
  • Figuren 6, 7 Diagramme, die für Glas- und Kohlenstoff-Multifilamentgarne den Zusammenhang zwischen der Feinheitsfestigkeit und der erfindungsgemäß vorgesehenen Warmverwirbelung darstellen;
  • Figur 8 ein Diagramm, in dem die Feinheitsfestigkeit von erfindungsgemäß ausgebildeten Einkomponentengarnen und commingled Garnen dargestellt ist.
  • In dem in Figur 1 gezeigten Diagramm ist die Feinheitsfestigkeit (in cN/tex) eines handelsüblichen Aramidgarnes dargestellt, wobei die gestrichelte Kurve a für ein Garn mit einer Drehung Z100 und die Kurve b für ein zu Versuchszwecken untersuchtes ungedrehtes Garn gilt. Die linken Enden der beiden Kurven beziehen sich auf das unverwirbelte Vorlagegarn, während die Mitten der Kurven für ein kaltverwirbeltes Garn und die rechten Enden der Kurven für ein erfindungsgemäßes Garn gelten, das nach einer Vorerwärmung auf 300°C verwirbelt wurde.
  • Wie die beiden Kurven deutlich machen, sinkt die Feinheitsfestigkeit bei einer Kaltverwirbelung beträchtlich, während sie bei der erfindungsgemäß vorgesehenen Warmverwirbelung im wesentlichen erhalten bleibt. Unterhalb des Diagramms ist der Verwirbelungsabstand (in mm) des Garns dargestellt, der im Fall des kaltverwirbelten Garns 32 mm und im Fall des warmverwirbelten Garns 19 mm beträgt.
  • Das Diagramm der Figur 2 zeigt den Zusammenhang zwischen der Feinheitsfestigkeit und der Verwirbelungstemperatur, und zwar für ein weiteres handelsübliches Aramidgarn mit Drehung Z100. Wie ersichtlich, steigt in diesem Fall die Feinheitsfestigkeit mit der Verwirbelungstemperatur an. Der Verwirbelungsabstand ist von der Verwirbelungstemperatur weitgehend unabhängig.
  • In dem Diagramm der Figur 3 ist der Zusammenhang zwischen der Feinheitsfestigkeit und verschiedenen Erwärmungsarten für das in Figur 1 verwendete Aramidgarn dargestellt. So wurde das Garn mit Galette auf 300°C vorerwärmt oder mit Heißluft auf 300°C bzw. 400°C vorerwärmt, und als weitere Möglichkeit wurde die Verwirbelungsluft auf 300°C erwärmt. Auch dieses Diagramm macht deutlich, daß die Feinheitsfestigkeit bei einer Kaltverwirbelung deutlich absinkt, während sie bei der erfindungsgemäß vorgesehenen Warmverwirbelung praktisch gleichbleibt bzw. ansteigt.
  • In dem Diagramm der Figur 4 ist zusätzlich zu der Feinheitsfestigkeit (Kurve I) noch die Dehnung (in %, Kurve II) für das in Figur 2 verwendete Aramidgarn dargestellt. Die vier Knickpunkte der beiden Kurven gelten für das unverwirbelte Vorlagegarn ohne Drehung, das unverwirbelte Vorlagegarn mit Drehung Z100 sowie das warmverwirbelte Garn mit und ohne Drehung. Auch bei diesem Garn führt die Warmverwirbelung zu einer gewissen Erhöhung der Feinheitsfestigkeit, während die Dehnung nahezu konstant bleibt.
  • Das Diagramm der Figur 5 gibt eine der Kurve I in Figur 4 entsprechende Meßreihe in Form eines Balkendiagramms für ein weiteres handelsübliches Aramidgarn wieder. In dem Diagramm ist zu erkennen, daß das Verwirbeln gemäß der Erfindung zu keiner Festigkeitsabnahme führt. Ferner ist zu erkennen, daß beim Hochdrehen der Garne (unverwirbelt und verwirbelt) eine Festigkeitszunahme auftritt, wobei diese beim verwirbelten Garn größer ist als beim unverwirbelten Garn.
  • In dem Diagramm der Figur 6 ist die Feinheitsfestigkeit eines Multifilamentgarnes aus Glas dargestellt, das einmal als unbehandeltes Vorlagegarn, dann als kaltverwirbeltes Garn und schließlich als warmverwirbeltes Garn vorlag. Im Fall der Warmverwirbelung wurde das Garn mit Heißluft vorerwärmt, und zwar einmal auf 300°C und zum anderen auf 600°C. Der Verwirbelungsdruck betrug jeweils 1,0 bar.
  • Wie aus dem Diagramm ersichtlich ist, führt auch im Fall des Glasgarnes die Kaltverwirbelung zu einer deutlichen Verringerung der Feinheitsfestigkeit, während sie bei der Warmverwirbelung erhalten bzw. noch gesteigert wird.
  • Den gleichen Zusammenhang zeigt das Diagramm der Figur 7, in dem die untere Kurve für ein Glasgarn vom Typ E und die obere Kurve für ein Kohlenstoffgarn gilt.
  • In dem Diagramm der Figur 8 ist die Feinheitsfestigkeit für verwirbelte und unverwirbelte Einkomponentengarne verschiedener Materialien wie auch für verschiedene commingled Garne dargestellt. Die kreuzschraffierten Säulen gelten für unverwirbelte Garne aus Aramid, Kohlenstoff, Glas bzw. PEEK. Die schräg schraffierten Säulen gelten für warmverwirbelte Garne derselben Materialien. Die mit gestrichelten Linien schraffierten Säulen schließlich gelten für commingled Garne aus Aramid, Kohlenstoff bzw. Glas, denen jeweils PEEK beigemischt wurde.
  • Für alle Diagramme gilt, daß bei der Warmverwirbelung die Verwirbelungstemperatur 300°C betrug, sofern in den Diagrammen nicht etwas anderes angegeben ist.

