EP0431167B1 - Verfahren zur herstellung von weichem stahlmaterial - Google Patents

Verfahren zur herstellung von weichem stahlmaterial Download PDF

Info

Publication number
EP0431167B1
EP0431167B1 EP90900339A EP90900339A EP0431167B1 EP 0431167 B1 EP0431167 B1 EP 0431167B1 EP 90900339 A EP90900339 A EP 90900339A EP 90900339 A EP90900339 A EP 90900339A EP 0431167 B1 EP0431167 B1 EP 0431167B1
Authority
EP
European Patent Office
Prior art keywords
soft magnetic
temperatures
magnetic
annealing
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90900339A
Other languages
English (en)
French (fr)
Other versions
EP0431167A4 (en
EP0431167A1 (de
Inventor
Toshimichi Omori
Haruo Suzuki
Tetsuya Sanpei
Yasunobu Kunisada
Toshio Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Publication of EP0431167A1 publication Critical patent/EP0431167A1/de
Publication of EP0431167A4 publication Critical patent/EP0431167A4/en
Application granted granted Critical
Publication of EP0431167B1 publication Critical patent/EP0431167B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing

Definitions

  • the present invention relates to a method of producing soft magnetic ferrous materials, for instance, used as elecromagnetic cores or magnetic shielding materials where good DC magnetization properties are required.
  • Soft irons or pure irons, permalloy or supermalloy have been used as DC electromagnetic iron cores, or magnetic shielding materials or medical appliances, physical machinery, electronic parts or appliances, which have recently been remarkable especially in their demand development.
  • a magnetic flux density at 1 Oe (called as “B 1 value” hereinafter) of the soft iron or the pure iron is about 0.3 to 1.1 T (Tesla) (3000 to 11000G). It has been used as the magnetic shielding materials or MRI (tomogram diagnosis apparatus by a nuclear magnetic resonance) or those shielding uo to a level around several gausses of magnetic flux, or as electromagnetic iron core materials.
  • An Fe-Ni alloy known as the permalloy or the supermalloy is sometimes used for more effective shielding.
  • Those materials are possible to shield the magnetism lower than the earth magnetism but they are very expensive, and further their saturated magnetizations are as low as 1/3 to 2/3 of that of the pure iron.
  • their thickness must be increased extremely. A good deal of their use is however difficult from an economical viewpoint.
  • the annealing at high temperatures brings about removal of lattice strain and the coarsening of the ferrite grains.
  • the improvement of the magnetic permeability of solute Al itself may be also considered, but by synergestic effects thereof, very excellent permeability may be provided;
  • the invention is set forth as follows.
  • C is preferable to be as low as possible for securing an excellent magnetic permeability as well as N, but an utmost decrease is difficult in industrial production since it causes an extreme cost-up.
  • an upper limit of C is 0.004 wt%.
  • Si contributes to the improvement of the magnetic permeability, but the present invention aims at satisfying the magnetic permeability by the Al addition. Rather, an upper limit is 0.5 wt%, preferably 0.1 wt%, paying attentions to a lowering of a saturated magnetization by much addition of Si.
  • Mn deteriorates the DC magnetization property
  • lower content is desirable, but an extreme lowering causes the cost-up and the increase of N content.
  • this element also suppress a hot brittleness by fixing S. It may be contained 0.5 wt%, preferably 0.15 wt%, as an upper limit within a range that the Mn/S ratio is not lower than 10.
  • P and S are impurities, and their lower contents are preferable, if not costing up, and their upper limits are 0.015 wt% and 0.1 wt%.
  • Al is, as said above, the most important element of this invention. That is, Al brings about the fixing of the solute N, the coarsening of AlN, and the raising of the transformation temperature, and as results, thereby expands a ferrite phase region, so that this element enables annealing at high temperatures, thereby to accomplish the coarsening of the ferrite grains and the decerasing of the internal strain. Furthermore, it is assumed that solute Al itself improves the magnetic permeability. Thus, in the present invention, this element must be added for providing the excellent DC magnetization property. Such effects of Al may be obtained by adding not lower than 0.5 wt% in a value of sol.Al. On the other hand, it is undesirable to add exceedingly 2 wt%, because the saturated magnetization is lowered. Al addition is determined to be 0.5 to 2 wt% in the value of sol.Al.
  • N dissolves into the lattice, and creates the lattice strain to deteriorate the DC magnetization properties. It is desirable that N is as low as possible for not producing Al precipitates. This consideration is to make the added Al exist as useful solute Al, and N content should be not more than 0.005 wt%.
