EP0453819B1 - Procédé de fabrication de nappes de fibres très fines de polymères thermoplastiques - Google Patents

Procédé de fabrication de nappes de fibres très fines de polymères thermoplastiques Download PDF

Info

Publication number
EP0453819B1
EP0453819B1 EP91105117A EP91105117A EP0453819B1 EP 0453819 B1 EP0453819 B1 EP 0453819B1 EP 91105117 A EP91105117 A EP 91105117A EP 91105117 A EP91105117 A EP 91105117A EP 0453819 B1 EP0453819 B1 EP 0453819B1
Authority
EP
European Patent Office
Prior art keywords
nozzle head
process according
gas stream
gas
delimiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91105117A
Other languages
German (de)
English (en)
Other versions
EP0453819A1 (fr
Inventor
Peter Roger Dipl.-Ing. Nyssen
Dirk Dipl.-Ing. Berkenhaus
Hans-Theo Van Pey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0453819A1 publication Critical patent/EP0453819A1/fr
Application granted granted Critical
Publication of EP0453819B1 publication Critical patent/EP0453819B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres

Definitions

  • the invention is based on a process for the production of very fine polymer fiber webs made of thermoplastic polymers with an average fiber diameter of 0.1 ⁇ m - 20 ⁇ m, preferably 0.5 ⁇ m - 10 ⁇ m, in which the molten polymer in a rotating die head under a pressure of 1 bar -200 bar is thrown radially from a large number of outlet bores with the formation of fibers and the fibers which have not yet completely solidified are deflected in the axial direction at a radial distance of 10 mm-200 mm from the outlet bores by an external gas stream and then as a fleece on a circumferential, air-permeable carrier are separated.
  • Such a method is described in DE-A 3 801 080.
  • nonwovens are made from meltable polymers primarily by the so-called melt-blown process (see, for example, US Pat. No. 4,048,364, US Pat. No. 4,622,259, US Pat. No. 4,623,576, DE 2,948,821, EP 92 819, EP 0 239 080).
  • the manufactured according to EP 239 080 Elastic nonwovens are characterized, for example, by an average fiber diameter that is over 10 ⁇ m. This area is also easily accessible with conventional staple or continuous fiber spinning processes.
  • the elastic nonwovens produced in this way can therefore strictly speaking not be called microfiber or very fine fiber nonwovens.
  • melt-blown process is based on purely aerodynamic fiber formation, whereby the polymer melt is blown directly with high-speed air (100-300 m / sec) below a temperature above the melt temperature, special requirements with regard to the material properties of the polymer have to be achieved very fine fiber diameters.
  • the melt must have a low melt viscosity and low viscosity.
  • Polymers with low interaction forces between the molecular chains, such as polyolefins have proven to be particularly suitable. If, on the other hand, there are higher interaction forces, such as, for example, PA, TP and polyurethane, the fiber formation process is hindered by the high expansion viscosity, which generally leads to coarser fiber diameters.
  • EP-A-0 239 080 describes, for example, the use of the melt-blown process using copolymers, such as ethylene-vinyl acetate (EVA) or ethylene-methyl acrylate (EMA) copolymers.
  • EVA ethylene-vinyl acetate
  • EMA ethylene-methyl acrylate
  • Example 7 of this publication specifies a fiber diameter of more than 10 ⁇ m for EVA.
  • the fleece strength as well as the extensibility show great differences in the longitudinal and transverse directions.
  • the centrifugal blowing process described in DE 3 801 080 and EP-A-0 325 116 allows the production of very fine polymer fibers with a fiber diameter of 0.1-10 ⁇ m.
  • This method is based on the fact that the primary threads formed are first drawn out in the centrifugal field (preliminary draft) and then further drawn out into fine fibers by an axial gas flow at high speed (final draft).
  • This process enables the production of very fine fibers from polymers in a large melting and expansion viscosity range, so that polymers with a high molecular weight and large interaction forces between the molecular chains can also be used as the starting material. This is where the invention comes in.
  • the gas flows of the inner and outer gas stream are advantageously set so that their ratio is between 0.2 and 2.0.
  • the ratio of the sum of these limiting gas flow rates to the sum of the outer and inner gas flow rate is preferably set to a value between 0.1 and 1, preferably between 0.1 and 0.5. It has also proven to be advantageous if the limiting gas flows are blown in at a radial distance from the axis of the nozzle head that is 1.5 to 5 times, preferably 1.5 to 3 times, the radius of the nozzle head.
  • the new improved centrifugal blowing process has proven itself for the production of very fine fiber nonwovens made of polyolefins, polyester, polyamide, in particular of polyester, polyether or polyether carbonate urethane nonwovens.
  • the invention thus also relates to the polyurethane nonwovens produced by this process with outstanding physical properties.
  • the fine fiber nonwovens manufactured using the new process have an average fiber diameter that is significantly lower than that of comparable polyurethane nonwovens manufactured using other spinning processes. Despite the special fiber fineness, the individual fibers are unusually long. Elastic nonwovens can be made from different fiber finenesses (fiber diameter between 0.1 ⁇ m and 20 ⁇ m), which already have excellent strength, elasticity and abrasion resistance without further treatment.
  • polyurethane melts can be processed in a melt viscosity range of 20 to 1,000 Pa.s, in particular also those polyurethanes with a high molecular weight.
  • the primary thread formation in a centrifugal field with a superimposed homogeneous, rotationally symmetrical flow field allows the use of high melt viscosities and low melting temperatures, so that thermal decomposition (degradation) of the polymers is avoided.
  • the nonwovens produced are characterized by a high degree of uniformity and are particularly low in bonds, twists and thick spots. They have uniform strength properties in the longitudinal and transverse directions.
