EP0433217B1 - Kammer zum kontinuierlichen Behandeln von Filamenten - Google Patents

Kammer zum kontinuierlichen Behandeln von Filamenten Download PDF

Info

Publication number
EP0433217B1
EP0433217B1 EP90810800A EP90810800A EP0433217B1 EP 0433217 B1 EP0433217 B1 EP 0433217B1 EP 90810800 A EP90810800 A EP 90810800A EP 90810800 A EP90810800 A EP 90810800A EP 0433217 B1 EP0433217 B1 EP 0433217B1
Authority
EP
European Patent Office
Prior art keywords
chamber
parts
sealing
sealing surfaces
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90810800A
Other languages
English (en)
French (fr)
Other versions
EP0433217A1 (de
Inventor
Felix Graf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maschinenfabrik Rieter AG
Original Assignee
Maschinenfabrik Rieter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maschinenfabrik Rieter AG filed Critical Maschinenfabrik Rieter AG
Publication of EP0433217A1 publication Critical patent/EP0433217A1/de
Application granted granted Critical
Publication of EP0433217B1 publication Critical patent/EP0433217B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/16Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics using jets or streams of turbulent gases, e.g. air, steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S425/00Plastic article or earthenware shaping or treating: apparatus
    • Y10S425/044Rubber mold