Claims (12)

  1. Verfahren zum Herstellen eines Multifilamentgarnes eines Gesamttiters von 500 - 4000 dtex, vorzugsweise 700 - 3000 dtex, bei dem zumindest ein Teil des Garnes aus Hochmodul-Einzelfilamenten eines Anfangsmoduls von mehr als 50 GPa, vorzugsweise mehr als 80 GPa besteht, bei welchem Verfahren das Garn durch ein Verwirbelungsmedium, insbesondere Luft, verwirbelt wird, dadurch gekennzeichnet, daß die Verwirbelung bei einer Temperatur von (0,25-0,9)Ts, vorzugsweise (0,5-0,9)Ts, durchgeführt wird, worin Ts die Schmelz- bzw. Zersetzungstemperatur der Hochmodul-Einzelfilamente, gemessen in °C, ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Garn mit einer Düse und einem Verwirbelungsmedium unter einem Druck von 1-10 bar verwirbelt wird.
  3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Hochmodul-Einzelfilamente aus Aramid bestehen und die Verwirbelungstemperatur 200 - 360°C, vorzugsweise 300°C beträgt.
  4. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Hochmodul-Einzelfilamente aus Kohlenstoff bestehen und die Verwirbelungstemperatur 200°-500°C, vorzugsweise 300°-500°C beträgt.
  5. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die Hochmodul-Einzelfilamente aus Glas bestehen und die Verwirbelungstemperatur 300°-600°C, vorzugsweise 300°-500°C beträgt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Hochmodul-Einzelfilamente vor dem Verwirbeln auf die Verwirbelungstemperatur erwärmt werden, wobei die Vorerwärmung insbesondere durch Galette, Heizfläche, Heizrohr, Strahlungsheizung unter Vorspannung oder Heißluft erfolgt.
  7. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das gesamte Garn aus den Hochmodul-Einzelfilamenten besteht, dadurch gekennzeichnet, daß das Verwirbelungsmedium auf die Verwirbelungstemperatur erwärmt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 6, bei dem nur ein Teil des Garns aus den Hochmodul-Einzelfilamenten und der andere Teil aus thermoplastischen Einzelfilamenten eines geringeren Anfangsmoduls, vorzugsweise aus PEEK, PEI, PET oder PPS besteht, dadurch gekennzeichnet, daß nur die Hochmodul-Einzelfilamente auf die Verwirbelungstemperatur vorerwärmt werden und die Verwirbelung der beiden Teile mit nicht erwärmtem Verwirbelungsmedium durchgeführt wird.
  9. Multifilamentgarn eines Gesamttiters von 500 - 4000 dtex, vorzugsweise 700 - 3000 dtex, bei dem zumindest ein Teil des Garns aus Hochmodul-Einzelfilamenten eines Anfangsmoduls von mehr als 50 GPa, vorzugsweise mehr als 80 GPa besteht und das verwirbelt ist, dadurch gekennzeichnet, daß der durchschnittliche Verwirbelungsabstand des Garns, gemessen im Nadeltest, mittels des Rothschild Entanglement Testers 2050 kleiner als 150 mm, vorzugsweise kleiner als 70 mm ist, und die Anzahl von Brüchen der Einzelfilamente, gemessen im Lichtschrankenverfahren auf einer Seite des Garns, kleiner als 20/m, vorzugsweise kleiner als 0,1/m ist.
  10. Multifilamentgarn nach Anspruch 9, das insgesamt aus den Hochmodul-Einzelfilamenten besteht, dadurch gekennzeichnet, daß die feinheitsbezogene Höchstzugkraft des verwirbelten Garns mindestens 80 %, vorzugsweise mehr als 100 % derjenigen des unverwirbelten Garns beträgt.
  11. Multifilamentgarn nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, daß die Hochmodul-Einzelfilamente aus Aramid, Kohlenstoff oder Glas bestehen.
  12. Multifilamentgarn nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß nur ein Teil des Garns aus den Hochmodul-Einzelfilamenten und der andere Teil aus thermoplastischen Einzelfilamenten eines geringeren Anfangsmodules, insbesondere aus PEEK, PEI, PET oder PPS besteht.
EP91106917A 1990-04-30 1991-04-29 Verwirbeltes Multifilamentgarn aus Hochmodul-Einzelfilamenten und Verfahren zum Herstellen eines solchen Garns Expired - Lifetime EP0455193B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4013946 1990-04-30
DE4013946A DE4013946A1 (de) 1990-04-30 1990-04-30 Verwirbeltes multifilamentgarn aus hochmodul-einzelfilamenten und verfahren zum herstellen eines solchen garnes