  • Elastic nonwovens can be easily manufactured using this process with basis weights of 4 to 500 g / m2; especially with low basis weights, they have excellent area coverage due to the high fiber fineness.
  • the nonwovens made of special polyurethanes also have excellent chemical and biological resistance (microbe stability).
  • the elastic fine fiber nonwovens can also be combined in a variety of ways with nonwovens of other polymers.
  • the manufacturing process also allows the processing of polymer blends made of polyurethane and e.g. Polyolefins, whereby in particular the elastic properties can be specifically adjusted.
  • the method according to the invention is characterized by excellent economy.
  • the polymer granules 1 of a thermoplastic polyurethane are melted in an extruder 2 and passed under a constantly regulated pressure in the range of 5 bar via a rotating seal 3 into a central, rotating melt channel 4 in a housing 5 which is also used for storage.
  • the melt channel 4 is connected to a rotating nozzle head 6, the speed of which is in the range from 1,000 to 11,000 rpm, preferably 6,000 to 9,000 rpm.
  • the polymer melt emerges radially from the nozzle head 6 through small bores on the circumference at an angle of 90 ° to the axis of rotation. Due to the melt admission pressure of 5 to 20 bar at the holes, continuous mass flows of 0.01 to 2 g / min are formed per hole.
  • the rotating nozzle head 6 is driven by a motor 17 with a V-belt transmission 18.
  • the nozzle head 6 is expediently heated by an electric induction heater or by radiant heating by means of an electric heating winding.
  • the gas supply for the deflecting gas streams 8 takes place through the connection 19.
  • FIG. 2 The aerodynamic flow field relevant for the extraction process is explained with reference to FIG. 2.
  • an additional gas stream 21 is introduced into the rear area of the nozzle head 6 via the train guide 22.
  • This gas flow exits through 4 rotationally symmetrical axial bores 23 on the end face of the nozzle head 6 and is fanned out into a radial flow field 24 by centrifugal forces.
  • This flow field has an essentially radial component.
  • the polyurethane melt 25 to be spun is heated to the temperature required to set the desired viscosity above the physical melting point and with a pressure of 5 bar into the centrally rotating melt channel 4 and from there via radial bores 26 into a melt outlet openings 27 arranged in the nozzle head 6 upstream annular chamber 28 passed.
  • the nozzle head 6 is heated with electric radiant heaters 29, 30.
  • the inner additional gas stream 21 should have a temperature at its outlet at the nozzle head which is equal to or slightly higher than the temperature of the nozzle head 6. Due to the geometry and the rotation of the nozzle head 6, a symmetrically fanned flow field results, which ensures a uniform distortion (with regard to the Angular distribution) of those emerging from the bores 27 Primary melt streams 9 provides. In addition, the cooling of the primary melt streams is delayed. Subsequently, the melt streams are detected by the outer gas streams 8 emerging from the blow ring 7, deflected axially and drawn out into fine fibers 10 (see also FIG. 1).
  • gas flows 34a, 34b are generated, which are directed as limiting gas flows at an angle ⁇ of 30 ° against the axis onto the axially deflected fiber flow.
  • the gas is supplied to the distributors 33a, 33b under pressure via the feed lines 32a, 32b.
  • the radial distance of the distributors from the axis of rotation is twice the radius of the nozzle head.
  • the eg sinusoidal pulsation can take place in the common mode or alternating mode (push-pull).
  • the pulsation frequency can range from 0.5 s von1 to 5 s ⁇ 1.
  • Another advantageous variant consists in aligning the limiting gas flows 34a, 34b parallel to one another and pivoting them over an angular range of ⁇ 10 ° ⁇ ⁇ ⁇ 70 ° to the axis of the fiber stream at a frequency of 0.5 s ⁇ 1 to 5 s ⁇ 1 . This results in a more uniform fiber placement, in particular in the case of several nozzle heads 6 operated in parallel (FIG. 3).
  • thermoplastic polyester polyurethane with the designation Desmopan® was spun.
  • the material had a density of 1.2 g / cm3, a glass transition temperature of -42 ° C, a softening temperature of + 91 ° C and a melt temperature range of 180 ° C to 250 ° C.
  • the viscosity of the melt was 60 Pa.s at a temperature of 230 ° C and a shear rate of 400 s ⁇ 1.
  • the melt temperature was 225 ° C
  • the temperature of the die head was 240 ° C.
  • the nozzle head 6 rotated at a speed of 9,000 rpm. A mass throughput of 0.2 g / min per bore 27 was achieved.
  • the quantitative ratio of the inner gas stream 21 and the outer exhaust gas stream 19 was 0.4, the temperature of the outer deflecting gas stream 19 was 20 ° C., that of the inner auxiliary gas stream 21 was 260 ° C.
  • the two opposing limiting gas flows 34a and 34b had an axial distance a of 40 mm (see FIG. 2) and a radial distance 2r from the axis of rotation, where r is the nozzle head radius.
  • the angle of attack ⁇ to the normal was 30 ° C.
  • the mass flow ratio of these two gas streams 34a and 34b and the sum of the gas streams 19 and 21 introduced at the nozzle head was 0.3, and the temperature of the limiting gas streams was 20 ° C.
  • the very fine fibers 10 spun in this way had an average fiber diameter of 3.5 ⁇ m with a standard deviation of 1.9 ⁇ m. The result was found by counting 250 fibers in a scanning electron microscope.
  • the separated nonwoven had excellent uniformity across the width and, depending on the weight per unit area, the following strength properties:
  • the mass throughput was reduced to 0.1 g / min per bore and the limiting gas flows 34a, 34b in accordance with a quantitative ratio of 0.2, based on the total sum of the gas flows 19, 21 fed into the nozzle head 6 set.
  • the strength properties already defined in connection with Example 1 are summarized in Table II below.
  • Example 2 Compared to Example 1, the nonwoven fabric according to Example 2 had a higher internal uniformity and area coverage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Claims (9)