Definitions

  • the invention is in the field of textile technology and relates to a chamber for the continuous treatment of filaments according to the preamble of claim 1.
  • chambers are used through which the thread is continuously drawn and the fluid is usually circulated in countercurrent or cocurrent to the thread, in some cases at high temperatures.
  • the filaments are heated, braked, conveyed, stretched, dyed, coated, textured, swirled, shrunk, relaxed, fixed with ultrasound, etc.
  • Synthetic threads are drawn through a liquid chamber for stretching, for example.
  • the liquid circulating in the chamber in countercurrent or cocurrent to the thread serves on the one hand for hydrodynamic braking, and on the other hand also acts as a heat exchanger due to its large heat capacity.
  • the chamber can be opened in a simple manner.
  • the chambers are often made of two or more parts that can be opened or lifted apart for opening.
  • For closing they are folded up again or positioned on top of one another and pressed together with as few easy-to-use locking devices as screws or clamps.
  • the chamber parts should lie so close to one another that - except for the inlet and outlet opening for the thread - no fluid can escape and that there are no joints in the chamber in which thread parts can get caught and get caught.
  • Such chambers are e.g. in EP-A-0184625 or EP-A 0249804 in the form of thread conveying nozzles or texturing nozzles, these chambers being sealed by pressing a relatively elastic chamber part onto a relatively rigid chamber part as uniformly as possible.
  • a drawing chamber for drawing filaments in a drawing bath is described by the applicant in patent application EP-A 384 886, which chamber can be opened for inserting the filament tapes. It essentially consists of a base part and a cover part, wherein the cover part can be designed in such a way that the bath length, ie the length of the filament passage in the bath liquid, can also be changed. Further information on divisible chambers for stretching filaments in the liquid bath can be found there.
  • sealing between the chamber parts with conventional elastic sealing material leads to Problems.
  • Another reason against the use of sealing material in general is that the sealing material would have to be positioned very precisely, which is only possible with increased effort in the case of a sealing connection which has to be separated very often.
  • the sealant should not protrude in the slightest, nor leave a joint open, since in both cases there is a risk of filaments getting caught.
  • the chamber parts of such chambers can be equipped with metallic sealing surfaces or sealing surfaces made of other hard materials.
  • the processing requirements for such sealing surfaces are very high and it is found that the metal-sealed contact surfaces between the chamber parts can never be completely sealed without special measures. It is therefore desirable that ways and means for further improvements be sought.
  • the sealing principle of the chambers according to the invention is based on this; that the elastic deformation of the hard (non-rubber-elastic) sealing surfaces, which can be metallic or ceramic, for example, which is to be expected due to the closing forces and the medium forces, is calculated and that the sealing surfaces are corrected in such a way that they are planar due to the deformation under operating conditions and guarantee absolute tightness.
  • the shape correction can only be carried out on one of the two involved Sealing surfaces are carried out while the other is designed flat. Both sealing surfaces are then deformed under the operating conditions so that a non-flat, but absolutely tight contact surface is created.
  • Fig. 1 shows a simplified, open chamber with a lower part 1 and an upper part 2 (for differently oriented chambers rather base part 1 and cover part 2).
  • the two chamber parts are lifted from each other, the passage of the thread is indicated by an arrow.
  • the forces acting on the chamber during operation are also shown in the figure.
  • the fluid pressure p F which is caused by the fluid in the chamber, acts on the inner surface A of the chamber cavity. It is composed of a static and a dynamic component and is therefore dependent on the static pressure of the fluid and its speed.
  • a sealing pressure p D should act on the sealing surfaces B of the two parts in order to prevent the separation of the two parts and fluid leaks.
  • the sealing pressure is generally set somewhat higher than the fluid pressure.
  • the closing force F acts on a large area of the chamber parts or if it is divided into a large number of components that act on points that are distributed as regularly as possible, the forces acting on the chamber parts will not deform them.
  • the closing force F only acts in a point on the parts, they are elastically deformed under the load.
  • the elastic deformation means that portions of the sealing surfaces that are closer to the point of application of the closing force F experience a higher one, those that are further away experience a lower or no sealing pressure p D , which inevitably leads to leakages.
  • the point of application of the closing force is shown in the middle of the two chamber parts. This would correspond to a single closing means in the middle of the chamber parts.
  • FIG. 2 shows the expected deformation of the sealing surfaces of the chamber from FIG. 1 under operating conditions, that is to say under load, along a longitudinal section.
  • the figure shows the deformation of the upper chamber part f o and the deformation of the lower chamber part f u , of course completely oversized. In reality, it will always be deformations on the order of a few hundredths of a millimeter. The calculation is based on the assumption that the fluid pressure over the inner chamber surface and the sealing pressure are constant and that the two chamber parts are identical. The same deformation can be expected on both parts of the chamber if they have the same mechanical properties.
  • the sealing surfaces of the chamber parts are corrected in the manner shown schematically in FIG. 3a (f o 'and f u '), the chamber parts are deformed under operating conditions (f o ⁇ and f u ⁇ ) such that the sealing surfaces are plan, as Fig. 3b shows.
  • the shape correction can also be carried out as a sum correction only on one chamber part, which will be the preferred method because of the lower outlay.
  • 4a shows the necessary shape correction f s if only the upper chamber part of the chamber from FIG. 1 is corrected
  • FIG. 4b the corresponding shape of the sealing surfaces in the loaded state. If the two chamber parts, as will be the case in most real cases, are not identical, it is advantageous to correct the more elastic chamber part, since the correction method described below can be carried out on the more elastic part with less effort.
  • the shape correction will in all cases only make up a small fraction of the thickness of the chamber part, so that it can be carried out by grinding the corresponding points without changing the mechanical properties of the chamber part.
  • the prepared chamber part 10 with the sealing surface B facing away from the plate is clamped onto a magnetic or vacuum plate 11, intermediate layers 13 corresponding to the calculated deformation being inserted between the chamber part and the plate.
  • the sealing surface is ground flat using a grinding tool. It is important to ensure that the chamber part is only elastically tensioned becomes. If the chamber part is relaxed and subsequently loaded according to the operating conditions, the sealing surface will be flat.
  • FIG. 6 shows a longitudinal section through the chamber parts of a chamber which is to be pressed together by two closing means.
  • the necessary shape correction which was only carried out on the lower part of the chamber, clearly reflects the two closing force components that the two closing means will exert.
  • FIG. 7 shows further variants of chambers, the parts of which are pressed onto one another with shape-corrected, metallic sealing surfaces.
  • Fig. 7a shows a chamber for the treatment of 4 parallel threads, which consists of a large lower part and 4 smaller upper parts (one per thread). The advantage of this embodiment variant is that the chamber of each individual thread can be opened separately.
  • Fig. 7b shows a chamber consisting of 4 chamber parts, a shape that can facilitate the fabrication of complicated interior designs. Of course, a corresponding chamber can also be composed of three or more than four corresponding chamber parts.
  • FIG. 8a finally shows an embodiment of the chamber according to the invention designed for very high fluid pressures, one chamber part 20 of which is a block with a recess, in the example shown a V-shaped channel, while the other chamber part 21 is a shape corresponding to the recess in the figure Example is wedge-shaped. It is obviously advantageous in this case to correct the shape on the locking wedge 21 so that it effectively has the shape shown in Fig. 8b.
  • Appropriate chambers for the passage of several threads consist of a chamber part with several recesses and several chamber parts that fit into the recesses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)