Publications (2)

Publication Number Publication Date
EP0455193A1 EP0455193A1 (de) 1991-11-06
EP0455193B1 true EP0455193B1 (de) 1994-06-29

Family

ID=6405493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91106917A Expired - Lifetime EP0455193B1 (de) 1990-04-30 1991-04-29 Verwirbeltes Multifilamentgarn aus Hochmodul-Einzelfilamenten und Verfahren zum Herstellen eines solchen Garns

Country Status (9)

Country Link
US (2) US5293676A (de)
EP (1) EP0455193B1 (de)
JP (1) JPH04228641A (de)
AT (1) ATE107974T1 (de)
DE (2) DE4013946A1 (de)
DK (1) DK0455193T3 (de)
ES (1) ES2057651T3 (de)
IE (1) IE65104B1 (de)
PT (1) PT97516A (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4013946A1 (de) * 1990-04-30 1991-10-31 Hoechst Ag Verwirbeltes multifilamentgarn aus hochmodul-einzelfilamenten und verfahren zum herstellen eines solchen garnes
ATE199946T1 (de) * 1994-12-16 2001-04-15 Hoechst Trevira Gmbh & Co Kg Hybridgarn und daraus hergestelltes schrumpffähiges und geschrumpftes, permanent verformbares textilmaterial, seine herstellung und verwendung
KR0168621B1 (ko) * 1996-03-28 1999-01-15 백보현 신합성사 및 이의 제조방법
DE19613965A1 (de) * 1996-04-09 1997-10-16 Hoechst Trevira Gmbh & Co Kg Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung
AR010847A1 (es) * 1997-01-20 2000-07-12 Rhone Poulenc Filtec Ag TEJIDO TÉCNICO EN PARTICULAR, PARA BOLSAS DE AIRE, Y METODO PARA LA FABRICACIoN DEL HILO DE FILAMENTO PARA EL TEJIDO.
JP3722323B2 (ja) * 1997-02-14 2005-11-30 東レ株式会社 炭素繊維とその製造方法および製造装置
US6127035A (en) * 1998-12-03 2000-10-03 Carter; H. Landis Low dielectric composite fiber and fabric
SE518438C2 (sv) * 1999-09-01 2002-10-08 Sca Hygiene Prod Ab Förfarande för hydroentangling av polymerfibrer och hydroentanglat tyg innefattande polymerfibrer
US6583075B1 (en) * 1999-12-08 2003-06-24 Fiber Innovation Technology, Inc. Dissociable multicomponent fibers containing a polyacrylonitrile polymer component
GB2357520B (en) * 1999-12-21 2004-04-28 Du Pont Airbag fabrics made from high denier per filament yarns
US6602600B2 (en) * 2000-12-22 2003-08-05 E. I. Du Pont De Nemours And Company Yarn and fabric having improved abrasion resistance
US6715191B2 (en) * 2001-06-28 2004-04-06 Owens Corning Fiberglass Technology, Inc. Co-texturization of glass fibers and thermoplastic fibers
US20040000132A1 (en) * 2002-06-28 2004-01-01 Zo-Chun Jen Manufacturing method for elastic fiber having fur-like touch, elastic fiber having fur-like touch made from the same, and fabric woven by said fiber
US20040168479A1 (en) * 2003-02-28 2004-09-02 Mcmurray Brian Highly resilient multifilament yarn and products made therefrom
WO2005090662A2 (de) * 2004-03-18 2005-09-29 Diolen Industrial Fibers B.V. Verfahren zum mischen von filamentgarnen
KR101185206B1 (ko) 2009-06-29 2012-09-21 코오롱인더스트리 주식회사 아라미드 공기교락사 및 그 제조방법
US8474115B2 (en) * 2009-08-28 2013-07-02 Ocv Intellectual Capital, Llc Apparatus and method for making low tangle texturized roving
CA2844463A1 (en) * 2013-11-26 2015-05-26 Nygard International Partnership Pants
TWI663311B (zh) * 2014-04-29 2019-06-21 Low & Bonar B. V. 乙烯地板覆蓋物用之載體材料及包含其之複合材料產品