  1. Procédé pour la préparation de non-tissés en fibres polymères ultrafines ayant un diamètre de fibre moyen de 0,1 µm-20 µm, de préférence de 0,5 µm-10 µm, dans lequel un polymère thermoplastique fondu est projeté en direction radiale avec formation de fibres dans un champ d'écoulement symétrique en rotation, à partir d'une tête de filière rotative (6) sous une pression d'admission de 1 bar-200 bar hors d'une multitude d'ouvertures d'évacuation (27) sous l'influence d'un courant de gaz interne, et les fibres qui ne sont pas encore complètement solidifiées sont déviées, en direction axiale, d'une distance radiale de 10 mm-200 mm par rapport aux alésages d'évacuation (27) à l'intervention d'un courant de gaz externe (8) et sont ensuite déposées sous forme de non-tissé (15) sur un support périphérique (12) perméable à l'air, caractérisé en ce que le courant de gaz interne, avec une vitesse inférieure à celle du courant de gaz externe, sort d'une multitude d'alésages axiaux (23) sur la tête de filière sous forme de courant de gaz chaud, avec une température qui est supérieure ou égale à la température de la tête de filière.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on règle le rapport des flux massiques de gaz interne et externe à une valeur entre 0,2 et 2,0.
  3. Procédé selon les revendications 1 et 2, caractérisé en ce que le flux massique de gaz interne s'écoule hors de 2 à 20, de préférence de 2 à 10 alésages (23) de la tête de filière rotative (6), s'étendant en direction axiale.
  4. Procédé selon les revendications 1 à 3, caractérisé en ce que, à l'extérieur de la tête de filière (6), à une distance axiale de 0 mm ≦ a ≦ 500 mm par rapport aux ouvertures d'évacuation (27) pour la masse fondue, au moins deux courants de gaz limiteurs supplémentaires (34a, 34b) sont dirigés sur l'écoulement de fibres dévié en direction axiale, en formant un angle de 0° à 70°, de préférence de 10° à 60° par rapport à l'axe.
  5. Procédé selon la revendication 4, caractérisé en ce qu'on règle le rapport de la somme des courants de gaz limiteurs (34a, 34b) et de la somme des flux massiques de gaz externe (19) et interne (21) à une valeur entre 0 et 1, de préférence entre 0 et 0,5.
  6. Procédé selon les revendications 4 et 5, caractérisé en ce que les courants de gaz limiteurs (34a, 34b) sont insufflés à une distance radiale qui s'élève de 1 à 5 fois, de préférence de 1 à 3 fois le rayon de la tête de tuyère.
  7. Procédé selon les revendications 4 à 6, caractérisé en ce que les courants de gaz limiteurs produisent des pulsations en phase ou en opposition de phase.
  8. Procédé selon les revendications 4 à 7, caractérisé en ce que les courants de gaz limiteurs (34a, 34b) sont alignés parallèlement l'un à l'autre et pivotent en couvrant un domaine angulaire de ± 10° à ± 70° par rapport à l'axe de l'écoulement de fibres avec une fréquence de 0,5 s⁻¹ à 5 s⁻¹.
  9. Procédé selon les revendications 1 à 8, caractérisé en ce que, comme polymère, on utilise un polyester-, un polyéther- ou un polyéthercarbonate-uréthanne.
EP91105117A 1990-04-12 1991-03-30 Procédé de fabrication de nappes de fibres très fines de polymères thermoplastiques Expired - Lifetime EP0453819B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4011883 1990-04-12
DE4011883A DE4011883A1 (de) 1990-04-12 1990-04-12 Verfahren zur herstellung von feinstfaservliesen aus thermoplastischen polymeren

