EP0446458B1 - Zweiseitig gequetschte Halogenglühlampe - Google Patents

Zweiseitig gequetschte Halogenglühlampe Download PDF

Info

Publication number
EP0446458B1
EP0446458B1 EP90124458A EP90124458A EP0446458B1 EP 0446458 B1 EP0446458 B1 EP 0446458B1 EP 90124458 A EP90124458 A EP 90124458A EP 90124458 A EP90124458 A EP 90124458A EP 0446458 B1 EP0446458 B1 EP 0446458B1
Authority
EP
European Patent Office
Prior art keywords
webs
luminous element
bulb
halogen lamp
lamp according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90124458A
Other languages
English (en)
French (fr)
Other versions
EP0446458A3 (en
EP0446458A2 (de
Inventor
Karl Stadler
Roland Stark
Michael Brinkhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0446458A2 publication Critical patent/EP0446458A2/de
Publication of EP0446458A3 publication Critical patent/EP0446458A3/de
Application granted granted Critical
Publication of EP0446458B1 publication Critical patent/EP0446458B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/18Mountings or supports for the incandescent body
    • H01K1/24Mounts for lamps with connections at opposite ends, e.g. for tubular lamp

Definitions

  • EP-A-0 446 459 The application is closely related to the three parallel applications Nos. EP-A-0 446 459, EP-A-0 446 460 and EP-A-0 446 461.
  • the invention relates to a halogen lamp which is squeezed on both sides according to the preamble of claim 1.
  • Such a halogen incandescent lamp is known from DE-GM 83 25 715. It is a festoon lamp with an axially arranged filament. In order to prevent the filament from touching the inner wall of the bulb due to its length, particularly in the horizontal burning position, a plurality of spiral or ring-shaped helix holder wires are provided which, as is known per se, bear against the inner wall of the bulb and support the filament. To fix each holder, small troughs are molded into the piston wall on one or both sides.
  • the assembly of festoon lamps with spiral holder spirals is very cumbersome and costly, in particular this applies to lamps with fixing recesses.
  • glass webs which are formed from the material of the bulb, have a high temperature resistance. The reason is that with this technology there is additional cooling from the outside and heat dissipation to the outside and therefore the decomposition of the glass web is prevented.
  • the web can be solid (as a rod), but this is not completely satisfactory in terms of production technology and cooling.
  • the web is preferably tubular. This improves cooling, since the heat-emitting surface is enlarged.
  • the first option is a mechanical bracket, e.g. the tubular webs so to speak thread the secondary filament of the filament or rest against the filament.
  • the pitch of the secondary helix in the region of the web is advantageously chosen to be so large that it is adapted to the outside diameter of the web.
  • the filament is particularly advantageously short-circuited by a core pin, so that its temperature is greatly reduced.
  • the tubular web fixes the filament by squeezing a piece of the filament between two web halves.
  • the particularly intimate connection due to the pinching leads to excellent heat dissipation at this spiral point, which blackens the piston and devitrifies the Prevents glass bridge and also leads to the fact that the pinched spiral area does not light or only glows weakly.
  • the critical temperature when using quartz glass is around 800 to 900 ° C; with tempered glass, the temperature of the glass webs should not exceed approx. 600 ° C.
  • the luminous element can be fixed at any point by means of the tubular webs.
  • the fixed section of the luminous element is preferably a primary spiral - or also non-spiral - non-luminous (more precisely: weakly luminous) connecting part between luminous double-spiral sections.
  • An uncoiled connecting part between single coiled sections is also possible in the case of lamps with high power consumption (for example zB 200 W);
  • a good alternative is again the use of short core pins in single-spiral connecting parts.
  • the non-luminous connecting parts have a considerably reduced power density and temperature load compared to the luminous sections. Fixation is therefore preferably carried out on connecting parts. In addition to the elegant solution to the heat load problem, this also keeps the scatter of electrical and lighting values low.
  • the diameter of the glass webs can be chosen so that there is no significant impediment to the halogen cycle in the lamp bulb.
  • the diameter of the glass web is advantageously at least 30% larger than the outside diameter of the luminous element in the area of the point to be fixed.
  • tubular webs are funnel-shaped, there are no places that are too thin in the region of the transition to the piston wall, which would reduce the bursting pressure.
  • the wall thickness remains fairly homogeneous.
  • the inside diameter of the webs is typically 0.5 to 2.0 mm and widens to two to four times at the end of the funnel.
  • the webs are generally produced after the piston has been squeezed, in any case before the filling.
  • the lamp bulb is heated in the area of the future webs with burners and shaped by means of stamps, which are opposite each other.
  • stamps which are designed as rods, pressing two hollow, in particular funnel-shaped, "glass fingers” into the piston wall, which are pressed together finally touch in or near the lamp axis.
  • the diameter of the funnel on the bulb wall and the degree of narrowing towards the lamp axis depend on the size of the heating zone on the bulb wall.
  • the absolute value of the glass tube diameter near the axis depends on the dimensions of the stamp.
  • a plug is created in the area of the interface between the two "glass fingers". In the case of the squeezing technique, the filament lies exactly between the two "glass fingers" and is fixed to form the stopper.
  • An alternative manufacturing technique provides more bubble-shaped webs ("concave curvature" of the web wall) instead of the funnel-shaped webs ("convex curvature” of the web wall).
  • the web without a stamp is generated without force by creating a vacuum in the mb area via the pump nozzle that has not yet melted (reference number 3 in the melted state in the finished lamp), while at the same time selectively punctuating the piston wall at two opposite points Gas burner is heated.
  • This technique can be used particularly well with a small inner diameter ( ⁇ 6 mm) of the lamp bulb. It is also suitable for lamps with long connecting parts ( ⁇ 5 mm), which are used in particular for mains voltages of approx. 110 V.
  • the advantages of this technology lie in the force-free, gentle squeezing so that there is no fear of deflection of the filament.
  • An intermediate technique in which the stamp variant is supported by applying negative pressure, can also be used.
  • the lamps according to the invention are suitable for direct operation at mains voltage, which should be understood to mean a range from approximately 80 V to 250 V. Typical wattages are 50 to 2000 W. These lamps are used for example for floodlight systems, but also for general lighting purposes.
  • Figures 1a and b show a double-ended halogen incandescent lamp 1 for general lighting with a power of 150 W, which is suitable for direct connection to the 220 V network. It has a cylindrical piston 2 made of quartz glass with an inner diameter of approximately 7 mm and a total length of approximately 105 mm, which has a pump tip 3 in the center. The two ends of the piston are each closed with a pinch seal 4, 5.