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA642783A (en) * 1958-08-01 1962-06-12 E.I. Du Pont De Nemours And Company Alternating-twist yarn and process for preparing
US3083523A (en) * 1958-08-01 1963-04-02 Du Pont Twistless, heat relaxed interlaced yarn
US2985995A (en) * 1960-11-08 1961-05-30 Du Pont Compact interlaced yarn
GB1454522A (en) * 1973-02-23 1976-11-03 Ici Ltd Bulked polyester textile yarns
US3958310A (en) * 1973-03-05 1976-05-25 Rhone-Poulenc-Textile Method for interlacing filaments of multifilament yarns
DE2334381B2 (de) * 1973-07-06 1975-12-04 Basf Farben + Fasern Ag, 2000 Hamburg Vorrichtung zur Herstellung gekräuselter Fäden
JPS5212362A (en) * 1975-07-18 1977-01-29 Toray Industries Fluid treatment apparatus
JPS5246145A (en) * 1975-10-08 1977-04-12 Toray Industries Thermal plastic fiber special filament yarn and its manufacture
US4025595A (en) * 1975-10-15 1977-05-24 E. I. Du Pont De Nemours And Company Process for preparing mixed filament yarns
GB1535057A (en) * 1975-12-11 1978-12-06 Toray Industries Multifilament yarn of irregular cross section filaments or fibres and method of manufacture
US4226079A (en) * 1978-05-04 1980-10-07 Du Pont Canada Inc. Heather yarn made by combining polyester and polyamide yarns
JPS55103331A (en) * 1979-02-05 1980-08-07 Teijin Ltd High bulk spun yarn and method
US4295329A (en) * 1980-06-10 1981-10-20 E. I. Du Pont De Nemours And Company Cobulked continuous filament heather yarn method and product
US4519200A (en) * 1983-08-22 1985-05-28 Eastman Kodak Company Textile yarns with loops and free protruding ends
US4622187A (en) * 1984-05-23 1986-11-11 E. I. Du Pont De Nemours And Company Continuous process for making interlaced polyester yarns
US4529655A (en) * 1984-05-23 1985-07-16 E. I. Du Pont De Nemours And Company Interlaced polyester industrial yarns
JPS6229532A (ja) * 1985-07-31 1987-02-07 Koken:Kk 抗血栓性医用材料及びその製造方法
DD240032A1 (de) * 1985-08-08 1986-10-15 Schwarza Chemiefaser Verfahren zur herstellung von weitgehend oder vollstaendig orientierten faeden
JPH064246B2 (ja) * 1985-12-09 1994-01-19 富士スタンダ−ドリサ−チ株式会社 柔軟性複合材料及びその製造方法
DE3818606A1 (de) * 1988-06-01 1989-12-14 Barmag Barmer Maschf Verfahren zum herstellen eines multifilen, anorganischen fadens
US5054174A (en) * 1988-12-13 1991-10-08 Barmag Ag Method of producing an air textured yarn
DE4013946A1 (de) * 1990-04-30 1991-10-31 Hoechst Ag Verwirbeltes multifilamentgarn aus hochmodul-einzelfilamenten und verfahren zum herstellen eines solchen garnes