Publications (2)

Publication Number Publication Date
EP0453819A1 EP0453819A1 (fr) 1991-10-30
EP0453819B1 true EP0453819B1 (fr) 1994-10-19

Family

ID=6404304

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105117A Expired - Lifetime EP0453819B1 (fr) 1990-04-12 1991-03-30 Procédé de fabrication de nappes de fibres très fines de polymères thermoplastiques

Country Status (4)

Country Link
US (1) US5114631A (fr)
EP (1) EP0453819B1 (fr)
JP (1) JPH04228667A (fr)
DE (2) DE4011883A1 (fr)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230905A (en) * 1991-06-14 1993-07-27 Fare' S.P.A. Polymer extruding device
FI95154C (fi) * 1992-03-09 1995-12-27 Roctex Oy Ab Menetelmä mineraalikuituja ja sideainetta sisältävän mattomaisen tuotteen valmistamiseksi
US5380473A (en) * 1992-10-23 1995-01-10 Fuisz Technologies Ltd. Process for making shearform matrix
US5494736A (en) * 1993-01-29 1996-02-27 Fiberweb North America, Inc. High elongation thermally bonded carded nonwoven fabrics
US5523031A (en) * 1994-12-23 1996-06-04 Owens-Corning Fiberglas Technology, Inc. Method for fiberizing mineral material with organic material
US5972265A (en) * 1998-05-21 1999-10-26 Forest Products Development Laboratories, Inc. L.L.C. Method and apparatus for producing composites
DE60041154D1 (de) 1999-10-29 2009-01-29 Hollingsworth & Vose Co Filtermaterial
US6667254B1 (en) 2000-11-20 2003-12-23 3M Innovative Properties Company Fibrous nonwoven webs
CN1813085A (zh) * 2003-06-30 2006-08-02 宝洁公司 涂层纳米纤维网
MXPA06000048A (es) * 2003-06-30 2006-03-21 Procter & Gamble Particulados en tramas de nanofibras.
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
US20040266300A1 (en) * 2003-06-30 2004-12-30 Isele Olaf Erik Alexander Articles containing nanofibers produced from a low energy process
US8487156B2 (en) * 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
PL1740748T3 (pl) 2004-04-19 2013-12-31 Procter & Gamble Włókna, włókniny i artykuły zawierające nanowłókna produkowane z polimerów o szerokim rozkładzie mas cząsteczkowych
ATE500366T1 (de) * 2004-04-19 2011-03-15 Procter & Gamble Gegenstände mit nanofasern als barrieren
DE102005048939A1 (de) * 2005-07-01 2007-01-11 Carl Freudenberg Kg Vorrichtung, Anordnung und Verfahren zur Herstellung von Fasern und eine solche Fasern umfassende Anordnung
DE102006016584B4 (de) * 2005-09-27 2016-02-25 Illinois Tool Works Inc. Verfahren und Vorrichtung zum Auftragen von Klebstofffäden und -punkten auf ein Substrat
DE202005015267U1 (de) * 2005-09-27 2007-02-08 Inatec Gmbh Vorrichtung zum Auftragen von Klebstofffäden und -punkten auf ein Substrat
US8303874B2 (en) * 2006-03-28 2012-11-06 E I Du Pont De Nemours And Company Solution spun fiber process
CN101542025B (zh) * 2006-11-24 2011-04-27 松下电器产业株式会社 纳米纤维和高分子网状物的制造方法和装置
JP4877140B2 (ja) * 2007-08-08 2012-02-15 パナソニック株式会社 ナノファイバーの製造方法及び装置
WO2008062784A1 (fr) * 2006-11-24 2008-05-29 Panasonic Corporation Procédé et appareil pour produire des nanofibres et une bande de polymère
JP4743194B2 (ja) * 2006-12-07 2011-08-10 パナソニック株式会社 ナノファイバーの合糸方法と装置
JP4535085B2 (ja) * 2007-05-21 2010-09-01 パナソニック株式会社 ナノファイバーの製造方法及び装置
JP4866868B2 (ja) * 2008-02-14 2012-02-01 パナソニック株式会社 ナノファイバ製造装置、不織布製造装置