  • the flask is filled with an inert gas mixture of 80% Kr and 20% N2, to which a halogen addition of 0.005% CBrClF2 is added.
  • an otherwise identical lamp for 150 W is equipped with a simply coiled filament 6, the end parts 7 of which are uncoiled.
  • this exemplary embodiment does not differ from that previously discussed.
  • tubular webs 9 are used to support the luminous element in both exemplary embodiments, which are arranged in a row transversely to the lamp axis. They divide the filament 6 evenly in sections 10, which do not sag due to their brevity.
  • the crosspieces 9 are formed from the material of the bulb and each extend between two locations on the bulb wall 2 'across the diameter of the bulb, touching the lamp axis.
  • the crosspieces 9 are designed symmetrically funnel-shaped. Starting from the two attachment points on the piston wall 2 ', each glass web 9 narrows continuously inwards. This shape is advantageous in order to avoid thin wall spots during manufacture.
  • the transverse webs 9 have an inner tube diameter of approximately 1.2 mm in the vicinity of the axis and widen towards the outer wall of the piston by approximately two to four times the diameter. In the area of the lamp axis, the pinching creates a solid plug 11, which can be described approximately as a solid cylinder. The height of the solid cylinder corresponds approximately to its diameter. A short area 12 of the filament is squeezed into this stopper and thereby fixed.
  • the number of crosspieces 9 varies depending on the power level of the lamp and the length of the filament and its stability with regard to sagging. For stiff lamps with low power may be sufficient already a cross bar. For less stiff lamps with high performance, more than four crossbars can be used, e.g. six, find use.
  • crosspieces (9a, 9b) it may prove advantageous to arrange the crosspieces (9a, 9b) alternately in two planes rotated by 90 ° instead of in a row (FIG. 2).
  • Another possibility is to mount the crosspieces progressively rotated by 45 ° about the lamp axis, so that the second crosspiece is arranged at 45 °, the third at 90 °, etc., with respect to the first crosspiece.
  • the advantage of these exemplary embodiments is that the halogen cycle process is hardly hindered and the optical properties (radiation characteristics) remain almost homogeneous.
  • the luminous element 6 ' has double-coiled sections 10' which are spaced apart by connecting sections 13 which are simply coiled.
  • the fixation of the filament 6 'by melting in the continuous plug 11 of the funnel-shaped crosspiece 9 takes place at the height of the connecting sections 13.
  • This version is advantageous on the one hand with double-filament filaments with large diameters of the secondary filament, because the double-filament filament has a tendency during melting for distorting and twisting.
  • this technology is suitable for lamps with a power of up to approx. 200 W, in which the temperature of the double-coiled filament would be so high that blackening (bulb coating) and devitrification as well as stresses in the glass would occur.
  • tubular crosspieces 14 are equipped with a constant diameter over most of their length and widen only in the vicinity of the bulb wall 2 'in the manner of a trumpet funnel 15.
  • a short core pin 18 made of molybdenum wire.
  • the crossbar 14 starts at the level of the core pin 18 on the connecting part and leaves the interior of the connecting part hollow.
  • FIG. 4b Another variant is shown in FIG. 4b.
  • the two halves of the web 14 in turn squeeze the double-coiled filament in the single-coiled connecting part 13.
  • the two halves are only incompletely fused together, so that a seam 19 remains visible in the axis between the two halves of the plug 11.
  • the funnel of the glass web 14 widens continuously, but increasingly (ie non-linearly) toward the outside of the piston wall. This best shape of the funnel arises during the continuous pressing in with a rod-shaped punch 20 with constant heat supply.
  • FIG. 5 shows an embodiment for luminous elements with a particularly large slope.
  • the luminous element 6 is continuously coiled. For clarification, the individual turns of the luminous element are shown and the envelope 6 ⁇ is only indicated by dashed lines.
  • the glass web 15 is designed as a continuous hollow cylinder or with a central plug 11 (as shown). Its outer diameter near the axis is adapted to the single turn of the filament.
  • the angle of the slope, which the glass tube occupies with the lamp axis advantageously corresponds to the pitch angle, because on the one hand the fixation is best guaranteed and on the other hand the diameter of the crossbar can be chosen to be relatively large.
  • the glass tubes can also be arranged transversely to the lamp axis in this exemplary embodiment.
  • the luminous element can also be equipped with an extra large single winding (or spiral section) for threading the glass tube.
  • the luminous element is continuously coiled.
  • the glass webs 16 are arranged offset transversely to the lamp axis approximately by the radius of the spiral and the glass web. They are arranged alternately above (16a, 16c) and below (16b, 16d) the luminous element 17a, b, based on a horizontal burning position.
  • the advantage of this arrangement is that the filament - regardless of the dimensions of the coil - can be easily manufactured.
  • the connecting sections can be dispensed with.
  • Short core wires 19 are advantageously left in the helix of the luminous element 17b at the level of the crossbars 16a, 16b.
  • the crosspieces can be tubular or funnel-shaped.
  • the diameter of the glass webs 16a, 16b are selected so that they are many times larger than the slope of the luminous element 17a, which can be chosen to be correspondingly small (left half of the figure).
  • the diameter of the glass webs 16c, 16d can be dimensioned such that it is significantly smaller than the slope of the luminous element 17b and consequently each glass web 16c, 16d can be fitted into the "hollow" formed by a single turn.
  • This embodiment is particularly suitable with a correspondingly large slope of the filament.
  • FIG. 7 shows a section of a 110 V lamp 25 with a bubble-shaped web 26.
  • the two halves of the web 26 are concavely curved and lie over a relatively wide range of 7 mm on the single-spiral connection section 27 of the double-spiral filament 28.
  • the invention is not restricted to the exemplary embodiments shown.
  • it is also suitable for halogen incandescent lamps for mains operation at 110 V.
  • the filling can also consist of other components known per se, for example argon can be used as inert gas and 0.05% CH2Br2 as halogen additive.
  • Hard glass is also suitable as the bulb material, the luminous element being connected to external contact pins via solid current leads known per se, which are melted directly into the pinch seal.
  • the glass tubes can also have an oval cross-section, the larger semi-axis of the oval being located in the lamp axis for better holding action.
  • the stamp is shaped accordingly during manufacture.
  • the invention provides an inexpensive halogen incandescent lamp with low power consumption down to 30 W for direct mains connection, as is of particular interest for general lighting.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Resistance Heating (AREA)
  • Glass Compositions (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Mushroom Cultivation (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

  • Die Anmeldung steht in engem Zusammenhang mit den drei Parallelanmeldungen Nr. EP-A- 0 446 459, EP-A- 0 446 460 und EP-A- 0 446 461.
  • Die Erfindung betrifft eine zweiseitig gequetschte Halogenglühlampe nach dem Oberbegriff des Anspruchs 1.
  • Eine derartige Halogenglühlampe ist aus dem DE-GM 83 25 715 bekannt. Es handelt sich um eine Soffittenlampe mit axial angeordnetem Leuchtkörper. Um zu verhindern, daß der Leuchtkörper aufgrund seiner Länge die Kolbeninnenwand berührt, insbesondere bei waagerechter Brennlage, sind mehrere spiral- oder ringförmig gewundene Wendelhalterdrähte vorgesehen, die - wie an sich bekannt - an der Kolbeninnenwand anliegen und den Leuchtkörper stützen. Zur Fixierung jedes Halters sind einseitig oder zweiseitig kleine Mulden in die Kolbenwand eingeformt. Es hat sich jedoch gezeigt, daß die Montage von Soffittenlampen mit Wendelhalterspiralen sehr umständlich und kostenaufwendig ist, insbesondere gilt dies für Lampen mit Fixiermulden. Zum einen wird eine beträchtliche Zahl von Haltern (z.B. vier) pro Lampe benötigt, was relativ hohe Materialkosten verursacht. Zum anderen ist das Herstellverfahren für Wendeln mit Halterungen umfangreicher und aufwendiger. Um Wendelfehler, z.B. durch Deformation, zu verhindern, müssen die Wendeln bereits für das Aufbringen der Halteringe vereinzelt und separat weiterverarbeitet werden. Ihre Weiterverarbeitung bis zur Montage im Lampenkolben wird dadurch unrationell und wenig automatisierungsfreundlich.
  • Es ist Aufgabe der Erfindung, eine zweiseitig gequetschte Halogenglühlampe mit langer Lebensdauer bereitzustellen, die sich besonders einfach und kostensparend herstellen läßt und besonders automatisierungsfreundlich ist.
  • Diese Aufgabe der Erfindung wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausführungen finden sich in den Unteransprüchen.
  • Bei der Suche nach einem besonders einfachen Konzept für den Aufbau einer Soffitten-Lampe ist es naheliegend zu versuchen, die Form der Halter weiter zu vereinfachen und damit auch automatisierungsfreundlicher zu gestalten. Es gibt hierzu einen umfangreichen Stand der Technik, der dokumentiert, daß bereits viele Anstrengungen auf diesem technischen Gebiet unternommen worden sind. Die vorliegende Erfindung stellt nun einen entscheidenden Durchbruch dar, der in eine ganz andere Richtung zielt. Anstatt die Form der Halter lediglich zu verändern, wird auf diese völlig verzichtet. Ihre Aufgabe übernehmen jetzt aus dem Material der Kolbenwand gebildete Glasstege.
  • Überraschenderweise hat sich nämlich gezeigt, daß Glasstege, die aus dem Material des Kolbens gebildet sind, eine hohe Temperaturbeständigkeit aufweisen. Die Ursache ist, daß bei dieser Technik eine zusätzliche Kühlung von außen und Wärmeableitung nach außen erfolgt und deshalb die Zersetzung des Glasstegs verhindert wird.
  • Der Steg kann im Prinzip massiv (als Stab) ausgebildet sein, was jedoch fertigungstechnisch und hinsichtlich der Kühlung nicht vollständig befriedigt. Bevorzugt ist der Steg rohrartig ausgebildet. Dadurch wird die Kühlung verbessert, da die wärmeabgebende Oberfläche vergrößert wird.
  • Zwei prinzipielle Alternativen der Haltewirkung des Stegs sind möglich. Die erste Möglichkeit besteht in einer mechanischen Halterung, wobei z.B. die rohrartigen Stege das Sekundärgewendel des Leuchtkörpers sozusagen auffädeln oder am Leuchtkörper anliegen. Vorteilhaft ist die Steigung des Sekundärgewendels im Bereich des Steges so groß gewählt, daß sie dem Außendurchmesser des Steges angepaßt ist. Besonders vorteilhaft ist im Bereich der Stege der Leuchtkörper durch einen Kernstift kurzgeschlossen, so daß seine Temperatur stark abgesenkt ist.
  • Bei der zweiten Möglichkeit fixiert der rohrartige Steg den Leuchtkörper dadurch, daß ein Stück des Leuchtkörpers zwischen zwei Steghälften eingequetscht wird. Die besonders innige Verbindung durch die Einquetschung führt zu einer hervorragenden Wärmeableitung an dieser Wendelstelle, die eine Schwärzung des Kolbens und eine Entglasung des Glasstegs verhindert und außerdem dazu führt, daß der eingequetschte Wendelbereich nicht oder nur schwach leuchtet. Die kritische Temperatur liegt bei der Verwendung von Quarzglas bei etwa 800 bis 900 °C; bei Hartglas sollte die Temperatur der Glasstege ca. 600 °C nicht übersteigen. Vorwiegend bei niederwattigen Lampen (z.B. 75 W und weniger) kann der Leuchtkörper durchgehend gewendelt sein. Darunter kann sowohl eine einfache als auch eine doppelte Wendelung verstanden werden. Der Leuchtkörper kann im Prinzip an beliebiger Stelle durch die rohrartigen Stege fixiert werden. Bei höherwattigen Lampen (über 75 W) ist das fixierte Teilstück des Leuchtkörpers bevorzugt ein primärgewendeltes - oder auch ungewendeltes - nicht leuchtendes (genauer: schwach leuchtendes) Verbindungsteil zwischen leuchtenden doppelt gewendelten Abschnitten. Möglich ist auch ein ungewendeltes Verbindungsteil zwischen einfach gewendelten Abschnitten bei Lampen hoher Leistungsaufnahme (z.B.≧ 200 W); eine gute Alternative stellt auch hier wieder die Benutzung kurzer Kernstifte in einfach gewendelten Verbindungsteilen dar.
  • Die nicht leuchtenden Verbindungsteile weisen, wie der Fachmann unmittelbar einsieht, eine erheblich verringerte Leistungsdichte und Temperaturbelastung im Vergleich zu den leuchtenden Abschnitten auf. Die Fixierung erfolgt daher bevorzugt an Verbindungsteilen. Neben der eleganten Lösung des Wärmebelastungsproblems wird dadurch auch die Streuung der elektrischen und lichttechnischen Werte geringgehalten.
  • Diese Technik schafft eine extrem vereinfachte Halterung des Leuchtkörpers und ist sehr einfach herzustellen. Zudem können die Durchmesser der Glasstege so gewählt werden, daß keine nennenswerte Behinderung des Halogenkreislaufs im Lampenkolben auftritt. Der Durchmesser des Glasstegs ist vorteilhaft um mindestens 30 % größer als der Außendurchmesser des Leuchtkörpers im Bereich der zu fixierenden Stelle.
  • Ein ideales Betriebsverhalten auch bei waagerechter Brennlage läßt sich erzielen, wenn mehrere rohrförmige Querstege verwendet werden, die die einzelnen Wendelabschnitte fixieren und damit die klassische Halterfunktion vollständig übernehmen.
  • Dadurch, daß die rohrartigen Stege trichterförmig ausgebildet sind, treten keine zu dünnen Stellen im Bereich des Übergangs zur Kolbenwand auf, die den Berstdruck mindern würden. Die Wanddicke bleibt ziemlich homogen. Der Innendurchmesser der Stege beträgt typisch 0,5 bis 2,0 mm und weitet sich am Trichterende auf das Doppelte bis Vierfache auf.
  • Die Herstellung der Stege erfolgt im allgemeinen nach dem Quetschen des Kolbens, jedenfalls vor dem Füllen. Der Lampenkolben wird im Bereich der zukünftigen Stege mit Brennern erhitzt und mittels Stempel geformt, die jeweils einander gegenüberliegen. Diese Technik hat den großen Vorteil, daß die Lage des Leuchtkörpers durch diesen Vorgang nicht mehr nachträglich dejustiert werden kann. Die Stege lassen sich besonders einfach herstellen, indem die beiden Stempel, die als Stäbe ausgebildet sind, zwei hohle, insbesondere trichterförmige, "Glasfinger" in die Kolbenwand eindrücken, die sich schließlich in der Lampenachse (oder in deren Nähe) berühren. Der Durchmesser des Trichters an der Kolbenwand und der Grad der Verengung zur Lampenachse hin hängen von der Größe der Aufheizzone an der Kolbenwand ab. Der absolute Wert des Glasrohrdurchmessers in Achsennähe hängt von den Abmessungen des Stempels ab. Im Bereich der Nahtstelle zwischen den beiden "Glasfingern" entsteht ein Stopfen. Im Fall der Einquetschtechnik liegt der Leuchtkörper genau zwischen den beiden "Glasfingern" und wird unter Bildung des Stopfens fixiert.
  • Eine alternative Herstelltechnik liefert statt der trichterförmigen Stege ("konvexe Krümmung" der Stegwand) mehr blasenförmige Stege ("konkave Krümmung" der Stegwand). Dabei wird der Steg ohne Stempel kräftefrei erzeugt, indem über den zu diesem Zeitpunkt noch nicht abgeschmolzenen Pumpstutzen (Bezugszeichen 3 in abgeschmolzenem Zustand bei der fertigen Lampe) ein Unterdruck im mb-Bereich erzeugt wird, während gleichzeitig die Kolbenwand an zwei gegenüberliegenden Stellen punktuell mit einem Gasbrenner erhitzt wird. Diese Technik läßt sich besonders gut bei geringem Innendurchmesser (≦ 6 mm) des Lampenkolbens anwenden. Sie eignet sich auch bei Leuchtkörpern mit langen Verbindungsteilen (≧ 5 mm), die insbesondere für Netzspannungen von ca. 110 V verwendet werden. Die Vorteile dieser Technik liegen in der kräftefreien, sanften Einquetschung, so daß keine Auslenkung des Leuchtkörpers zu befürchten ist.
  • Auch eine Zwischentechnik, bei der die Stempelvariante durch Anlegen von Unterdruck unterstützt wird, kann angewendet werden.
  • Insgesamt wird somit eine Halogenglühlampe mit langer Lebensdauer (2000 Std.) vorgestellt, die extrem stoßfest ist und sich für eine einfache Konstruktion mit wenig Bauteilen eignet. Dies führt außerdem dazu, daß im Vergleich zu standardisierten Halogenglühlampen der Rohrdurchmesser um ca. 20 % verkleinert werden kann. Als Nebeneffekt treten dabei aufgrund des kleineren Kolbenvolumens noch zusätzliche Einsparungen bei den Füllmengen auf.
  • Die Lampen gemäß der Erfindung eignen sich für den direkten Betrieb an Netzspannung, worunter ein Bereich von ca. 80 V bis 250 V verstanden werden soll. Typische Wattstufen sind 50 bis 2000 W. Diese Lampen werden beispielsweise für Flutlichtanlagen, jedoch auch für Allgemeinbeleuchtungszwecke verwendet.
  • Die Erfindung wird im folgenden anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigt schematisch
  • Figur 1
    ein erstes Ausführungsbeispiel einer Soffitten-Halogenglühlampe in zwei Seitenansichten (Fig. 1a, b), die um 90° zueinander gedreht sind
    Figur 2
    bis 7 jeweils ein weiteres Ausführungsbeispiel im Ausschnitt in Seitenansicht (nicht maßstäblich)