Description

  • Die Erfindung liegt auf dem Gebiete der Textiltechnik und betrifft eine Kammer zum kontiniuierlichen Behandeln von Filamenten gemäss Oberbegriff des Patentanspruches 1.
  • Für verschiedene Behandlungsverfahren von Textilfäden mit Fluiden wie zum Beispiel Luft, Dampf oder Flüssigkeiten werden Kammern verwendet, durch die der Faden kontinuierlich durchgezogen und das Fluid meist im Gegen- oder Gleichstrom zum Faden, zum Teil bei hohen Temperaturen, zirkuliert wird. In solchen Kammern werden die Filamente beheizt, gebremst, gefördert, gestreckt, gefärbt, beschichtet, texturiert, verwirbelt, geschrumpft, relaxiert, fixiert ultraschallbehandelt etc. Synthetische Fäden werden also zum Beispiel zum Strecken durch eine Flüssigkeitskammer gezogen. Die in der Kammer im Gegen- oder Gleichstrom zum Faden zirkulierende Flüssigkeit dient einerseits zum hydrodynamischen Bremsen, andererseits durch deren grosse Wärmekapazität auch als Wärmeüberträger.
  • Zum Einlegen der Fäden in die Kammer sowie für Inspektion und Reinigung der Kammer ist es vorteilhaft, wenn die Kammer auf einfache Art und Weise geöffnet werden kann. Aus diesem Grunde werden die Kammern oft aus zwei oder mehreren Teilen hergestellt, die zum Öffnen auseinandergeklappt oder voneinander weggehoben werden können. Zum Schliessen werden sie wieder zusammengeklappt oder aufeinander positioniert und mit möglichst wenigen, einfach zu handhabenden Schliessmitteln wie zum Beispiel Schrauben oder Klammern zusammen gepresst. In geschlossenem Zustand sollten die Kammerteile so dicht aufeinander liegen, dass - ausser bei der Ein- und Austrittsöffnung für den Faden - kein Fluid austreten kann und dass im Innern der Kammer keine Fugen vorhanden sind, in denen sich Fadenteile verfangen und hängenbleiben können.
  • Solche Kammern werden z.B. in der EP-A-0184625 oder der EP-A 0249804 in Form von Fadenförderdüsen bzw. Texturierdüsen beschrieben, wobei diese Kammern durch möglichst gleichmäßiges Aufpressen eines relativ elastischen Kammerteiles auf einen relativ steifen Kammerteil abgedichtet werden.
  • Eine Streckkammer zum Strecken von Filamenten in einem Streckbad ist von der Anmelderin in der Patentanmeldung EP-A 384 886 beschrieben, welche Kammer zum Einlegen der Filamentbändchen geöffnet werden kann. Sie besteht im wesentlichen aus einem Basisteil und einem Deckelteil, wobei der Deckelteil so ausgestaltet sein kann, dass auch die Badlänge, also die Länge des Filamentdurchlaufs in der Badflüssigkeit verändert werden kann. Nähere Angaben über teilbare Kammern zum Strecken von Filamenten im Flüssigkeitsbad können dort entnommen werden.
  • Da die Ansprüche an die geometrische Exaktheit der Innenräume solcher Kammern sehr hoch sind und da vielfach aggressive Fluide bei erhöhten Temperaturen in den Kammern zirkulieren, führen Abdichtung zwischen den Kammerteilen mit herkömmlichem elastischem Dichtungsmaterial zu Problemen. Ein weiterer Grund gegen die Verwendung von Dichtungsmaterial überhaupt, besteht darin, dass das Dichtmaterial sehr genau positioniert werden müsste, was bei einer dichtenden Verbindung, die sehr oft getrennt werden muss, nur mit vermehrtem Aufwand möglich ist. Im Innenraum der Kammer dürfte bspw. das Dichtungsmittel nicht im Geringsten vorstehen, noch eine Fuge offenlassen, da in beiden Fällen die Gefahr bestünde, dass Filamente hängenbleiben.