WO2008142845A1 (fr) * 2007-05-21 2008-11-27 Panasonic Corporation Procédé de production de nanofibres et appareil de production de nanofibres
EA201070516A1 (ru) * 2007-10-23 2010-12-30 ПиПиДжи ИНДАСТРИЗ ОГАЙО, ИНК. Формирование волокна электромеханическим прядением
US8475692B2 (en) * 2008-04-02 2013-07-02 Panasonic Corporation Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5227198B2 (ja) * 2009-01-07 2013-07-03 パナソニック株式会社 ナノファイバ製造装置、ナノファイバ製造方法
AU2010225415A1 (en) 2009-03-16 2011-10-06 Gabae Technologies, Llc Apparatus, systems and methods for producing particles using rotating capillaries
JP2013510246A (ja) * 2009-11-05 2013-03-21 ノンウォテック メディカル ゲーエムベーハー 医療用不織布及びその製造プロセス
US8795561B2 (en) 2010-09-29 2014-08-05 Milliken & Company Process of forming a nanofiber non-woven containing particles
US8889572B2 (en) 2010-09-29 2014-11-18 Milliken & Company Gradient nanofiber non-woven
WO2012109251A2 (fr) * 2011-02-07 2012-08-16 Fiberio Technology Corporation Appareils et procédés de dépôt de microfibres et de nanofibres sur un substrat
CN102140701B (zh) * 2011-03-21 2013-05-08 李从举 制备纳米纤维毡的多孔喷头静电纺丝装置及其制备方法
US8496088B2 (en) 2011-11-09 2013-07-30 Milliken & Company Acoustic composite
EP2900852B1 (fr) * 2012-08-06 2020-10-07 Parker-Hannificn Corporation Dispositifs et procédés pour la fabrication de microfibres et de nanofibres
US9186608B2 (en) 2012-09-26 2015-11-17 Milliken & Company Process for forming a high efficiency nanofiber filter
US20140272359A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Nonwoven substrates
EP2778270A1 (fr) 2013-03-15 2014-09-17 Fibertex Personal Care A/S Substrats non tissés présentant des fibrilles
US9504610B2 (en) 2013-03-15 2016-11-29 The Procter & Gamble Company Methods for forming absorbent articles with nonwoven substrates
US20140259483A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Wipes with improved properties
US20140272223A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Packages for articles of commerce
US9205006B2 (en) 2013-03-15 2015-12-08 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
KR20160023919A (ko) 2013-07-05 2016-03-03 더 노스 훼이스 어패럴 코오포레이션 섬유를 제조하기 위한 시스템 및 방법
EP3193801B1 (fr) 2014-09-10 2022-07-13 The Procter & Gamble Company Bande non tissée
US10793983B2 (en) 2014-11-10 2020-10-06 The North Face Apparel Corp. Footwear and other articles formed by jet extrusion processes
WO2023009151A1 (fr) 2021-07-27 2023-02-02 Singfatt Chin Blouse respirante de nanotechnologie ultra-légère et son procédé de fabrication
US11958308B1 (en) 2023-05-31 2024-04-16 G13 Innovation In Production Ltd Thermal paper, and methods and systems for forming the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806289A (en) * 1972-04-05 1974-04-23 Kimberly Clark Co Apparatus for producing strong and highly opaque random fibrous webs
NL187915C (nl) * 1981-02-16 1992-02-17 Sten Halvor Harsem Werkwijze voor het spinnen van vezels en inrichting voor het uitvoeren van deze werkwijze.
US4988560A (en) * 1987-12-21 1991-01-29 Minnesota Mining And Manufacturing Company Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
DE3801080A1 (de) * 1988-01-16 1989-07-27 Bayer Ag Verfahren zur herstellung von feinstpolymerfasern
US4889546A (en) * 1988-05-25 1989-12-26 Denniston Donald W Method and apparatus for forming fibers from thermoplastic materials