Also Published As

Publication number Publication date
US5293676A (en) 1994-03-15
PT97516A (pt) 1993-07-30
ATE107974T1 (de) 1994-07-15
EP0455193A1 (de) 1991-11-06
ES2057651T3 (es) 1994-10-16
US5424123A (en) 1995-06-13
DK0455193T3 (da) 1994-11-07
IE65104B1 (en) 1995-10-04
DE4013946A1 (de) 1991-10-31
DE59102054D1 (de) 1994-08-04
IE911436A1 (en) 1991-11-06
JPH04228641A (ja) 1992-08-18

Similar Documents

Publication Publication Date Title
EP0455193B1 (de) Verwirbeltes Multifilamentgarn aus Hochmodul-Einzelfilamenten und Verfahren zum Herstellen eines solchen Garns
EP0295601B2 (de) Verfahren zum Herstellen eines Garnes sowie Garn mit Kern-Mantel-Struktur
DE69107411T2 (de) Verfahren und Vorrichtung zum Kombinieren von Fäden mit verschiedenen Farben um ein mehrfarbiges Garn zu machen.
DE60121694T3 (de) Polytrimethylenterephthalatfasern mit feinem denier
DE1915821A1 (de) Kerngarn und Verfahren zu seiner Herstellung
DE3345634A1 (de) Polyester-nylon-bikomponentenfilament
DE2166906A1 (de) Falschdrallgekraeuseltes polyestergarn
EP0635591A1 (de) Multifilamentglattgarn mit geringer Öffnungsneigung und gutem Fadenschluss, Verfahren zur Herstellung von Multifilamentglattgarnen und dessen Verwendung
EP0173221B1 (de) Hochfestes Polyestergarn und Verfahren zu seiner Herstellung
DE2907535A1 (de) Wie-gesponnenes multifilamentgarn
DE2355140A1 (de) Verfahren zur herstellung von gekraeuselten polyesterfasern
EP0223301A1 (de) Verfahren zur Herstellung eines Schussfadens aus Polyester-POY
EP0586951A1 (de) Feintitrige Zweikomponenten-Schlingengarne hoher Festigkeit, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
EP0569891A1 (de) Garn sowie Verfahren zur Herstellung eines Garnes
DE19956008A1 (de) Verfahren zum Falschdralltexturieren eines synthetischen Fadens zu einem Kräuselgarn
DE4401513A1 (de) Zweikomponenten-Schlingengarne, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
DE3715971C2 (de)
EP0569889B1 (de) Verfahren zum Verstrecken
DE3917338C2 (de)
EP0569890A1 (de) Hochfestes Nähgarn sowie Verfahren zur Herstellung eines derartigen Nähgarnes
DE2246324A1 (de) Verfahren zur herstellung von polyamidund polyesterfadengarn hoher festigkeit
DE19643685C2 (de) Verfahren zur Herstellung einer Schar von Mischgarnen sowie deren Verwendung
EP0374992B1 (de) Verfahren zur Herstellung eines Effektgarnes
EP0664352A1 (de) Zweikomponenten-Schlingengarne, Verfahren zu deren Herstellung und deren Verwendung als Nähgarne und Stickgarne
DE10208353A1 (de) Verfahren zur Herstellung feiner stauchgekräuselter Kabel aus synthetischen Filamenten sowie deren Weiterverarbeitung zu textilen Hygieneartikeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19931015

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 107974

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 59102054

Country of ref document: DE

Date of ref document: 19940804

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940907

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2057651

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3013198

EAL Se: european patent in force in sweden

Ref document number: 91106917.7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960321

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960401

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19960430

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970429

Ref country code: AT

Effective date: 19970429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971031

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3013198

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HOECHST AKTIENGESELLSCHAFT TRANSFER- ARTEVA TECHNO

NLS Nl: assignments of ep-patents

Owner name: ARTEVA TECHNOLOGIES S.A.R.L.

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000320

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000321

Year of fee payment: 10

Ref country code: GB

Payment date: 20000321

Year of fee payment: 10

Ref country code: DK

Payment date: 20000321

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000323

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000324

Year of fee payment: 10

Ref country code: ES

Payment date: 20000324

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000504

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010429

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010430

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010528

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010528

BERE Be: lapsed

Owner name: ARTEVA TECHNOLOGIES S.A.R.L.

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

EUG Se: european patent has lapsed

Ref document number: 91106917.7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010429

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20011101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040506

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101