  • Die Kammerteile solcher Kammern können mit metallischen Dichtflächen oder Dichtflächen aus anderen harten Materialien ausgestattet sein. Jedoch sind die Bearbeitungsanforderungen an solche Dichtflächen sehr hoch und man stellt fest, dass die metallisch gedichteten Kontaktflächen zwischen den Kammerteilen ohne besondere Massnahmen nie völlig dicht zu kriegen sind. Deshalb ist es wünschbar, dass Mittel und Wege für weitere Verbesserungen gesucht werden.
  • Die Unzulänglichkeiten bei sehr hohen Anforderungen an die Dichtung ist auf die elastische Deformation der Kammerteile und dadurch auch der Dichtflächen durch die punktuell auf sie ausgeübten Kräfte der Schliessmittel einerseits und die flächig auf sie wirkenden Kräfte der Mediums andererseits zurückzuführen. Solche Verformungen sind speziell bei grossen Dichtflächen, eher leichter, also nicht in genügendem Masse starrer Bauweise der Teile und weit auseinanderliegenden, das heisst nur wenigen Schliessmitteln zu erwarten. Grosse Dichtflächen lassen sich vor allem bei Kammern für grosse Filamentdurchlaufgeschwindigkeit und deshalb längerer Ausführung und bei breiten Kammern für die Behandlung von mehreren parallelen Fäden nicht umgehen. Eine für eine absolute Dichtheit genügend starre, das heisst aber auch sehr schwere Bauweise ergäbe eine unerwünscht hohe thermische Trägheit, zu hohe Kosten und erschwerte Handhabung. Das Anbringen von so vielen Schliessmitteln, dass durch sie eine absolute Dichtheit gewährleistet würde, führte zu einer unmöglichen Handhabung. Aus diesen Gründen musste man bis anhin mit mehr oder weniger undichten Kammern vorlieb nehmen.
  • Es ist nun die Aufgabe der Erfindung, den Bau von Kammern für kontinuierliche Fluidbehandlung von Fäden aus einzelnen Kammerteilen aufzuzeigen, und zwar derart, dass sie auch bei leichter Ausführung, ohne elastisches Dichtmaterial, also lediglich mit metallischen Dichtflächen und nur wenigen Schliessmitteln auch in grossen Ausführungen dicht sind.
  • Diese Aufgabe wird gelöst durch die Merkmale an einer Kammer gemäss dem kennzeichnenden Teil des Patentanspruches 1. Da sich die Aufgabenstellung nur auf die Dichtigkeit der aus Teilen zusammengesetzten Kammern bezieht, wird die folgende Beschreibung sich vor allem auf die Dichtflächen dieser Kammerteile beziehen, das heisst andere Merkmale der Kammer wie zum Beispiel ihre innere Ausstattung werden in den Figuren nur schematisch angedeutet und in der Beschreibung nicht detailliert. Solche Details können der oben angegebenen Schweizer Patentanmeldung der Anmelderin entnommen werden.
  • Die die Beschreibung illustrierenden Figuren zeigen:
  • Fig. 1:
    Schematische Zeichnung einer zweiteiligen Kammer mit den Kräften, die auf die einzelnen Flächen wirken.
    Fig. 2:
    Längsschnitt durch die Kammer der Fig. 1 mit den durch die wirkenden Kräfte erzeugten Verformungen der Dichtflächen.
    Fig. 3:
    Formkorrekturen an beiden Kammerteilen der Kammer der Fig. 1, unbelastet und belastet (Längsschnitt).
    Fig. 4:
    Formkorrektur an einem Kammerteil der Kammer der Fig. 1, unbelastet und belastet (Längsschnitt).
    Fig. 5:
    Herstellung der Formkorrektur.
    Fig. 6:
    Formkorrektur einer Kammer, auf die zwei Schliesskräfte wirken (Längsschnitt).
    Fig. 7:
    Verschiedene Ausführungsformen der erfindungsgemässen Kammer.
    Fig. 8:
    Ausführungsform der erfindungsgemässen Kammer für hohe Fluiddrücke.
  • Das Dichtprinzip der erfindungsgemässen Kammern beruht darauf; dass die durch die Schliesskräfte und durch die Mediumskräfte zu erwartende elastische Deformation der harten (nicht gummi-elastischen) Dichtflächen, die beispielsweise metallisch oder keramisch sein können, berechnet wird und dass die Dichtflächen derart formkorrigiert werden, dass sie bei Betriebsbedingungen dann durch die Deformation plan werden und absolute Dichtheit garantieren. Um Aufwand bei der Fabrikation zu ersparen, kann die Formkorrektur auch nur an einer der zwei beteiligten Dichtflächen ausgeführt werden, während die andere plan ausgestaltet ist. Beide Dichtflächen werden dann unter den Betriebsbedingungen so deformiert, dass eine nicht plane, aber absolut dichte Kontaktfläche entsteht.
  • Fig. 1 zeigt eine vereinfacht dargestellte, offene Kammer mit einem Unterteil 1 und einem Oberteil 2 (für anders orientierte Kammern eher Basisteil 1 und Deckelteil 2). Die beiden Kammerteile sind voneinander abgehoben, der Durchlauf des Fadens ist durch einen Pfeil angedeutet. Aus der Figur sind auch die im Betrieb auf die Kammer wirkenden Kräfte eingezeichnet. Auf die Innenfläche A des Kammerhohlraumes wirkt der Fluiddruck pF, der durch das Fluid in der Kammer bewirkt wird. Er setzt sich aus einer statischen und einer dynamischen Komponente zusammen, ist also abhängig vom statischen Druck des Fluids und von seiner Geschwindigkeit. Auf die Dichtflächen B der beiden Teile soll ein Dichtdruck pD wirken, um die Trennung der beiden Teile und Fluidlecks zu verhindern. Der Dichtdruck wird im allgemeinen etwas höher angesetzt als der Fluiddruck. Damit das System der beiden Kammerteile in einem kräftemässigen Gleichgewicht steht, muss auf die Kammer eine Schliesskraft F wirken, die der Summe der Kräfte auf die Flächen der Teile entspricht, also: F = ∫p F dA + ∫p D dB
    Figure imgb0001
  • Wirkt die Schliesskraft F auf eine grosse Fläche der Kammerteile oder ist sie aufgeteilt in sehr viele Komponenten, die auf möglichst regelmässig verteilte Punkte wirken, werden die auf die Kammerteile wirkenden Kräfte diese nicht deformieren. Wirkt aber die Schliesskraft F nur in einem Punkt auf die Teile, werden diese unter der Belastung elastisch verformt. Die elastische Verformung führt bei planen Dichtflächen dazu, dass Anteile der Dichtflächen, die näher am Angriffspunkt der Schliesskraft F liegen, einen höheren, solche die weiter entfernt liegen einen niedrigeren oder gar keinen Dichtdruck pD erfahren, was unweigerlich zu Leckagen führt. In Fig. 1 ist der Angriffspunkt der Schliesskraft in der Mitte der beiden Kammerteile eingezeichnet. Dies würde einem einzigen Schliessmittel in der Mitte der Kammerteile entsprechen.
  • Mit der mathematischen Methode der finiten Elemente ist es möglich, die zu erwartende Deformation einer beliebigen Dichtfläche zu berechnen. Es besteht auch die Möglichkeit, die Auswirkungen unterschiedlicher Wärmedehnungen der beteiligten Teile in die Berechnung einzubeziehen.
  • Fig. 2 zeigt die zu erwartende Deformation der Dichtflächen der Kammer aus Fig. 1 bei Betriebsbedingungen, das heisst unter Belastung, entlang einem Längsschnitt. Die Figur zeigt die Deformation des Kammeroberteils fo und die Deformation des Kammerunterteils fu, selbstverständlich völlig überdimensioniert. In Wirklichkeit wird es sich immer um Deformationen in der Grössenordnung von einigen Hundertstel Millimeter handeln. Die Berechnung basiert auf der Annahme, dass der Fluiddruck über die Kammerinnenfläche und der Dichtdruck konstant und dass die beiden Kammerteile identisch seien. An beiden Kammerteilen ist eine gleiche Deformation zu erwarten, wenn diese gleiche mechanische Eigenschaften haben.
  • Wenn nun aber die Dichtflächen der Kammerteile in der in Fig. 3a schematisch dargestellten Weise formkorrigiert (fo′und fu′) werden, werden die Kammerteile unter Betriebsbedingungen, so deformiert werden (fo˝ und fu˝), dass die Dichtflächen plan sind, wie Fig. 3b zeigt.
  • Die Formkorrektur kann auch als Summenkorrektur nur an einem Kammerteil ausgeführt werden, was wegen des geringeren Aufwandes das vorzugsweise Verfahren sein wird. Fig. 4a zeigt die notwendige Formkorrektur fs, wenn nur der obere Kammerteil der Kammer aus Fig. 1 korrigiert wird, und Fig. 4b die entsprechende Form der Dichtflächen in belastetem Zustand. Wenn die beiden Kammerteile, wie das in den meisten realen Fällen sein wird, nicht identisch sind, ist es vorteilhaft, den elastischeren Kammerteil zu korrigieren, da sich das im Folgenden beschriebene Korrekturverfahren am elastischeren Teil mit einem kleineren Kräfteaufwand durchführen lässt.
  • Die Formkorrektur wird in allen Fällen nur einen kleinen Bruchteil der Dicke des Kammerteiles ausmachen, sodass sie durch Abschleifen der entsprechenden Stellen ausgeführt werden kann, ohne dass sich dadurch die mechanischen Eigenschaften des Kammerteiles verändern. Zur Ausführung der Formkorrektur wird, wie in Fig. 5 dargestellt, der vorbereitete Kammerteil 10 mit der Dichtfläche B von der Platte abgewandt auf eine Magnet- oder Vakuumplatte 11 gespannt, wobei zwischen Kammerteil und Platte der berechneten Deformation entsprechende Zwischenlagen 13 eingelegt werden. In diesem elastisch verspannten Zustand wird die Dichtfläche mit einem Schleifwerkzeug plan geschliffen. Es ist darauf zu achten, dass bei der Spannung der Kammerteil nur elastisch verspannt wird. Wenn der Kammerteil entspannt und nachher entsprechend der Betriebsbedingungen belastet wird, wird die Dichtfläche plan sein.
  • Fig. 6 zeigt einen Längsschnitt durch die Kammerteile einer Kammer, die von zwei Schliessmitteln zusammengepresst werden soll. Die notwendige Formkorrektur, die nur am Kammerunterteil durchgeführt wurde, reflektiert deutlich die beiden Schliesskraftkomponenten, die die beiden Schliessmittel ausüben werden.
  • Fig. 7 zeigt weitere Ausführungsvarianten von Kammern, deren Teile mit formkorrigierten, metallischen Dichtflächen aufeinander gepresst werden. Fig. 7a stellt eine Kammer für die Behandlung von 4 parallelen Fäden dar, die aus einem grossen Unterteil und aus 4 kleineren Oberteilen (einer pro Faden) besteht. Der Vorteil dieser Ausführungsvariante besteht darin, dass die Kammer jedes einzelnen Fadens separat geöffnet werden kann. Fig. 7b zeigt eine Kammer bestehend aus 4 Kammerteilen, eine Form, die die Fabrikation von komplizierten Innenraumausgestaltungen erleichtern kann. Selbstverständlich kann eine entsprechende Kammer auch aus drei oder mehr als vier entsprechenden Kammerteilen zusammengesetzt sein.
  • Fig. 8a schlussendlich zeigt eine für sehr hohe Fluiddrücke konzipierte Ausführungsform der erfindungsgemässen Kammer, deren einer Kammerteil 20 ein Block mit einer Aussparung, im abgebildeten Beispiel einer V-förmigen Rinne, ist, während der andere Kammerteil 21 eine der Aussparung entsprechende Form, im abgebildeten Beispiel keilförmig, ist. Es ist offensichtlich vorteilhaft, die Formkorrektur in diesem Falle am Verschlusskeil 21 durchzuführen, sodass er effektiv die in Fig 8b dargestellt Form hat. Ensprechende Kammern für den Durchlauf von mehreren Fäden bestehen aus einem Kammerteil mit mehreren Aussparungen und mehreren kammerteilen, die in die Aussparungen passen.