Also Published As

Publication number Publication date
US5114631A (en) 1992-05-19
DE4011883A1 (de) 1991-10-17
DE59103258D1 (de) 1994-11-24
JPH04228667A (ja) 1992-08-18
EP0453819A1 (fr) 1991-10-30

Similar Documents

Publication Publication Date Title
EP0453819B1 (fr) Procédé de fabrication de nappes de fibres très fines de polymères thermoplastiques
DE3586699T2 (de) Verfahren und apparat zum mit extrusion kombinierten zentrifugalspinnen.
DE69719796T2 (de) Verfahren zur herstellung eines vliesstoffes
DE3781313T3 (de) Verfahren und Vorrichtung.
EP0325116B1 (fr) Procédé de fabrication de fibres très fines de polymères
DE69021160T2 (de) Selbstklebende Faservliesbahnen.
DE69030338T2 (de) Verfahren zur Herstelung von Fasern, Rovings und Matten aus flüssigkristallinen lyotropen Polymeren
EP0658221B1 (fr) Procede de production de fibres cellulosiques et dispositif de mise en uvre dudit procede
EP1192301A1 (fr) Procede et dispositif pour produire des fils fins sensiblement continus
EP0339240A2 (fr) Microfibres en sulfure de polyphénylène
DE2053918B2 (de) Verfahren und vorrichtung zur herstellung gekraeuselter faeden aus synthetischen hochpolymeren
EP1954859A1 (fr) Procede de fabrication de fibres courtes ayant une structure noyau-gaine avec une frisure tridimensionnelle et fibre courte ayant une structure noyau-gaine ainsi obtenue
DE2444813C2 (de) Verfahren und Vorrichtung zum Herstellen eines verdichteten Garnproduktes
EP2567005A1 (fr) Filière, dispositif et procédé pour filer des filaments
EP0957187A2 (fr) Dispositif et procédé pour la fabrication de fils microfilaments avec haute regularité de titre à base de polymères thermoplastiques
EP0871805A1 (fr) Procede et dispositif pour la fabrication de monofilaments files par fusion
DE2951445A1 (de) Mischvorrichtung zum mischen von polymeren stoffen
EP0455897B1 (fr) Dispositif pour la fabrication de fibres trés fines
DE69716908T2 (de) Spinndüse zum flash-spinnen
EP0541552A1 (fr) Procede et dispositif de filage pour la production de microfilaments.
EP3771761A1 (fr) Non-tissé obtenues par fusion-soufflage des filaments continus et dispositif de production de non-tissé obtenues par fusion-soufflage
DE69710718T2 (de) Flah-spinnvorrichtung und verfahren
EP0205736B1 (fr) Procédé de fabrication de nappes de fibres filées
DE3523321A1 (de) Verfahren und vorrichtung zur herstellung von spinnfasern
EP1467005A1 (fr) Procédé et dispositif pour le filage au fondu et refroidissement d'un faisceau de filaments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed

Effective date: 19920120

17Q First examination report despatched

Effective date: 19930830

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 59103258

Country of ref document: DE

Date of ref document: 19941124

EAL Se: european patent in force in sweden

Ref document number: 91105117.5

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950214

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950215

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950315

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950321

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950322

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950331

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960331

Ref country code: BE

Effective date: 19960331

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19960331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203

EUG Se: european patent has lapsed

Ref document number: 91105117.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST