EP0442788B1 - Sélecteur à air à action centrifuge - Google Patents

Sélecteur à air à action centrifuge Download PDF

Info

Publication number
EP0442788B1
EP0442788B1 EP91400310A EP91400310A EP0442788B1 EP 0442788 B1 EP0442788 B1 EP 0442788B1 EP 91400310 A EP91400310 A EP 91400310A EP 91400310 A EP91400310 A EP 91400310A EP 0442788 B1 EP0442788 B1 EP 0442788B1
Authority
EP
European Patent Office
Prior art keywords
rotor
blades
particles
casing
gas stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91400310A
Other languages
German (de)
English (en)
Other versions
EP0442788A2 (fr
EP0442788A3 (en
Inventor
Alain Cordonnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F C B
Original Assignee
F C B
Fives Cail Babcock SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F C B, Fives Cail Babcock SA filed Critical F C B
Publication of EP0442788A2 publication Critical patent/EP0442788A2/fr
Publication of EP0442788A3 publication Critical patent/EP0442788A3/fr
Application granted granted Critical
Publication of EP0442788B1 publication Critical patent/EP0442788B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/083Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by rotating vanes, discs, drums, or brushes

Definitions

  • the subject of the present invention is a selector intended for separating from a stream of solid particles suspended in a gas stream the particles whose size is greater than a predetermined dimension and comprising guide vanes arranged along the generatrices of a fictitious cylinder , with a vertical axis, and able to communicate to the current of gas entering said imaginary cylinder, a rotational movement around the axis of the cylinder, a rotor placed inside said imaginary cylinder, the axis of which coincides with that of the cylinder and which is provided with vertical blades regularly distributed over its periphery, and a central outlet orifice placed above or below the rotor and through which is drawn the stream of gas charged with particles whose dimensions are smaller than said dimension predetermined.
  • the particles suspended in the gas stream are subjected to two opposing forces: a centrifugal force resulting from the rotational movement and a drag force due to the centripetal flow of the gas stream towards the outlet orifice central. Large particles are separated at the outer cylindrical surface of the rotor. If the distribution of the gas stream over the entire height of the turbine is uniform, there is only one critical particle diameter or cut-off diameter corresponding to one particle in equilibrium on the outer surface of the rotor.
  • Particles with a diameter greater than the critical diameter are rejected against the guide vanes by centrifugal force and fall by gravity into a collecting hopper placed under the vanes; while the particles of diameter smaller than the critical diameter are entrained by the gas current through the rotor towards the central exit orifice.
  • the rotor is equipped with blades of small width arranged on its periphery and, in operation, a vortex is formed in the center of the rotor in which a significant part of the kinetic energy of the gas stream is dissipated.
  • the object of the present invention is to improve the performance and to reduce the energy consumption of a selector of this type by means of making it possible to overcome the turbulence of the flow between the guide vanes and the rotor and to avoid the formation of a vortex in the rotor.
  • the selector object of the present invention is characterized in that the rotor comprises a second set of blades, arranged between the peripheral blades and the axis, and serving to guide the gas streams to the central outlet of the rotor charged with fine particles leaving the peripheral blades.
  • the blades of this second set extend over the entire height of the rotor and can be arranged in radial planes or be inclined relative to these planes. They can be flat or have a certain curvature, and can be formed by an extension towards the axis of the peripheral blades.
  • the central part of the end wall of the rotor opposite the outlet orifice may have a profiled shape, for example frustoconical, favoring the flow of gas towards the outlet orifice.
  • the guide vanes and the rotor are enclosed in an envelope which delimits, around the guide vanes, an annular chamber in which the gas stream and possibly the materials to be sorted are admitted.
  • the gas stream can be admitted into this chamber tangentially or parallel to the axis of the device, from below.
  • the raw materials can be suspended in the gas stream before it enters said chamber or introduced separately, from above, into the space between the rotor and the guide vanes; these two feeding modes can also be used simultaneously.
  • a hopper in the form of an inverted cone is placed under the rotor and the guide vanes, in order to collect the particles whose dimensions are greater than the cut-off diameter, the envelope is of revolution, concentric to the rotor and also surrounds said hopper by providing around it a passage with annular section, and a vertical duct is connected to the bottom of said casing, under said hopper and coaxially with it, to bring the gas stream charged with particles to sort in said chamber, through said passage; in the plane where said conduit opens into said envelope, the diameter of the latter is significantly greater than that of said conduit so that the gases loaded with particles are subjected, when entering said envelope, to an expansion promoting the fall of heavy particles at the bottom of the envelope.
  • Said conduit may extend upwards above the bottom of the envelope and delimit therewith an annular volume in which the large particles separated from the air stream will be collected in the expansion zone thus created, the bottom of said envelope being preferably inclined and provided at its lowest point with an orifice for discharging said particles.
  • One or more deflectors constituted by flat or frustoconical rings may be fixed on the outside of said hopper to deflect the gas stream and promote the separation of large particles.
  • the selector shown in the drawings comprises a casing 10 constituting the body of the apparatus and formed of a cylindrical upper part, of an intermediate part in the form of an inverted truncated cone, of a cylindrical lower part connecting to the small base of the truncated cone and of an inclined bottom comprising, at its lowest point, an evacuation orifice 12.
  • An inlet pipe for the gases laden with particles to be sorted 14 crosses the bottom of the envelope and extends upwards approximately to the junction plane of the intermediate parts and lower.
  • the conduit 14 is arranged coaxially with the envelope and its end is flared.
  • the envelope is closed by a cover 16 comprising a central opening at the edge of which is connected a gas evacuation duct 18.
  • a rotor 20 is placed in the upper part of the envelope, coaxial with it. It is fixed to the lower end of a vertical shaft 22 mounted, by means of rolling bearings, in a tubular support 24 fixed on the cover 16.
  • the shaft is coupled to a variable speed control group 26 allowing the rotor to rotate at the desired speed.
  • the rotor 20 has a large number of vertical blades 28 regularly spaced around its periphery.
  • the lower and upper ends of the blades are fixed, respectively, on a bottom 30 formed by a flat ring and a central truncated cone integral with the shaft 22, and on a ring 32.
  • a baffle joint 34, integral of the cover 16, ensures sealing between the latter and the rotor.
  • the blades 28 admit as plane of symmetry a plane containing the axis of the rotor and, as can be seen in FIG. 3, the channels formed between the blades have a width which increases from the outside towards the inside of the rotor (L1 ⁇ L2) so that the centrifugal force and the drag force acting on a particle of critical diameter (cut-off diameter) are balanced almost over the entire length of the canals.
  • the profile of the blades can be easily determined from these mathematical formulas translating the equality of the centrifugal and drag forces acting on a particle of given density and diameter, with a given speed of the rotor.
  • the equilibrium conditions can be satisfied, with a given blade profile, for different cutoff diameters, by adopting different rotational speeds for the rotor.
  • the blades 28 could form an angle with the radial planes, the width of the channels delimited by the blades always increasing gradually from the outside to the inside.
  • the rotor further comprises a second set of blades 35, arranged between the blades 28 and the axis of the rotor.
  • the blades 35 are constituted by flat sheets, located in vertical planes containing the axis of the rotor, and fixed on the frustoconical central part of the bottom 30 and on the upper ring 32. These blades have for aim of avoiding the formation of a vortex inside the rotor and make it possible to recover a significant part of the energy of the gas current passing through the rotor.
  • the blades 35 could be inclined and / or form an angle with the planes containing the axis of the rotor, they could also be profiled in the manner of the blades of a turbine.
  • the rotor thus formed can be compared to the rotor of a centrifugal compressor which would operate as a receiving turbomachine taking energy from a continuous flow of fluid to transform it into mechanical energy.
  • This construction of the rotor makes it possible to eliminate the vortex, which would form inside the rotor if the latter were devoid of the blades 35, and consequently, to recover the energy which would otherwise be lost in the vortex and, by reduction of gas speed, decrease abrasion wear and pressure drop.
  • the rotor is surrounded by a circular row of vertical guide vanes 36 regularly spaced around the rotor. These blades are provided at their ends with pivots 38 housed in holes of an upper ring 40 fixed on the upper end of the casing and of a lower ring 42 mounted on the upper edge of a frustoconical hopper 44 placed under the rotor, in the frustoconical part of the envelope, and supported by feet 46 fixed on the envelope.
  • the upper pivots are provided with levers 48 connected together by a hoop so that, whatever their orientation, all the blades form the same angle with the respective radial plane.
  • An actuator acting on the hoop allows to adjust the orientation of the blades remotely.
  • the operation of the selector described is as follows:
  • the stream of gas charged with the particles to be sorted flows from bottom to top in the pipe 14.
  • it is subjected to a sudden expansion due to the large difference in the diameters of the pipe and of the envelope that surrounds it at this level.
  • This results in a decrease in the speed of the gas which allows the largest particles to fall to the bottom of the envelope, in the annular space formed between the end of the duct and the envelope, and to be evacuated by the orifice 12.
  • One or more deflectors 50 can be fixed on the hopper 44, above the duct 14, to improve this separation.
  • the gas stream then rises up to the upper part of the casing 10, maintaining an almost constant speed, then flows between the vanes 36, which impart a circular motion thereto, and enters the rotor through the channels formed between the blades 28.
  • the particles whose dimensions are smaller than the cut-off diameter are entrained in the rotor by the gas stream and evacuated therewith by the conduit 18 which is connected to the suction opening of a fan through a dust collector to separate particles from the gas stream. Particles larger than the cut-off diameter are kept outside the rotor by centrifugal force and fall by gravity into the hopper 44, through an annular slot formed between the rotor and the ring 42.
  • At least part of the particles to be sorted could be introduced by one or more inlets 17 disposed above the ring 32 of the rotor and projected by centrifugal force against a skirt surround the ring 32 to then fall into the space between the vanes 36 and the rotor and be suspended in the gas stream flowing transversely.
  • the cut-off diameter depends, for a given gas flow, on the speed of rotation of the rotor. This is maintained at the value chosen by regulating the speed of the motor 26. Since, thanks to the provisions of the invention, the power transmitted to the rotor by the gas current which passes through it can be greater than that which is necessary to rotate it at the set speed, the motor 26 must be able to operate as a brake with speed regulation.
  • the orientation of the blades 36 is adjusted, as a function of the speed of the rotor, so that the tangential component of the speed of the gas and of the particles at the periphery of the rotor is approximately equal to the peripheral speed of the rotor; this setting can be made manually or automatically. This measurement makes it possible to avoid impacts of the particles on the blades of the rotor and to obtain a homogeneous fluid speed over the entire width of the channels between blades of the rotor.
  • the rotor speed is maintained at the set value corresponding to the chosen cut-off diameter, by adjusting the orientation of the blades 36.
  • the gas stream could be admitted tangentially into the envelope, at the level of the vanes 36.
  • the increase in cross section, from the inlet to the outlet, of the channels formed between the blades of the rotor is achieved exclusively by increasing their width.

Landscapes

  • Centrifugal Separators (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Cyclones (AREA)

Description

  • La présente invention a pour objet un sélecteur destiné à séparer d'un flot de particules solides en suspension dans un courant de gaz les particules dont la grosseur est supérieure à une dimension prédéterminée et comportant des aubes directrices disposées suivant les génératrices d'un cylindre fictif, à axe vertical, et aptes à communiquer au courant de gaz pénétrant dans ledit cylindre fictif, un mouvement de rotation autour de l'axe du cylindre, un rotor placé à l'intérieur dudit cylindre fictif, dont l'axe coincide avec celui du cylindre et qui est muni de pales verticales régulièrement réparties sur sa périphérie, et un orifice de sortie central disposé au-dessus ou au-dessous du rotor et par où est aspiré le courant de gaz chargé des particules dont les dimensions sont inférieures à ladite dimension prédéterminée.
  • Dans les sélecteurs de ce type, les particules en suspension dans le courant gazeux sont soumises à deux forces antagonistes : une force centrifuge résultant du mouvement de rotation et une force de trainée due à l'écoulement centripète du courant gazeux vers l'orifice de sortie central. La séparation des grosses particules se fait au niveau de la surface cylindrique extérieure du rotor. Si la répartition du courant gazeux sur toute la hauteur de la turbine est uniforme, il y a un seul diamètre de particule critique ou diamètre de coupure correspondant à une particule en équilibre sur la surface extérieure du rotor.Les particules de diamètre supérieur au diamètre critique sont rejetées contre les aubes directrices par la force centrifuge et tombent par gravité dans une trémie collectrice placée sous les aubes; tandis que les particules de diamètre inférieur au diamètre critique sont entrainées par le courant gazeux à travers le rotor vers l'orifice de sortie central.
  • Dans les appareils connus, le rotor est équipé de pales de faible largeur disposées sur sa périphérie et, en fonctionnement, il se forme au centre du rotor un vortex dans lequel est dissipée une partie non négligeable de l'énergie cinétique du courant de gaz.
  • Le but de la présente invention est d'améliorer les performances et de diminuer la consommation énergétique d'un sélecteur de ce type par des dispositions permettant de s'affranchir des turbulences de l'écoulement entre les aubes directrices et le rotor et d'éviter la formation d'un vortex dans le rotor.
  • Le sélecteur objet de la présente invention est caractérisé en ce que le rotor comporte un second jeu de pales, disposées entre les pales périphériques et l'axe, et servant à guider jusqu'à l'orifice de sortie central du rotor les veines de gaz chargé de fines particules sortant des pales périphériques. Les pales de ce second jeu s'étendent sur toute la hauteur du rotor et peuvent être disposées dans des plans radiaux ou être inclinées par rapport à ces plans. Elles peuvent être planes ou présenter une certaine courbure, et peuvent être formées par un prolongement vers l'axe des pales périphériques. La partie centrale de la paroi terminale du rotor opposée à l'orifice de sortie pourra présenter une forme profilée, par exemple tronconique, favorisant l'écoulement du gaz vers l'orifice de sortie.
  • Grâce à ce second jeu de pales une partie importante de l'énergie cinétique du courant gazeux est utilisée pour faire tourner le rotor ce qui permet de diminuer la puissance du moteur d'entrainement. Dans certaines conditions d'utilisation, il est même possible de supprimer ce moteur, la vitesse du rotor, dont dépend le diamètre de coupure, étant alors ajustée par réglage de l'orientation des aubes directrices.
  • Pour augmenter la précision de la coupure, il est avantageux de donner aux canaux délimités par les pales périphériques du rotor une section qui croit de l'extérieur vers l'intérieur du rotor, de telle sorte que les forces centrifuges et de trainée agissant sur les grains dont le diamètre est égal au diamètre de coupure s'équilibrent pratiquement sur toute la longueur desdits canaux.
  • Comme dans tous les appareils de ce type, les aubes directrices et le rotor sont enfermés dans une enveloppe qui délimite, autour des aubes directrices, une chambre annulaire dans laquelle sont admis le courant gazeux et éventuellement les matières à trier. Le courant gazeux peut être admis dans cette chambre tangentiellement ou parallèlement à l'axe de l'appareil, par le bas. Les matières premières peuvent être mises en suspension dans le courant de gaz avant son entrée dans ladite chambre ou introduites séparément, par le haut, dans l'espace entre le rotor et les aubes directrices; ces deux modes d'alimentation peuvent également être utilisés simultanément.
  • Suivant un mode de réalisation préféré de l'invention, une trémie en forme de cône inversé est placée sous le rotor et les aubes directrices, pour recueillir les particules dont les dimensions sont supérieures au diamètre de coupure, l'enveloppe est de révolution, concentrique au rotor et entoure aussi ladite trémie en ménageant autour d'elle un passage à section annulaire, et un conduit vertical est raccordé au bas de ladite enveloppe, sous ladite trémie et coaxialement à celle-ci, pour amener le courant gazeux chargé des particules à trier dans ladite chambre, à travers ledit passage; dans le plan où ledit conduit débouche dans ladite enveloppe, le diamètre de cette dernière est nettement supérieur à celui dudit conduit de telle sorte que les gaz chargés de particules soient soumis, en entrant dans ladite enveloppe, à une détente favorisant la chute des particules lourdes au fond de l'enveloppe. Ledit conduit pourra se prolonger vers le haut au-dessus du fond de l'enveloppe et délimiter avec celle-ci un volume annulaire où seront collectées les grosses particules séparées du courant d'air dans la zone de détente ainsi créée, le fond de ladite enveloppe étant, de préférence, incliné et muni à son point le plus bas d'un orifice d'évacuation desdites particules. Un ou plusieurs déflecteurs constitués par des anneaux plats ou tronconiques pourront être fixés sur l'extérieur de ladite trémie pour dévier le courant gazeux et favoriser la séparation des grosses particules.
  • D'autres caractéristiques de l'invention apparaitront à la lecture de la description qui suit et se réfère aux dessins l'accompagnant qui montrent, à titre d'exemple non-limitatif, une forme de réalisation de l'invention et sur lesquels :
    • La figure 1 est une coupe verticale d'un sélecteur réalisé conformément à l'invention;
    • La figure 2 est une vue en coupe par un plan horizontal de l'appareil de la figure 1, et
    • La figure 3 est une section droite de deux pales du rotor de l'appareil.
  • Le sélecteur représenté sur les dessins comprend une enveloppe 10 constituant le corps de l'appareil et formée d'une partie supérieure cylindrique, d'une partie intermédiaire en forme de tronc de cône inversé, d'une partie inférieure cylindrique se raccordant à la petite base du tronc de cône et d'un fond incliné comportant, à son point le plus bas, un orifice d'évacuation 12. Un conduit d'admission des gaz chargés des particules à trier 14 traverse le fond de l'enveloppe et se prolonge vers le haut approximativement jusqu'au plan de jonction des parties intermédiaire et inférieure. Le conduit 14 est disposé coaxialement à l'enveloppe et son extrémité est évasée.
  • A sa partie supérieure, l'enveloppe est fermée par un couvercle 16 comportant une ouverture centrale au bord de laquelle est raccordé un conduit d'évacuation des gaz 18.
  • Un rotor 20 est placé dans la partie supérieure de l'enveloppe, coaxialement à celle-ci. Il est fixé à l'extrémité inférieure d'un arbre vertical 22 monté, par l'intermédiaire de paliers à roulements, dans un support tubulaire 24 fixé sur le couvercle 16. L'arbre est accouplé à un groupe de commande 26 à vitesse variable permettant de faire tourner le rotor à la vitesse voulue.
  • Le rotor 20 comporte un grand nombre de pales verticales 28 régulièrement espacées sur sa périphérie. Les extrémités inférieure et supérieure des pales sont fixées, respectivement, sur un fond 30 formé d'un anneau plat et d'un tronc de cône central solidaire de l'arbre 22, et sur un anneau 32. Un joint à chicanes 34, solidaire du couvercle 16, assure l'étancheité entre ce dernier et le rotor.
  • Les pales 28 admettent comme plan de symétrie un plan contenant l'axe du rotor et, comme on le voit sur la figure 3, les canaux ménagés entre les pales ont une largeur qui croit de l'extérieur vers l'intérieur du rotor (L1 < L2) de telle sorte que la force centrifuge et la force de trainée agissant sur une particule de diamètre critique (diamètre de coupure) s'équilibrent pratiquement sur toute la longueur des canaux. En appelant Fc1, Ft1 les forces centrifuges et de trainée a l'entrée d'un canal et Fc2, Ft2 ces mêmes forces à la sortie du canal, cette condition de fonctionnement peut être traduite par les relations :

    Fc1 = Ft1
    Figure imgb0001


    et

    Fc2 = Ft2
    Figure imgb0002

  • Le profil des pales peut être facilement déterminé à partir de ces formules mathématiques traduisant l'égalité des forces centrifuges et de trainée agissant sur une particule de densité et de diamètre donnés, avec une vitesse donnée du rotor. Les conditions d'équilibre pourront être satisfaites, avec un profil des pales donné, pour différents diamètres de coupure, en adoptant des vitesses de rotation différentes pour le rotor.
  • Au lieu d'être disposées radiaiement, les pales 28 pourraient former un angle avec les plans radiaux, la largeur des canaux délimités par les pales augmentant toujours progressivement de l'extérieur vers l'intérieur.
  • Le rotor comporte, en outre, un second jeu de pales 35, disposées entre les pales 28 et l'axe du rotor. Dans l'exemple représenté, les pales 35 sont constituées par des tôles planes, situées dans des plans verticaux contenant l'axe du rotor, et fixées sur la partie centrale tronconique du fond 30 et sur l'anneau supérieur 32. Ces pales ont pour but d'éviter la formation d'un vortex à l'intérieur du rotor et permettent de récupérer une partie importante de l'énergie du courant de gaz traversant le rotor. Les pales 35 pourraient être inclinées et/ou former un angle avec les plans contenant l'axe du rotor, elles pourraient aussi être profilées à la manière des pales d'une turbine. Le rotor ainsi constitué est assimilable au rotor d'un compresseur centrifuge qui fonctionnerait en turbomachine réceptrice prélevant de l'énergie à un flux de fluide continu pour la transformer en énergie mécanique.
  • Cette construction du rotor permet de supprimer le vortex, qui se formerait à l'intérieur du rotor si celui-ci était dépourvu des pales 35, et par conséquent, de récupérer l'énergie qui serait autrement perdue dans le vortex et, par réduction de la vitesse des gaz, de diminuer l'usure par abrasion et les pertes de charge.
  • Le rotor est entouré par une rangée circulaire d'aubes directrices verticales 36 régulièrement espacées autour du rotor. Ces aubes sont munies à leurs extrémités de pivots 38 logés dans des trous d'un anneau supérieur 40 fixé sur l'extrémité supérieure de l'enveloppe et d'un anneau inférieur 42 monté sur le bord supérieur d'une trémie tronconique 44 placée sous le rotor, dans la partie tronconique de l'enveloppe, et supportée par des pieds 46 fixés sur l'enveloppe.
  • Les pivots supérieurs sont munis de leviers 48 reliés entre eux par une cerce de telle sorte que, quelle que soit leur orientation, toutes les aubes forment le même angle avec le plan radial respectif. Un actionneur agissant sur la cerce, permet de régler à distance l'orientation des aubes.
  • Le fonctionnement du sélecteur décrit est le suivant :
       Le courant de gaz chargé des particules à trier s'écoule de bas en haut dans le conduit 14. Lorsqu'il atteint l'extrémité supérieure du conduit, il est soumis à une détente brusque du fait de la différence importante des diamètres du conduit et de l'enveloppe qui l'entoure à ce niveau. Il en résulte une diminution de la vitesse du gaz qui permet aux particules les plus grosses de tomber au fond de l'enveloppe, dans l'espace annulaire ménagé entre l'extrémité du conduit et l'enveloppe, et d'être évacuées par l'orifice 12. Un ou plusieurs déflecteurs 50 peuvent être fixés sur la trémie 44, au-dessus du conduit 14, pour améliorer cette séparation.
  • Le courant de gaz s'élève ensuite juisqu'à la partie supérieure de l'enveloppe 10, en conservant une vitesse pratiquement constante, puis s'écoule entre les aubes 36, qui lui communiquent un mouvement circulaire, et pénètre dans le rotor par les canaux ménagés entre les pales 28. Les particules dont les dimensions sont inférieures au diamètre de coupure sont entrainées dans le rotor par le courant gazeux et évacuées avec celui-ci par le conduit 18 qui est relié à l'ouïe d'aspiration d'un ventilateur à travers un dépoussiéreur permettant de séparer les particules du courant gazeux. Les particules dont les dimensions sont supérieures au diamètre de coupure sont maintenues à l'extérieur du rotor par la force centrifuge et tombent par gravité dans la trémie 44, à travers une fente annulaire ménagée entre le rotor et l'anneau 42. Si une de ces grosses particules pénètre accidentellement dans l'un des canaux du rotor, elle sera rejetée vers l'extérieur puisque le profil de ces canaux est conçu pour que la force centrifuge s'exerçant sur une telle particule excède la traînée sur toute la longueur du canal. Les particules recueillies dans la trémie 44 sont évacuées par le conduit 45.
  • Comme on l'a indiqué plus haut, une partie au moins des particules à trier pourraient être introduites par une ou plusieurs entrées 17 disposées au-dessus de l'anneau 32 du rotor et projetées par la force centrifuge contre une jupe entourent l'anneau 32 pour tomber ensuite dans l'espace entre les aubes 36 et le rotor et être mises en suspension dans le courant gazeux circulent transversalement.
  • Le diamètre de coupure dépend, pour un débit de gaz donné, de la vitesse de rotation du rotor. Celle-ci est maintenue à la valeur choisie par régulation de la vitesse du moteur 26. Etant donné que, grâce aux dispositions de l'invention, la puissance transmise au rotor par le courant de gaz qui le traverse peut être supérieure à celle qui est nécessaire pour le faire tourner à la vitesse de consigne, le moteur 26 doit pouvoir fonctionner en frein avec régulation de vitesse. L'orientation des aubes 36 est ajustée, en fonction de la vitesse du rotor, de telle sorte que la composante tangentielle de la vitesse du gaz et des particules à la périphérie du rotor soit approximativement égale à la vitesse périphérique du rotor; ce réglage peut être effectué manuellement ou automatiquement. Cette mesure permet d'éviter les chocs des particules sur les pales du rotor et d'obtenir une vitesse de fluide homogène sur toute la largeur des canaux entre pales du rotor.
  • Pour certaines utilisations, il est possible, grâce à l'invention, de supprimer le moteur 26, le rotor étant alors monté fou. Dans ce cas, la vitesse du rotor est maintenue à la valeur de consigne correspondant au diamètre de coupure choisi, par réglage de l'orientation des aubes 36.
  • Cette possibilité conduit à des économies appréciables, parce qu'elle permet non seulement de supprimer le moteur d'entrainement du rotor mais aussi d'utiliser une structure de support plus légère pour le rotor.
  • Au lieu d'être admis axialement par le bas, comme dans les appareils décrits, le courant de gaz pourrait être admis tangentiellement dans l'enveloppe, au niveau des aubes 36.
  • Dans la forme de réalisation représentée sur les dessins, l'augmentation de section droite, de l'entrée à la sortie, des canaux ménagés entre les pales du rotor est réalisé exclusivement par augmentation de leur largeur. On pourrait envisager d'augmenter aussi leur hauteur en remplaçant la partie périphérique, plane, du disque 30 et l'anneau plan 32 par des anneaux tronconiques se faisant face par leur grande base.
  • Il est bien entendu que ces modifications et toute celles résultant de la substitution de moyens techniques équivalents entrent dans le cadre de l'invention.

Claims (9)

  1. Sélecteur à air à action centrifuge comportant des aubes directrices disposées suivant les génératrices d'un cylindre fictif, à axe vertical, et aptes à communiquer à un courant de gaz pénétrant dans ledit cylindre fictif un mouvement de rotation autour de l'axe dudit cylindre, un rotor placé coaxialement à l'intérieur dudit cylindre fictif et muni de pales verticales régulièrement réparties sur sa périphérie, des moyens pour introduire les particules à trier entre les aubes et le rotor et un orifice de sortie central par où est aspiré le courant de gaz chargé des particules dont les dimensions sont inférieures à une dimension prédéterminée, caractérisé en ce que le rotor comporte un second jeu de pales (35) disposées entre les pales périphériques (28) et l'axe et servant à guider jusqu'à l'orifice de sortie central du rotor les veines de gaz sortant des paies périphériques (28).
  2. Sélecteur à air selon la revendication 1, caractérisé en ce que lesdites pales (35) s'étendent sur toute la hauteur du rotor et sont disposées dans des plans radiaux ou sont inclinées par rapport à ces plans.
  3. Sélecteur selon la revendication 1 ou 2, caractérisé en ce que la paroi terminale (30) du rotor opposée a l'orifice de sortie central est profilée de façon à favoriser l'écoulement du gaz vers ledit orifice de sortie.
  4. Sélecteur selon la revendication 1, 2 ou 3, caractérisé en que le rotor est monté fou et des moyens sont prévus pour régler l'orientation des aubes directrices (36) de façon à maintenir la vitesse du rotor à une valeur de consigne.
  5. Sélecteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les pales (28) du rotor sont profilées de telle sorte que la largeur des canaux formés entre les pales croit de l'extérieur vers l'intérieur du rotor.
  6. Sélecteur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte une trémie (44) en forme de cône inversé placée sous les aubes directrices (36) et le rotor pour recueillir les particules séparées du courant de gaz dont les dimensions sont supérieures à ladite dimension prédéterminée, une enveloppe de révolution (10) entourant les aubes directrices et la trémie et un conduit vertical pour l'amenée du courant de gaz chargé des particules à trier (14) qui est raccordé à la partie inférieure deladite enveloppe, le conduit, la trémie et l'enveloppe étant coaxiaux, et en ce que, dans le plan où ledit conduit débouche dans l'enveloppe, le diamétre de cette dernière est nettement supérieur à celui dudit conduit, de sorte que le gaz chargé des particules est soumis, en entrant dans ladite enveloppe, à une détente favorisant la chute des particules lourdes au fond de l'enveloppe qui est munie de moyens (12) pour l'évacuation desdites particules.
  7. Sélecteur selon la revendication 6, caractérisé en ce que ledit conduit (14) se prolonge vers le haut au-dessus du fond de l'enveloppe (10) et délimite avec celle-ci un volume annulaire où sont collectées les particules lourdes.
  8. Sélecteur selon la revendication 6 ou 7, caractérisé par un ou plusieurs déflecteurs annulaires (50) fixés extérieurement sur ladite trémie (44), à une certaine distance au-dessus de l'extrémité supérieure dudit conduit (14).
  9. Sélecteur selon l'une quelconque des revendications 1 à 5 caractérisé en ce qu'il comporte une enveloppe (10) entourant lesdites aubes directrices (36) et délimitant avec celles-ci une chambre d'admission annulaire pour le courant de gaz, des moyens pour introduire une partie au moins des particules à trier par le haut entre le rotor et les aubes directrices (36) et des moyens (14) pour admettre le courant de gaz dans ladite chambre soit tangentiellement, soit par le bas.
EP91400310A 1990-02-13 1991-02-08 Sélecteur à air à action centrifuge Expired - Lifetime EP0442788B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9001673 1990-02-13
FR9001673A FR2658096B1 (fr) 1990-02-13 1990-02-13 Selecteur a air a action centrifuge.

Publications (3)

Publication Number Publication Date
EP0442788A2 EP0442788A2 (fr) 1991-08-21
EP0442788A3 EP0442788A3 (en) 1991-09-18
EP0442788B1 true EP0442788B1 (fr) 1994-09-21

Family

ID=9393649

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91400310A Expired - Lifetime EP0442788B1 (fr) 1990-02-13 1991-02-08 Sélecteur à air à action centrifuge

Country Status (15)

Country Link
US (1) US5120431A (fr)
EP (1) EP0442788B1 (fr)
JP (1) JP2575961B2 (fr)
AT (1) ATE111780T1 (fr)
AU (1) AU629732B2 (fr)
CA (1) CA2036158C (fr)
CZ (1) CZ281227B6 (fr)
DE (1) DE69104081T2 (fr)
DK (1) DK0442788T3 (fr)
ES (1) ES2062703T3 (fr)
FR (1) FR2658096B1 (fr)
PL (1) PL165794B1 (fr)
RU (1) RU2036027C1 (fr)
SK (1) SK279035B6 (fr)
ZA (1) ZA911053B (fr)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4126976C1 (fr) * 1991-08-14 1993-01-07 Kuenkel-Wagner Gmbh & Co Kg, 3220 Alfeld, De
EP0645196A4 (fr) 1993-03-31 1995-10-25 Onoda Cement Co Ltd Separateur a air a tourbillon.
US5301812A (en) * 1993-04-02 1994-04-12 Ecc International Inc. Air classifying apparatus with wear reducing deflector
AT401741B (de) * 1993-08-19 1996-11-25 Thaler Horst Dipl Ing Windsichter
FR2741286B1 (fr) * 1995-11-21 1998-01-23 Fcb Separateur a air a action centrifuge
US5938045A (en) * 1996-01-12 1999-08-17 Ricoh Company, Ltd. Classifying device
US5884776A (en) * 1997-04-04 1999-03-23 The Babcock & Wilcox Company Dynamic classifier with hollow shaft drive motor
DE10044102C2 (de) * 2000-09-07 2003-04-17 Roland Nied Sichtrad für Windsichter
US7028847B2 (en) * 2003-05-29 2006-04-18 Alstom Technology Ltd High efficiency two-stage dynamic classifier
US7118055B2 (en) * 2004-04-19 2006-10-10 Jin-Hong Chang Grinding mill
NO321643B1 (no) * 2004-05-18 2006-06-19 Comex As Partikkelseparator
US8523963B2 (en) 2004-10-12 2013-09-03 Great River Energy Apparatus for heat treatment of particulate materials
US8062410B2 (en) 2004-10-12 2011-11-22 Great River Energy Apparatus and method of enhancing the quality of high-moisture materials and separating and concentrating organic and/or non-organic material contained therein
US8579999B2 (en) 2004-10-12 2013-11-12 Great River Energy Method of enhancing the quality of high-moisture materials using system heat sources
US7987613B2 (en) 2004-10-12 2011-08-02 Great River Energy Control system for particulate material drying apparatus and process
US7540384B2 (en) * 2004-10-12 2009-06-02 Great River Energy Apparatus and method of separating and concentrating organic and/or non-organic material
US7275644B2 (en) 2004-10-12 2007-10-02 Great River Energy Apparatus and method of separating and concentrating organic and/or non-organic material
US7413084B2 (en) * 2004-10-19 2008-08-19 Wegner Paul C Method and system for separating particulate matter
JP4522286B2 (ja) * 2005-02-17 2010-08-11 三菱電機株式会社 脱臭装置
DE102006044833B4 (de) * 2006-09-20 2010-01-21 Babcock Borsig Service Gmbh Zentrifugalsichter und Verfahren zum Sichten
TWI483787B (zh) * 2007-09-27 2015-05-11 Mitsubishi Hitachi Power Sys A grading device and an upright pulverizing device having the classifying device and a coal fired boiler device
DE102008038776B4 (de) * 2008-08-12 2016-07-07 Loesche Gmbh Verfahren zur Sichtung eines Mahlgut-Fluid-Gemisches und Mühlensichter
FR2941389B1 (fr) 2009-01-29 2011-10-14 Fives Fcb Dispositif de separation granulometrique selective de matieres pulverulentes solides, a action centrifuge, et procede d'utilisation d'un tel dispositif
FR2959679B1 (fr) 2010-05-05 2015-02-20 Fives Fcb Procede de broyage d'une matiere minerale contenant au moins du calcium et des impuretes metalliques, et installation convenant pour le broyage d'une matiere minerale contenant du calcium et des impuretes metalliques en tant que tels.
CN103846126B (zh) * 2012-11-30 2016-03-30 黄立娜 档板自动调节高效串联双轴向动态分选、回粉碾磨装置
WO2014117031A1 (fr) 2013-01-24 2014-07-31 Lp Amina Llc Dispositif de classification
CN103285997A (zh) * 2013-05-22 2013-09-11 江苏新业重工股份有限公司 一种粗粉分离器
DE102013021757A1 (de) * 2013-12-20 2015-06-25 Netzsch Trockenmahltechnik Gmbh Maschine mit fliegend gelagertem Rotor
US9463491B2 (en) * 2013-12-30 2016-10-11 Hollison, LLC Aerosol particle separation and collection
DE102016106588B4 (de) * 2016-04-11 2023-12-14 Neuman & Esser Process Technology Gmbh Sichter
US10744534B2 (en) 2016-12-02 2020-08-18 General Electric Technology Gmbh Classifier and method for separating particles
DE102016015051B4 (de) * 2016-12-16 2019-01-31 Hosokawa Alpine Aktiengesellschaft Sichtrad für einen Zentrifugalkraft-Windsichter
JP7175601B2 (ja) * 2017-11-02 2022-11-21 三菱重工業株式会社 粉砕機及び粉砕機の運転方法
CN107931120B (zh) * 2017-12-29 2024-04-26 江苏菲特滤料有限公司 一种颗粒物分离设备
DE102018008127B4 (de) 2018-10-13 2022-06-09 Hosokawa Alpine Aktiengesellschaft Blaskopf und Verfahren zur Herstellung einer Mehrschichtschlauchfolie
DE102018009632B4 (de) 2018-12-11 2021-12-09 Hosokawa Alpine Aktiengesellschaft Vorrichtung zum Aufwickeln und Wickelwechsel von bahnförmigem Material und ein Verfahren dafür
DE102019123034B3 (de) * 2019-08-28 2020-12-03 Khd Humboldt Wedag Gmbh Zyklon mit rotierendem Stabkorb
CN111085428B (zh) * 2019-12-19 2021-11-05 河北科技大学 用于3d打印金属粉末分级的涡流选粉机
DE102022104496A1 (de) * 2022-02-24 2023-08-24 Börger GmbH Rotationsabscheider zum Abscheiden von Fremdkörpern aus einer Medienströmung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE241869C (fr) *
DE535314C (de) * 1931-10-08 Ernst Curt Loesche Vorrichtung zum Abscheiden von Gut aus einem Luftstrom
US1281881A (en) * 1917-03-16 1918-10-15 Harry A Thuneman Vacuum-separator.
US2276761A (en) * 1937-02-15 1942-03-17 Ici Ltd Apparatus for the classification of material
BE624585A (fr) * 1961-11-22
SU563197A1 (ru) * 1974-05-06 1977-06-30 Предприятие П/Я Г-4392 Центробежный сепаратор
GB2041251B (en) * 1978-11-24 1982-10-20 Hosolawa Funtai Kogaku Kenkyus Pneumatic classifier
DE2909037C2 (de) * 1979-03-08 1983-12-22 Alpine Ag, 8900 Augsburg Vertikalachsiger Windsichter
SU943484A1 (ru) * 1980-08-25 1982-07-15 Предприятие "Сибтехэнерго" Производственного Объединения По Наладке,Совершенствованию Технологии И Эксплуатации Электростанций И Сетей "Союзтехэнерго" Сепаратор пыли
SU1166847A1 (ru) * 1983-12-22 1985-07-15 Ивановский Ордена "Знак Почета" Энергетический Институт Им.В.И.Ленина Сепаратор дл порошкообразных материалов
US4551241A (en) * 1984-02-08 1985-11-05 Sturtevant, Inc. Particle classifier
DE3533484A1 (de) * 1984-03-21 1987-03-26 Krupp Polysius Ag Umluftsichter
DE3515026C1 (de) * 1985-04-25 1986-09-18 Fa. Christian Pfeiffer, 4720 Beckum Drehluft-Schleuderkorb-Sichter
GB2176134A (en) * 1985-06-03 1986-12-17 Smidth & Co As F L Separator for sorting particulate material
DE3539512A1 (de) * 1985-11-07 1987-05-14 Krupp Polysius Ag Sichter
US4818376A (en) * 1986-04-28 1989-04-04 Onoda Cement Company, Ltd. Leakage prevention apparatus for a classifier
DE3621221A1 (de) * 1986-06-25 1988-01-14 Pfeiffer Fa Christian Verfahren zur windsichtung und windsichter
DE3808023A1 (de) * 1988-03-10 1989-09-21 Krupp Polysius Ag Sichter

Also Published As

Publication number Publication date
JP2575961B2 (ja) 1997-01-29
PL165794B1 (pl) 1995-02-28
EP0442788A2 (fr) 1991-08-21
DE69104081D1 (de) 1994-10-27
DK0442788T3 (da) 1995-02-20
US5120431A (en) 1992-06-09
SK279035B6 (sk) 1998-05-06
FR2658096A1 (fr) 1991-08-16
ES2062703T3 (es) 1994-12-16
EP0442788A3 (en) 1991-09-18
AU629732B2 (en) 1992-10-08
RU2036027C1 (ru) 1995-05-27
ZA911053B (en) 1991-11-27
CA2036158C (fr) 1999-07-13
CS9100328A2 (en) 1991-09-15
AU7092891A (en) 1991-08-15
ATE111780T1 (de) 1994-10-15
JPH04215875A (ja) 1992-08-06
DE69104081T2 (de) 1995-04-13
CA2036158A1 (fr) 1991-08-14
CZ281227B6 (cs) 1996-07-17
FR2658096B1 (fr) 1992-06-05

Similar Documents

Publication Publication Date Title
EP0442788B1 (fr) Sélecteur à air à action centrifuge
EP2382056B1 (fr) Dispositif de séparation granulométrique sélective de matières pulvérulentes solides, à action centrifuge, et procédé d&#39;utilisation d&#39;un tel dispositif
EP0918573A1 (fr) Separateur a air a action centrifuge
EP1711281B1 (fr) Separateur de matiere granuleuse
FR2597766A1 (fr) Dispositif pour le tri par centrifugation de matieres pulverulentes
FR2642994A1 (fr) Selecteur a air a action centrifuge
FR2754475A1 (fr) Classificateur de materiau poudreux
FR2528728A1 (fr) Procede d&#39;actionnement d&#39;un appareil de criblage pneumatique et appareil de criblage pour la mise en oeuvre de ce procede
EP2718028B1 (fr) Séparateur dynamique pour matériaux pulvérulents et méthode de séparation correspondante
CN114286724A (zh) 具有旋转棒形笼的旋风分离器
BE1020252A3 (fr) Separateur de matieres granuleuses.
FR2460725A1 (fr) Appareil de separation a air pour separer des materiaux constitues de petites particules de materiaux constitues de grosses particules en utilisant un courant d&#39;air
FR2535625A1 (fr) Trieur pour le triage de ciment et son procede d&#39;exploitation
FR2644562A1 (fr) Aerotherme d&#39;axe vertical du type assurant une distribution d&#39;air en effet cyclone
CH296327A (fr) Séparateur centrifuge.
FR2613956A1 (fr) Procede et dispositif de separation centrifuge d&#39;un melange de plusieurs phases
CH281418A (fr) Séparateur centrifuge.
EP0177412B1 (fr) Dispositif de broyage de produits, notamment agro-alimentaires
BE565510A (fr)
CH283735A (fr) Procédé de traitement d&#39;un produit en vrac et appareil pour la mise en oeuvre de ce procédé.
BE418888A (fr)
BE357934A (fr)
BE563153A (fr)
BE409598A (fr)
BE373370A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES GB GR IT LI LU NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920305

17Q First examination report despatched

Effective date: 19930526

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 111780

Country of ref document: AT

Date of ref document: 19941015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69104081

Country of ref document: DE

Date of ref document: 19941027

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941020

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: F C B

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: FCB

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2062703

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 91400310.8

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3014033

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20070214

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090211

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090203

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20091228

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20100126

Year of fee payment: 20

Ref country code: CH

Payment date: 20100125

Year of fee payment: 20

Ref country code: ES

Payment date: 20100205

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100220

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100128

Year of fee payment: 20

Ref country code: BE

Payment date: 20100129

Year of fee payment: 20

Ref country code: DE

Payment date: 20100202

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20100126

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69104081

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BE20 Be: patent expired

Owner name: *FCB

Effective date: 20110208

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20110207

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110209