Claims (5)

  1. Kammer zum kontinuierlichen Behandeln von durchlaufenden Filamenten mit mindestens zwei Kammerteilen (1, 2), die durch Schliessmittel zusammengepresst werden und deren Berührungsflächen als Dichtflächen (B) ausgebildet sind, dadurch gekennzeichnet daß mindestens eine Dichtfläche (B) von allen oder einzelnen Dichtflächenpaaren, die im montierten Zustande der Kammer aufeinander liegen, eine Formkorrektur (fo′, fu′) aufweist, die der elastischen Deformation (fo, fu) der beiden harten Dichtflächen (B) der Kammerteile (1, 2), bewirkt durch Fluiddruck (pF), Dichtdruck (pD) und Schliesskraft (F) resp. Schliesskräfte, so entgegengesetzt ist, daß entlang der Dichtflächen (B) der beiden Teile (1, 2) ein Dichtdruck (pD) wirkt, der unter Betriebsbedingungen die Trennung der beiden Teile (1, 2) und Fluidlecks verhindert.
  2. Kammer nach Anspruch 1, dadurch gekennzeichnet, dass sie aus einem Basisteil (1) und mindestens einem Deckelteil (2) besteht, wobei ein oder mehrere Fäden zwischen den Kammerteilen durchgeführt werden.
  3. Kammer nach Anspruch 1, dadurch gekennzeichnet, dass sie aus mindestens drei Kammerteilen besteht, wobei der Faden auf der Schnittgeraden der Dichtflächenebenen durchgeführt wird.
  4. Kammer nach Anspruch 1, dadurch gekennzeichnet, dass sie aus einem Kammerteil (20) mit mindestens einer Aussparung und weiteren Kammerteilen (21), die in die Aussparung passen, besteht.
  5. Kammer nach Anspruch 4, dadurch gekennzeichnet, dass die Aussparung eine V-förmige Rinne ist.
EP90810800A 1989-12-14 1990-10-19 Kammer zum kontinuierlichen Behandeln von Filamenten Expired - Lifetime EP0433217B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4496/89 1989-12-14
CH4496/89A CH679785A5 (de) 1989-12-14 1989-12-14

Publications (2)

Publication Number Publication Date
EP0433217A1 EP0433217A1 (de) 1991-06-19
EP0433217B1 true EP0433217B1 (de) 1994-07-20

Family

ID=4277191

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90810800A Expired - Lifetime EP0433217B1 (de) 1989-12-14 1990-10-19 Kammer zum kontinuierlichen Behandeln von Filamenten

Country Status (4)