  • Ti can be added as required, which is a strong nitride former. This is added for decreasing the above said harms of N without controlling a severe upper limit of the N content which may cause a cost-up, and in this case the upper limit of N is 0.012 wt%.
  • C+N is not more than 0.007 wt%, while in a case of Ti addition, C+N is not more than 0.014 wt%.
  • Oxygen similarly to Mn, deteriorates the DC magnetization properties, and especially gives detrimental influences to the magnetic permeability by generating non metallic inclusions.
  • oxygen When preparing a molten steel, oxygen must be enough decreased, and an upper limit is specified to be 0.005 wt%.
  • Ti is the strong nitride former as said above. If adding it 0.005 to 1.0 wt%, it is possible to avoid considerable damages of the DC magnetization property by a fixing solute N even in such materials where N content is not fully decreased, that is, cheap materials. If the N content is relatively low, the generating amount of nitride are low, and the DC magnetization property may be expected to be improved more or less, accordingly. The Ti addition of more than the upper limit deteriorates the DC magnetization property.
  • the present invention employs ordinary hot working conditions for hot rollings, and heats the steel pieces or cast pieces of the above mentioned chemical compositions at the temperatures of not lower than 700°C but not higher than 1300°C for the hot working.
  • a lower limit of the work ending temperature is determined to be 700°C, since cost-ups always depend upon increase of deformation resistance at the hot working in accompany with rollings at low temperature range as well as lengthening of time to be taken for the hot working, and rollings at extreme low temperatures possibly cause grain refining by recrystallization during the annealing.
  • An annealing to be finally performed should be practiced within a range not falling to a transformation temperature, which is decided mainly by the amount of Al addition, and unless practicing at the temperature of at least 900°C, preferably not lower than 1000°C, it is not possible to accomplish much excellent DC magnetization property to be intended by the invention.
  • the inventive steel is rendered to be a ferrite single phase, and it is therefore possible to carry out the annealing at very high temperatures of not lower than 1100°C, but since the annealing at temperature ranges exceeding 1300°C is difficult and it gives rise to the cost-up, the annealing temperatures are determined to be 1000 to 1300°C.
  • the holding times of the annealing are varied in dependence upon the heat capacity of the material, and it is desirable to hold not less than 30 minutes.
  • a slow cooling is desirable. If an attention is paid so that a uniform cooling may be provided, the thermal srtain is difficult to be introduced, and in such a case, the slow cooling is not always required.
  • the annealing temperature is especially limited with the chemical composition and under the producing conditions specified in the invention, it is possible to produce ferrous materials of high saturated magnetization and B 0.5 value, that is, excellent soft magnetic properties at the DC magnetic field.
  • the present invention also includes a case where a hot direct rolling is employed for the hot rolling.
  • the ferrous materials to be produced by the invention includes both of hot worked materials and cold worked materials (including a warm working).
  • the final annealing is therefore irrespective of a case after the hot working or a case after the hot working - cold working.
  • the invention of course includes such case of performing the intermediate annealing on the half way of the hot working or the cold working, or a case of performing each of the above workings in the several steps.
  • the steels at which the invention aims include plates, sheets, bar, wire materials (shape steels), forged materials, etc.
  • Table 1 shows chemical compositions of steels used in the invention and comparative examples.
  • Steels A to E were formed into sheets with thicknesses of 1 to 5 mm by hot rolling at 1200°C from ingots having thickness of 110 mm after melted, wherein steels A to C fall within the inventive chemical composition, and Steels D, E, F and G are comparative.
  • Table 1 shows transformation point when the temperatures were elevated up to 1300°C at heating rate of 0.5°C/s. The measures of the transformation point tell that the inventive steels have ferrite single phases.
  • Table 2 shows the DC magnetization properties of the inventive steels and the comparative steels, wherein the annealings were carried out on test pieces obtained from the center parts of the thickness of the hot rolled steels, having an outer diameter of 45 mm, an inner diameter of 33 mm and a thickness of 6 mm for measuring the DC magnetization permeability and the ferrite grain sizes.
  • the annealings herein corresponds to the final annealing defined in the invention..