  • Die Figuren 1a und b zeigen eine zweiseitig gesockelte Halogenglühlampe 1 für Allgemeinbeleuchtung mit einer Leistung von 150 W, die für den direkten Anschluß an das 220 V-Netz geeignet ist. Sie besitzt einen zylindrischen Kolben 2 aus Quarzglas mit einem Innendurchmesser von ca. 7 mm und einer Gesamtlänge von etwa 105 mm, der mittig eine Pumpspitze 3 aufweist. Die beiden Enden des Kolbens sind jeweils mit einer Quetschdichtung 4, 5 verschlossen. Der Kolben ist mit einer Inertgasmischung aus 80 % Kr und 20 % N₂ gefüllt, der ein Halogenzusatz aus 0,005 % CBrClF₂ beigefügt ist.
  • Ein axial angeordneter Leuchtkörper 6, der durchgehend doppelt gewendelt ist, erstreckt sich über nahezu die gesamte Innenlänge des Kolbens. Er besitzt einen Drahtdurchmesser von 53 µm und einen Außendurchmesser des Sekundärgewendels von 580 µm. Er ist über zwei einfach gewendelte Endteile 7 und über zwei Molybdäneinschmelzfolien (hier nicht gezeigt) in den Quetschungen 4, 5 mit den Kontakten der Sockel 8 (aus Keramik) verbunden.
  • In einem anderen Ausführungsbeispiel ist eine ansonsten baugleiche Lampe für 150 W mit einem einfach gewendelten Leuchtkörper 6 ausgerüstet, dessen Endteile 7 ungewendelt sind. In der Schemazeichnung der Figur 1a und b unterscheidet sich dieses Ausführungsbeispiel nicht vom zuvor besprochenen.
  • Anstatt der üblichen Wendelhalter aus Metalldrähten werden zur Abstützung des Leuchtkörpers in beiden Ausführungsbeispielen vier rohrartige Stege 9 verwendet, die quer zur Lampenachse in einer Reihe angeordnet sind. Sie unterteilen den Leuchtkörper 6 gleichmäßig in Abschnitte 10, die aufgrund ihrer Kürze nicht durchhängen. Die Querstege 9 sind aus dem Material des Kolbens gebildet und erstrecken sich jeweils zwischen zwei Stellen der Kolbenwand 2′ über den Durchmesser des Kolbens, wobei sie die Lampenachse berühren.
  • Die Querstege 9 sind symmetrisch trichterförmig gestaltet. Von den beiden Ansatzstellen an der Kolbenwand 2′ ausgehend verengt sich jeder Glassteg 9 kontinuierlich nach innen. Diese Gestalt ist vorteilhaft, um bei der Herstellung dünne Wandstellen zu vermeiden. Die Querstege 9 besitzen in Achsnähe einen inneren Rohrdurchmesser von ca. 1,2 mm und weiten sich zur Kolbenaußenwand hin etwa auf den zwei- bis vierfachen Durchmesser auf. Im Bereich der Lampenachse entsteht durch die Einquetschung ein massiver Stopfen 11, der näherungsweise als Vollzylinder beschrieben werden kann. Die Höhe des Vollzylinders entspricht etwa seinem Durchmesser. In diesen Stopfen ist ein kurzer Bereich 12 des Leuchtkörpers eingequetscht und dadurch fixiert.
  • Die Zahl der Querstege 9 variiert je nach der Leistungsstufe der Lampe und der Länge des Leuchtkörpers sowie dessen Stabilität hinsichtlich des Durchhängens. Für steife Leuchtkörper mit geringer Leistung genügt u.U. bereits ein Quersteg. Für weniger steife Leuchtkörper mit hoher Leistung können unter Umständen auch mehr als vier Querstege, z.B. sechs, Verwendung finden.
  • Bei einer größeren Zahl von Querstegen (z.B. mehr als vier) kann es sich als vorteilhaft erweisen, die Querstege (9a, 9b) alternierend in zwei um 90° gedrehte Ebenen anstatt in einer Reihe ausgerichtet anzuordnen (Fig. 2). Eine andere Möglichkeit ist, die Querstege fortschreitend um 45° um die Lampenachse gedreht anzubringen, so daß in bezug auf den ersten Quersteg der zweite um 45°, der dritte um 90° usw. angeordnet ist. Der Vorteil dieser Ausführungsbeispiele ist, daß der Halogenkreisprozeß kaum behindert wird und die optischen Eigenschaften (Abstrahlcharakteristik) nahezu homogen bleiben.
  • In einem weiteren Ausführungsbeispiel (Fig. 3) einer 100 W-Lampe besitzt der Leuchtkörper 6′ doppelt gewendelte Abschnitte 10′, die durch Verbindungsabschnitte 13, die einfach gewendelt sind, beabstandet sind. Die Fixierung des Leuchtkörpers 6′ durch Einschmelzen in den durchgehenden Stopfen 11 des trichterförmigen Querstegs 9 erfolgt gerade in Höhe der Verbindungsabschnitte 13. Diese Ausführung ist zum einen vorteilhaft bei doppelt gewendelten Leuchtkörpern mit großen Durchmessern des Sekundärgewendels, weil der doppelt gewendelte Leuchtkörper beim Einschmelzen eine Tendenz zum Verzerren und Verdrehen zeigt. Andererseits eignet sich diese Technik für Lampen mit einer Leistung bis ca. 200 W, bei denen die Temperatur des doppelt gewendelten Leuchtkörpers so hoch wäre, daß eine Schwärzung (Kolbenbelag) und Entglasung sowie Spannungen im Glas auftreten würden.
  • In einem weiteren Ausführungsbeispiel (Fig. 4a) einer Soffittenlampe für 200 W sind die rohrförmigen Querstege 14 über den größten Teil ihrer Länge mit einem konstanten Durchmesser ausgestattet und weiten sich erst unmittelbar in Nähe der Kolbenwand 2′ nach Art eines Trompetentrichters 15 auf. Im einfach gewendelten Verbindungsteil 13 ist ein kurzer Kernstift 18 aus Molybdändraht belassen. Der Quersteg 14 setzt in Höhe des Kernstifts 18 am Verbindungsteil an und beläßt das Innere des Verbindungsteils hohl.
  • Eine weitere Variante zeigt Figur 4b. Die beiden Hälften des Stegs 14 quetschen wiederum den doppelt gewendelten Leuchtkörper im einfach gewendelten Verbindungsteil 13 ein. Die beiden Hälften sind miteinander nur unvollständig verschmolzen, so daß in der Achse eine Nahtstelle 19 zwischen den beiden Hälften des Stopfens 11 erkennbar bleibt. Der Trichter des Glasstegs 14 weitet sich kontinuierlich, jedoch nach außen zur Kolbenwand hin zunehmend (also nichtlinear) auf. Diese Bestform des Trichters entsteht beim kontinuierlichen Eindrücken mit einem stabförmigen Stempel 20 unter gleichbleibender Wärmezufuhr.
  • Bei dieser Bestform ist eine homogene Wandstärke des Glassteges am sichersten gewährleistet. Bei der Herstellung anders geformter Stege muß die Eindrück-Geschwindigkeit und/oder die Wärmezufuhr sowie der Preßdruck des Stempels geeignet variiert werden.
  • Eine Ausführungsform für Leuchtkörper mit besonders großer Steigung zeigt Figur 5. Der Leuchtkörper 6 ist kontinuierlich gewendelt. Zur Verdeutlichung sind die Einzelwindungen des Leuchtkörpers eingezeichnet und die Umhüllende 6˝ nur gestrichelt angedeutet. Der trichterförmige Glassteg 15, der die Lampenachse schneidet und dessen beide Ansatzstellen an der Kolbenwand 2′ gegeneinander versetzt sind, fädelt den Leuchtkörper 6 im Bereich einer Windung auf. Der Glassteg 15 ist als durchgehender Hohlzylinder oder mit einem mittigen Stopfen 11 (wie gezeigt) ausgebildet. Sein Außendurchmesser in Achsnähe ist der Einzelwindung des Leuchtkörpers angepaßt.
  • Der Winkel der Schräge, die das Glasrohr mit der Lampenachse einnimmt, stimmt vorteilhaft mit dem Steigungswinkel überein, weil dadurch zum einen die Fixierung am besten gewährleistet ist und zum anderen der Durchmesser des Querstegs relativ groß gewählt werden kann. Im Prinzip können die Glasrohre jedoch auch in diesem Ausführungsbeispiel quer zur Lampenachse angeordnet sein. Der Leuchtkörper kann auch mit einer extra groß gewendelten Einzelwindung (oder Wendelabschnitt) zum Auffädeln des Glasrohrs ausgestattet sein.
  • In einem weiteren Ausführungsbeispiel (Fig. 6) ist der Leuchtkörper kontinuierlich gewendelt. Die Glasstege 16 sind etwa um den Radius von Gewendel und Glassteg versetzt quer zur Lampenachse angeordnet. Sie sind hierbei alternierend oberhalb (16a, 16c) und unterhalb (16b, 16d) des Leuchtkörpers 17a, b, bezogen auf eine waagerechte Brennlage, angebracht. Der Vorteil dieser Anordnung ist, daß der Leuchtkörper - unabhängig von den Abmessungen des Gewendels - einfach hergestellt werden kann. Auf die Verbindungsabschnitte kann verzichtet werden. Vorteilhaft sind in Höhe der Querstege 16a, 16b kurze Kerndrähte 19 im Gewendel des Leuchtkörpers 17b belassen. Die Querstege können rohr- bzw. trichterförmig geformt sein. Bei diesem Ausführungsbeispiel kann der Durchmesser der Glasstege 16a, 16b so gewählt werden, daß er um ein Vielfaches größer als die Steigung des Leuchtkörpers 17a ist, die dabei entsprechend klein gewählt werden kann (linke Bildhälfte). Andererseits kann der Durchmesser der Glasstege 16c, 16d so dimensioniert sein, daß er deutlich kleiner als die Steigung des Leuchtkörpers 17b ist und folglich jeder Glassteg 16c, 16d sich in die von einer Einzelwindung gebildete "Kuhle" einpassen läßt. Diese Ausführungsform eignet sich besonders bei einer entsprechend großen Steigung des Leuchtkörpers.
  • In Figur 7 ist ein Ausschnitt einer 110 V-Lampe 25 mit blasenförmigem Steg 26 gezeigt. Die beiden Hälften des Steges 26 sind konkav gekrümmt und liegen über einen relativ weiten Bereich von 7 mm am einfach gewendelten Verbindungsabschnitt 27 des doppelt gewendelten Leuchtkörpers 28 an.
  • Die Begriffe Steigung, Gewendel u.ä. der obigen Ausführungen beziehen sich, sofern nicht ausdrücklich anders erwähnt, grundsätzlich entweder auf das Sekundärgewendel einer Doppelwendel oder auf das Gewendel einer Einfachwendel.
  • Die Erfindung ist nicht auf die gezeigten Ausführungsbeispiele beschränkt. Insbesondere eignet sie sich auch für Halogenglühlampen für den Netzbetrieb an 110 V. Die Füllung kann auch aus anderen an sich bekannten Bestandteilen bestehen, z.B. kann als Inertgas Argon und als Halogenzusatz 0,05 % CH₂Br₂ verwendet werden. Als Kolbenmaterial eignet sich auch Hartglas, wobei der Leuchtkörper über an sich bekannte massive Stromzuführungen, die in die Quetschdichtung direkt eingeschmolzen sind, mit äußeren Kontaktstiften verbunden sind.
  • Die Glasrohre können statt eines kreisförmigen Querschnitts auch einen ovalen Querschnitt besitzen, wobei zur besseren Haltewirkung die größere Halbachse des Ovals in der Lampenachse liegt. Bei der Herstellung ist der Stempel entsprechend geformt.
  • Mit der Erfindung steht insbesondere eine preisgünstige Halogenglühlampe mit geringer Leistungsaufnahme bis herab zu 30 W für den direkten Netzanschluß zur Verfügung, wie sie für die Allgemeinbeleuchtung von besonderem Interesse ist.

Claims (14)

  1. Zweiseitig gequetschte Halogenglühlampe (1) für den Betrieb an Netzspannung, bestehend aus
    - einem hermetisch abgedichteten rohrartigen Kolben (2) aus lichtdurchlässigem Material, der eine Lampenachse definiert
    - einer Füllung aus Inertgas und einem halogenhaltigen Zusatz
    - einem axial angeordneten Leuchtkörper mit zwei Enden (7)
    - einem Stromzuführungssystem, das mit den beiden Enden des Leuchtkörpers verbunden ist,
    dadurch gekennzeichnet, daß der Leuchtkörper ausschließlich durch ein oder mehrere Stege gehaltert ist, die aus dem Material des Kolbens gebildet sind und sich jeweils zwischen zwei Punkten der Kolbenwand erstrecken, wobei die Stege im wesentlichen quer zur Lampenachse angeordnet sind.
  2. Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (9) sich quer zur Lampenachse erstrecken und die Lampenachse berühren.
  3. Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (16) quer zur Lampenachse angeordnet sind und abwechselnd auf der einen (16a, c) und der anderen Seite (16b, d) der Lampenachse angeordnet sind, so daß der Leuchtkörper (17a, b) durch die Stege (16) mechanisch gehaltert wird.
  4. Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (9) in einer Ebene liegen.
  5. Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (9a, b) alternierend in zwei Ebenen liegen, die im rechten Winkel zueinander stehen und die Lampenachse berühren.
  6. Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß der Leuchtkörper (6; 6′) in den Stegen (9) eingequetscht ist.
  7. Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß die Stege (9; 14; 15; 17) rohrartig geformt sind.
  8. Halogenglühlampe nach Anspruch 7, dadurch gekennzeichnet, daß die Stege sich zur Kolbenaußenwand hin trichterförmig oder blasenförmig aufweiten.
  9. Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß der Leuchtkörper (6; 17) durchgehend gewendelt ist.
  10. Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß der Leuchtkörper (6′) in mehrere Abschnitte (10′) gegliedert ist, die durch Verbindungsteile (13) beabstandet sind, wobei die Abschnitte doppelt gewendelt und die Verbindungsteile einfach gewendelt oder ungewendelt sind.
  11. Halogenglühlampe nach Anspruch 10, dadurch gekennzeichnet, daß die Stege (9; 14) den Leuchtkörper (6′) im Bereich der Verbindungsteile (13) haltern.
  12. Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß der Leuchtkörper an den durch die Stege gehalterten Stellen mit einem Kerndraht ausgestattet ist, um eine verbesserte Kühlwirkung zu erzielen.
  13. Verfahren zur Herstellung einer Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß jeder Steg dadurch gebildet wird, daß der Lampenkolben nach dem Einführen des Leuchtkörpers und dem Quetschen der Kolbenenden mit zwei einander gegenüberliegenden Brennern punktuell erhitzt wird und mit zwei stabförmigen Stempeln eingedrückt wird.
  14. Verfahren zur Herstellung einer Halogenglühlampe nach Anspruch 1, dadurch gekennzeichnet, daß jeder Steg gebildet wird, indem der Lampenkolben nach dem Einführen des Leuchtkörpers und dem Quetschen der Kolbenenden mit zwei einander gegenüberliegenden Brennern punktuell erhitzt wird, wobei gleichzeitig über einen Pumpstutzen ein Unterdruck im Lampenkolben erzeugt wird.
EP90124458A 1990-03-15 1990-12-17 Zweiseitig gequetschte Halogenglühlampe Expired - Lifetime EP0446458B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4008365A DE4008365A1 (de) 1990-03-15 1990-03-15 Zweiseitig gequetschte halogengluehlampe
DE4008365 1990-03-15

Publications (3)

Publication Number Publication Date
EP0446458A2 EP0446458A2 (de) 1991-09-18
EP0446458A3 EP0446458A3 (en) 1992-03-04
EP0446458B1 true EP0446458B1 (de) 1995-11-08

Family

ID=6402317

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90124458A Expired - Lifetime EP0446458B1 (de) 1990-03-15 1990-12-17 Zweiseitig gequetschte Halogenglühlampe

Country Status (8)

Country Link
EP (1) EP0446458B1 (de)
JP (1) JP2569227B2 (de)
KR (1) KR0156257B1 (de)
AT (1) ATE130124T1 (de)
DE (2) DE4008365A1 (de)
ES (1) ES2079424T3 (de)
HK (1) HK1000357A1 (de)
HU (1) HU207176B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009008919U1 (de) 2009-06-29 2009-09-10 Osram Gesellschaft mit beschränkter Haftung Halogenglühlampe

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616359B1 (de) * 1993-03-19 1996-07-03 Koninklijke Philips Electronics N.V. Elektrische Glühlampe
DE19528686A1 (de) * 1995-08-03 1997-02-06 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Halogenglühlampe
DE10319468A1 (de) * 2003-04-29 2004-11-25 Heraeus Noblelight Gmbh Infrarotstrahler
DE102005019829A1 (de) * 2005-04-28 2006-11-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektrische Lampe mit Halternoppen für den Leuchtkörper
DE102005045644A1 (de) * 2005-09-23 2007-03-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Elektrische Lampe mit Haltenoppen für den Leuchtkörper
KR101103180B1 (ko) * 2008-03-27 2012-01-04 우시오덴키 가부시키가이샤 필라멘트 램프
DE102009048126A1 (de) 2009-10-02 2011-04-07 Osram Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung einer Entladungslampe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0143917A2 (de) * 1983-09-07 1985-06-12 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Zweiseitig gesockelte Glühlampe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2042963A (en) * 1930-10-15 1936-06-02 Westinghouse Lamp Co Ultraviolet lamp
US3237045A (en) * 1962-03-16 1966-02-22 Gen Electric Bent end electric lamp having lead wires anchored at ends of bend and provided with expansion portion
US3983441A (en) * 1975-07-03 1976-09-28 Xerox Corporation Multiple pinch incandescent lamp

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0143917A2 (de) * 1983-09-07 1985-06-12 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Zweiseitig gesockelte Glühlampe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009008919U1 (de) 2009-06-29 2009-09-10 Osram Gesellschaft mit beschränkter Haftung Halogenglühlampe

Also Published As

Publication number Publication date
HK1000357A1 (en) 1998-03-06
ATE130124T1 (de) 1995-11-15
DE59009859D1 (de) 1995-12-14
KR0156257B1 (ko) 1998-11-16
JPH06283145A (ja) 1994-10-07
HU910851D0 (en) 1991-09-30
HU207176B (en) 1993-03-01
EP0446458A3 (en) 1992-03-04
DE4008365A1 (de) 1991-09-26
EP0446458A2 (de) 1991-09-18
ES2079424T3 (es) 1996-01-16
JP2569227B2 (ja) 1997-01-08
HUT57473A (en) 1991-11-28

Similar Documents

Publication Publication Date Title
EP0446460B1 (de) Einseitig gequetschte Halogenglühlampe
EP0839381B1 (de) Reflektorlampe
EP0451647A2 (de) Hochdruckentladungslampe und Verfahren zu ihrer Herstellung
EP0446458B1 (de) Zweiseitig gequetschte Halogenglühlampe
EP0239006A2 (de) Halogenglühlampe und Verfahren zu ihrer Herstellung
EP0758142B1 (de) Halogenglühlampe
DE19812379A1 (de) Halogenglühlampe
EP2342737B1 (de) Halogenglühlampe für den betrieb an netzspannung
EP0143917B1 (de) Zweiseitig gesockelte Glühlampe
EP0894336B1 (de) Glühlampe mit reflexionsschicht
DE3123442C2 (de)
EP0061757B1 (de) Verfahren zur Herstellung einer als Quetschung ausgebildeten Gefässabdichtung für eine elektrische Lampe und Quetschvorrichtung zum Durchführen des Verfahrens
EP0446461B1 (de) Einseitig gequetschte Halogen-Glühlampe
EP0446459B1 (de) Einseitig gequetschte Halogenglühlampe
DE112008001624T5 (de) Hochintensitätsentladungslampe mit verbesserten Dimmeigenschaften
DE4008334A1 (de) Einseitig gequetschte halogengluehlampe
DE2814823A1 (de) Elektrische gluehlampe
DE10102670B4 (de) Leuchteinheit mit einer Anzahl von Glühlämpchen
DE1589173C (de) Elektrische Glühlampe
WO2005029529A2 (de) Zweiseitig verschlossene elektrische lampe und verfahren zu deren herstellung
AT398864B (de) Halogenglühlampe
WO2008077756A2 (de) Halogenglühlampe
DE202009008919U1 (de) Halogenglühlampe
DE202008016263U1 (de) Halogenglühlampe
DD290746A5 (de) Elektrodensystem fuer eine pumprohrlose entladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901217

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 19940812

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 130124

Country of ref document: AT

Date of ref document: 19951115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59009859

Country of ref document: DE

Date of ref document: 19951214

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2079424

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS-ALBIS AKTIENGESELLSCHAFT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960122

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050304

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20051123

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060118

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061231

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20061218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081215

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091231

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100219

Year of fee payment: 20

Ref country code: BE

Payment date: 20091216

Year of fee payment: 20

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091217

BE20 Be: patent expired

Owner name: *PATENT-TREUHAND-GESELLSCHAFT FUR ELEKTRISCHE GLUH

Effective date: 20101217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101217