Country Link
US (1) US5136860A (de)
EP (1) EP0433217B1 (de)
CH (1) CH679785A5 (de)
DE (1) DE59006511D1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571180B2 (ja) * 1992-12-08 1997-01-16 東洋電機株式会社 仮撚り加工用加熱装置
CN1323202C (zh) * 1999-02-16 2007-06-27 天科纺织机械部件有限公司 纱线放入并启动假捻变形装置的方法及一种假捻变形装置
GB0000786D0 (en) * 2000-01-14 2000-03-08 Univ Manchester Apparatus for processing textile materials
CN113479714B (zh) * 2021-07-26 2022-07-26 安徽工程大学 一种纺织用纱线导向装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2316245A (en) * 1941-06-25 1943-04-13 Du Pont Yarn preparation
FR1060296A (fr) * 1951-08-01 1954-03-31 Rommler G M B H H Presse hydraulique pour la fabrication de corps en forme de plaques
US2688067A (en) * 1952-10-17 1954-08-31 American Cyanamid Co Apparatus adapted for the heat treatment of moving filamentary material
GB987722A (en) * 1963-03-20 1965-03-31 Ilford Ltd Air squeegee
US3592585A (en) * 1969-10-22 1971-07-13 Robert R Candor Method and apparatus for treating sheet-like material and the like
CS203613B1 (en) * 1978-12-21 1981-03-31 Lubos Hes Apparatus for heat treatment of synthetic fibres
CH656653A5 (de) * 1981-08-06 1986-07-15 Kannegiesser H Gmbh Co Verfahren und vorrichtung zum entwaessern gewaschener waeschestuecke.
JPS59191600A (ja) * 1983-04-15 1984-10-30 Hitachi Ltd ホツトプレス
DE3320783C1 (de) * 1983-06-09 1984-11-08 Wagener Schwelm GmbH & Co, 5830 Schwelm Vorrichtung fuer die Reparatur und zum Endlosmachen von Foerdergurten
DE3577733C5 (de) * 1984-12-03 2010-12-30 Maschinenfabrik Rieter Ag Garnbehandlungsdüse.
GB2176504B (en) * 1985-05-31 1988-10-26 Mitsubishi Heavy Ind Ltd Compression membrane
GB2193232A (en) * 1986-06-17 1988-02-03 Rieter Ag Maschf Thread treating nozzles
DE3627513C2 (de) * 1986-08-13 1996-09-19 Barmag Barmer Maschf Düse zum Texturieren eines laufenden Fadens
US4864701A (en) * 1988-12-27 1989-09-12 Milliken Research Corporation Method of forming spun-like synthetic yarn
DE59002052D1 (de) * 1989-02-24 1993-09-02 Rieter Ag Maschf Streckkammer.

Also Published As

Publication number Publication date
CH679785A5 (de) 1992-04-15
EP0433217A1 (de) 1991-06-19
US5136860A (en) 1992-08-11
DE59006511D1 (de) 1994-08-25

Similar Documents

Publication Publication Date Title
DE2909223C2 (de) Dichtvorrichtung für Vakuumverbindungen
DE3800210C2 (de) Vorrichtung zur Abdichtung einer Druckmedium enthaltenden Kammer
EP0118601B1 (de) Vorrichtung zur Sterilitätsprüfung von Fluiden
WO2002005935A2 (de) Rotationsfilter
DE2553577A1 (de) Plattenwaermetauscher
DE2246114A1 (de) Platte fuer plattenwaermetauscher
EP0256448B1 (de) Düse zum Texturieren eines laufenden Fadens
EP0433217B1 (de) Kammer zum kontinuierlichen Behandeln von Filamenten
DE2246031C2 (de) Wärmetauscherplatte mit einer gepreßten Umfangsnut zur Aufnahme einer Dichtung
DE2137810B2 (de) Dichtung
DE1600754A1 (de) Ventil mit Segmentkueken
DE3729726A1 (de) Membranmaschineneinheit
CH615714A5 (de)
DE1479560B2 (de) Verfahren zum Herstellen eines ein Kanalsystem enthaltenden Verbundkörpers, insbesondere eines Wärmetauschers
EP0288453A1 (de) Höchstdruckbehältnis
DE2449561B2 (de) Dichtungsanordnung für einen gewölbten Verschluß-Deckel für Füll- bzw. Entleerungsöffnungen von Behältern
DE3144578C2 (de) Dichtungsanordnung, insbesondere Flanschdichtungsanordnung
DE2825441C2 (de) Druckfiltrationsgerät
DE2755735A1 (de) Klappenventilanordnung fuer kolbenkompressoren
DE19715627A1 (de) Vorrichtung zum Entziehen von Wärme
DE8437784U1 (de) Vorrichtung zum trocknen von gegerbten fellen unter unterdruck
DE1425429A1 (de) Hochvakuumdichtung,insbesondere fuer Ventile
DE279081C (de)
DE1917693A1 (de) Dichtungsring
DE2759141A1 (de) Integraldichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI

17P Request for examination filed

Effective date: 19911129

17Q First examination report despatched

Effective date: 19931206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 59006511

Country of ref document: DE

Date of ref document: 19940825

ITF It: translation for a ep patent filed

Owner name: GUZZI E RAVIZZA S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940927

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950914

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950925

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961019

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970927

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971006

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051019