  • the heating - holding time was set to be 1 to 3 hours, and the cooling rate was set to be a slow cooling of about 100°C/hr.
  • Table 2 shows Examples in accordance with the invention where No. 1 carried out the annealing at 1100°C on Steel A.
  • the annealing at the high temperature is possible without introducing transformation strain and grains refining by the transformation.
  • Considerable coarsening of not less than 2 mm in the ferrite grain sizes was accomplished by the annealing at the high temperature as 1100°C, and concurrently the lattice strain was removed, so that very excellent properties of B 0.5 value being around 1.3 T (13000 G) and the maximum magnetic permeability exceeding 60000 were obtained.
  • No. 2 is an Example where the annealing at 1000°C was done on Steel A where the annealing temperature was lower than that of No.1, although the ferrite grain sizes were smaller than those of No.1 as around 0.5 to 1.0 mm, the properties were good as the maximum magnetic permeability being 23900.
  • Nos.3 and 4 are Examples of Steels B and C.
  • the ferrite single phases were made by the Al additions, and in each of them, it was possible to perform the annealings at the high temperatures exceeding 1000°C.
  • the excellent properties were available as the maximum magnetic permeability being 56000 in No.3, and 37200 in No.4.
  • Nos.5, 6 and 7 are comparative Examples of Steels D, E and F. These Steels correspond to industrial pure irons, and are out of the inventive chemical composition. As shown in Nos.5 and 6, the remarkable coarsening of the ferrite grains could not be expected in spite of the annealing at not lower than 1000°C. Further, the strain was introduced during transformation from an austenite to a ferrite, and desired properties were not therefore imparted. No.7 shows results when the annealing temperature was lower than the transformation point, and so good properties were not provided.
  • Table 3 shows both chemical compositions of the inventive Examples and the comparative Examples.
  • Steels I to U steel ingots of 110 mm thickness were made from melts, and the ingots were hot rolled to 15 mm thickness by heating 1200°C.
  • Steels I to S, W to Y, Z and b to d fall within the inventive chemical composition, while Steels T, U, V and a are comparative steels.
  • Table 4 shows results of the DC magnetization properties measured and the ferrite grain sizes of the inventive steels and the comparative steels. In the annealings of the present Example, the heating - holding times were 1 to 3 hours, and the cooling rates were around 100°C/hr to 500°C/hr.
  • Nos.23 to 26 observed influences of the sol.Al content
  • No.28 influences of the C content
  • Nos.29 to 31 observed influences of the Si content.
  • Nos.14 to 16 added Ti. Also herein, the ferrite single phase were made by the Al addition, and further N was fixed by the Ti addition. Nos.14 to 16 show desirable properties. No.15 is a special example where Ti was added to a steel equivalent to No.22 in accordance with the invention, and N was sufficiently fixed by Ti addition so that a great improvement was observed in comparison with the comparative example of No.22.
  • No.21 is a comparative example where Ti was added more than the specified range of the invention, and the DC magnetization property is remarkably deteriorated.
  • No.22 is a comparative example where N addition was high and Ti was not added. Since a precipitation of AlN was stable, the ferrite grains were not fully coarsened in spite of the annealing, and a solute N content was high so that satisfied properties could not be realized.
  • Nos.17 and 18 are examples where Steels P and Q were annealed at 1000°C.
  • Each of Nos.10 to 18, Nos.24 to 26, No.27 and Nos.29 to 31 not only can accomplish the excellent DC magnetization property where the coercive force is not more than 31.8 A/m (0.4 Oe) and the B 0.5 value is not less than 1T (10000 G) and by far satisfy the properties specified in JIS C 2504 SUYPO but also may be applied to as the magnetic shielding material for presenting magnetic field circumstances of a magnetic field level below the earth magnetism.
  • Nos.19 and 20 investigated influences of Ti in relation with the N content and the C+N content, and the both had N > 0.005 wt% and C+N > 0.007 wt%, but No.20 obtained a desired properties due to Ti addition.
  • Each of the inventive examples show the desirous DC magnetization property, and has coarse ferrite grain of not less than 0.5 mm.
  • the soft magnetic ferrous materials according to the invention have the excellent DC magnetization properties and may be easily magnetized even in weak magnetic fields, and those are useful as iron core materials of high functions or magnetic shielding material of high function.
  • the present invention may be applied to production of soft magnetic materials, for example, electromagnetic cores of magnetic shielding materials which require high DC magnetization properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Claims (4)

  1. Verfahren zur Herstellung weichmagnetischer Ferromaterialien, gekennzeichnet durch Erhitzen auf nicht weniger als 700°C aber nicht höher als 1300°C eines Stahlstücks oder eines Gußstücks, zusammengesetzt aus C: nicht mehr als 0,004 Gew.-%, Si: nicht mehr als 0,5 Gew.-%, Mn: nicht mehr als 0,50 Gew.-%, P: nicht mehr als 0,015 Gew.-%, S: nicht mehr als 0,01 Gew.-%, sol. Al: 0,5 bis 2,0 Gew.-%, N: nicht mehr als 0,005 Gew.-%, Sauerstoff: nicht mehr als 0,005 Gew.-%, C+N: nicht mehr als 0,007 Gew.-%, und der Rest Fe und unvermeidbare Verunreinigungen, Ausführen einer Heißbearbeitung bei Temperaturen von nicht weniger als 700°C, und schließlich Glühen bei Temperaturen von 1000 bis 1300°C, um dadurch ein weichmagnetisches Ferromaterial mit einer Koerzitivkraft von nicht mehr als 31,8 A/m und der magnetischen Flußdichte von nicht weniger als 1 T bei dem Magnetfeld von 39,8 A/m zu erhalten.
  2. Verfahren zur Herstellung weichmagnetischer Ferromaterialien, gekennzeichnet durch Erhitzen auf nicht weniger als 700°C aber nicht höher als 1300°C eines Stahlstücks oder eines Gußstücks, zusammengesetzt aus C: nicht mehr als 0,004 Gew.-%, Si: nicht mehr als 0,1 Gew.-%, Mn: nicht mehr als 0,15 Gew.-%, P: nicht mehr als 0,015 Gew.-%, S: nicht mehr als 0,01 Gew.-%, sol. Al: 0,5 bis 2,0 Gew.-%, N: nicht mehr als 0,005 Gew.-%, Sauerstoff: nicht mehr als 0,005 Gew.-%, C+N: nicht mehr als 0,007 Gew.-%, und der Rest Fe und unvermeidbare Verunreinigungen, Ausführen einer Heißbearbeitung bei Temperaturen von nicht weniger als 700°C, und schließlich Glühen bei Temperaturen von 1000 bis 1300°C, um dadurch ein weichmagnetisches Ferromaterial mit einer Koerzitivkraft von nicht mehr als 31,8 A/m und der magnetischen Flußdichte von nicht weniger als 1 T bei dem Magnetfeld von 39,8 A/m zu erhalten.
  3. Verfahren zur Herstellung von weichmagnetischen Ferromaterialien, gekennzeichnet durch Erhitzen auf nicht weniger als 700°C aber nicht höher als 1300°C eines Stahlstücks oder eines Gußstücks, zusammengesetzt aus C: nicht mehr als 0,004 Gew.-%, Si: nicht mehr als 0,5 Gew.-%, Mn: nicht mehr als 0,50 Gew.-%, P: nicht mehr als 0,015 Gew.-%, S: nicht mehr als 0,01 Gew.-%, sol. Al: 0,5 bis 2,0 Gew.-%, N: nicht mehr als 0,012 Gew.-%, Sauerstoff: nicht mehr als 0,005 Gew.-%, Ti: 0,005 bis 1,0 Gew.-%, C+N: nicht mehr als 0,014 Gew.-%, und der Rest Fe und unvermeidbare Verunreinigungen, Ausführen einer Heißbearbeitung bei Temperaturen von nicht weniger als 700°C, und schließlich Glühen bei Temperaturen von 1000 bis 1300°C, um dadurch ein weichmagnetisches Ferromaterial mit einer Koerzitivkraft von nicht mehr als 31,8 A/m und der magnetischen Flußdichte von nicht weniger als 1 T bei dem Magnetfeld von 39,8 A/m zu erhalten.
  4. Verfahren zur Herstellung weichmagnetischer Ferromaterialien, gekennzeichnet durch Erhitzen auf nicht weniger als 700°C aber nicht höher als 1300°C eines Stahlstücks oder eines Gußstücks, zusammengesetzt aus C: nicht mehr als 0,004 Gew.-%, Si: nicht mehr als 0,1 Gew.-%, Mn: nicht mehr als 0,15 Gew.-%, P: nicht mehr als 0,015 Gew.-%, S: nicht mehr als 0,01 Gew.-%, sol. Al: 0,5 bis 2,0 Gew.-%, N: nicht mehr als 0,012 Gew.-%, Sauerstoff: nicht mehr als 0,005 Gew.-%, Ti: 0,005 bis 1,0 Gew.-%, C+N: nicht mehr als 0,014 Gew.-%, und der Rest Fe und unvermeidbare Verunreinigungen, Ausführen einer Heißbearbeitung bei Temperaturen von nicht weniger als 700°C, und schließlich Glühen bei Temperaturen von 1000 bis 1300°C, um dadurch ein weichmagnetisches Eisenmaterial mit einer Koerzitivkraft von nicht mehr als 31,8 A/m und der magnetischen Flußdichte von nicht weniger als 1 T bei dem Magnetfeld von 39,8 A/m zu erhalten.
EP90900339A 1989-06-17 1989-12-08 Verfahren zur herstellung von weichem stahlmaterial Expired - Lifetime EP0431167B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1155025A JP2682144B2 (ja) 1988-10-24 1989-06-17 軟磁性鋼材の製造方法
JP155025/89 1989-06-17
PCT/JP1989/001231 WO1990015886A1 (en) 1989-06-17 1989-12-08 Production method of soft magnetic steel material

Publications (3)

Publication Number Publication Date
EP0431167A1 EP0431167A1 (de) 1991-06-12
EP0431167A4 EP0431167A4 (en) 1993-02-24
EP0431167B1 true EP0431167B1 (de) 1996-09-11

Family

ID=15597026

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90900339A Expired - Lifetime EP0431167B1 (de) 1989-06-17 1989-12-08 Verfahren zur herstellung von weichem stahlmaterial

Country Status (7)

Country Link
EP (1) EP0431167B1 (de)
JP (1) JP2682144B2 (de)
KR (1) KR960014944B1 (de)
CN (1) CN1048236A (de)
CA (1) CA2019187A1 (de)
DE (1) DE68927174T2 (de)
WO (1) WO1990015886A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0499819A (ja) * 1990-08-15 1992-03-31 Nkk Corp 軟磁性鋼材の製造方法
DE4293604C2 (de) * 1991-10-14 1997-04-03 Nippon Kokan Kk Weichmagnetisches Stahlmaterial und Verfahren zu seiner Herstellung
KR100915199B1 (ko) * 2007-09-07 2009-09-02 하미란 열간 단조를 이용한 연자성 스테인리스 부품의 제조방법 및이에 의해 제조된 하우징 및 코어
CN102796948B (zh) * 2011-05-27 2014-03-19 宝山钢铁股份有限公司 极低Ti含量的无取向电工钢板及其冶炼方法
WO2013072124A1 (en) * 2011-11-14 2013-05-23 Nv Bekaert Sa Steel wire for magnetic field absorption
CN104139167A (zh) * 2014-07-31 2014-11-12 攀钢集团工程技术有限公司 铁芯以及具有该铁芯的电磁感应器和电磁搅拌装置
KR101977507B1 (ko) * 2017-12-22 2019-05-10 주식회사 포스코 자기장 차폐용 강판 및 그 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971678A (en) * 1972-05-31 1976-07-27 Stahlwerke Peine-Salzgitter Aktiengesellschaft Method of making cold-rolled sheet for electrical purposes
JPS60208417A (ja) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd 高透磁率熱間圧延鉄板の製造方法
JPS6345443A (ja) * 1986-08-11 1988-02-26 Toyota Motor Corp 空燃比制御装置の異常判定方法

Also Published As

Publication number Publication date
KR960014944B1 (ko) 1996-10-21
CN1048236A (zh) 1991-01-02
EP0431167A4 (en) 1993-02-24
KR920700301A (ko) 1992-02-19
DE68927174D1 (de) 1996-10-17
JPH02213421A (ja) 1990-08-24
JP2682144B2 (ja) 1997-11-26
WO1990015886A1 (en) 1990-12-27
CA2019187A1 (en) 1990-12-17
EP0431167A1 (de) 1991-06-12
DE68927174T2 (de) 1997-03-06

Similar Documents

Publication Publication Date Title
EP0429651B1 (de) Weiches magnetisches stahlmaterial mit eisenbasis
EP0431167B1 (de) Verfahren zur herstellung von weichem stahlmaterial
JP2978427B2 (ja) 極低温用高Mn非磁性鋼及び製造方法
JP5406686B2 (ja) 非磁性鋼
JP2013049918A (ja) 電磁ステンレス鋼及びその製造方法
JP4223726B2 (ja) 冷間鍛造性と透磁率特性に優れた軟磁性鋼材および透磁率特性に優れた軟磁性鋼部品並びにその製造方法
JP3533655B2 (ja) 磁気異方性の小さな低級電磁鋼板の製造方法及び磁気異方性の小さな低級電磁鋼板
JPH0611903B2 (ja) 磁気シールド用電磁鋼板およびその製造方法
JPH07233452A (ja) 磁気特性に優れたフェライト系ステンレス鋼
EP4180543A1 (de) Weichmagnetisches element und zwischenprodukt davon, verfahren zur herstellung des besagten elements und des besagten zwischenprodukts sowie legierung für weichmagnetisches element
JPH07107187B2 (ja) 応力腐食割れ感受性の小さい高Mn非磁性鋼
JP2650506B2 (ja) 直流磁気シールド用電磁厚鋼板とその製造法
JPH0653903B2 (ja) Ni―Fe系高透磁率磁性合金
JP4223727B2 (ja) 冷間鍛造性と磁気特性に優れた軟磁性鋼材および磁気特性に優れた軟磁性鋼部品並びにその製造方法
JP2010270369A (ja) 軟磁性鋼材および軟磁性鋼部品ならびにこれらの製造方法
JP3676477B2 (ja) 複合磁性部材およびその製造方法
WO1996014447A1 (en) Use of a nonmagnetic stainless steel
JP2002129294A (ja) 高飽和磁束密度複合磁性部材及び該部材を用いて成るモータ
JP3561922B2 (ja) 軟磁性ステンレス鋼の製造方法
JPH02263920A (ja) 低温用無方向性高磁束密度電磁鋼の製造方法
JPH0753887B2 (ja) 磁気特性と成形性に優れた冷延鋼板の製造方法
JPH0394046A (ja) 磁気シールド用電磁鋼板およびその製造方法
JP2023144727A (ja) マルテンサイト系ステンレス熱間圧延線材及びその製造方法、並びにマルテンサイト系ステンレス焼鈍線材
JP3379760B2 (ja) 高強度高透磁率鋼材の製造方法
JPH0499819A (ja) 軟磁性鋼材の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19910424

A4 Supplementary search report drawn up and despatched

Effective date: 19930105

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 19931122

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19960911

Ref country code: FR

Effective date: 19960911

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960911

REF Corresponds to:

Ref document number: 68927174

Country of ref document: DE

Date of ref document: 19961017

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981214

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001003