EP0423209B1 - Sondes - Google Patents

Sondes Download PDF

Info

Publication number
EP0423209B1
EP0423209B1 EP89908243A EP89908243A EP0423209B1 EP 0423209 B1 EP0423209 B1 EP 0423209B1 EP 89908243 A EP89908243 A EP 89908243A EP 89908243 A EP89908243 A EP 89908243A EP 0423209 B1 EP0423209 B1 EP 0423209B1
Authority
EP
European Patent Office
Prior art keywords
stylus
probe according
light
sensing
constraining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89908243A
Other languages
German (de)
English (en)
Other versions
EP0423209A1 (fr
Inventor
Clive Butler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTG International Ltd
Original Assignee
BTG International Ltd
British Technology Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BTG International Ltd, British Technology Group Ltd filed Critical BTG International Ltd
Publication of EP0423209A1 publication Critical patent/EP0423209A1/fr
Application granted granted Critical
Publication of EP0423209B1 publication Critical patent/EP0423209B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • G01B11/007Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • G01B5/012Contact-making feeler heads therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/004Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
    • G01B7/008Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points using coordinate measuring machines
    • G01B7/012Contact-making feeler heads therefor

Definitions

  • This invention relates to probes, such as are used with co-ordinate measuring and similar machines, to indicate a touch to an object.
  • an object is measured by relative motion of a probe and an object in a controlled manner, usually from a datum, until a "touch" on the object is indicated by the probe.
  • the co-ordinates of the touch position are recorded. By repeated such actions the dimensions of the object can be determined.
  • Probes to achieve such touch action usually use a light, thin stylus with a ball-end of hard material to touch the object. The touch action deflects the stylus in a mounting in the probe and the occurrence of the deflection of the stylus is sensed to cause the co-ordinates to be recorded.
  • probes provide good results in many measurements but in some measurements errors can arise which cannot be compensated by corrections to the recorded co-ordinates.
  • One cause for such errors can be that deflections of the stylus in different directions require different amounts of deflection before sensing occurs.
  • Another cause can be that an electromechanical switch operated by the stylus is used for the sensing action and the making or breaking of the switch is not consistent because of arcing or corrosion at the switch contacts.
  • Probes used hitherto have electrical or mechanical connections to the stylus.
  • EP-A-0 269 789 discloses a stylus support of a ring of balls (some 16 in number) with indivdual adjustable seats. Apart from the manufacturing effort required to set up the adjustable seats the action of the probe involves the tilting of the stylus about a point on the ring of balls. Such tilting involves the lifting of the stylus assembly which requires effort.
  • FR-A-2 365 408 discloses a probe in which the stylus is mounted and controlled by a spring diaphragm. Movement of the stylus in response to a "touch” will involve some distortion of the diaphragm and the exact behaviour of the stylus on a "touch” will depend on, among other things, the uniformity of the spring diaphragme.
  • DE-U-82 22 757.8 discloses a probe according to the pre-characterising portion of Claim 1, in which the stylus is radially confined by a ball-and-socket joint (7,74), which joint is axially deflectable in a guide (8,84) in the probe housing.
  • a probe for position-determining apparatus having a housing and in the housing a sensing space and an aperture to the sensing space, a stylus extending out of the sensing space through said aperture, a low-friction stylus support means around said aperture, a stylus support portion for supporting the stylus on said support means, constraining means for constraining said stylus on to said support means and generally towards a neutral axis while permitting position-determining displacement on said support means against said constraining means, characterised in that said stylus support portion has a part-spherical surface which is arranged to move on the low-friction stylus support means in such a way that the stylus together with the stylus support portion pivot about a point which is the centre of curvature of the part-spherical surface without displacement of said point, that said constraining means is outside said sensing space and that in said sensing space is a sensing means separate from the constraining means to sense directly significant movement of the stylus from said neutral axis without contact with the stylus and
  • the low-friction stylus support means is a plurality of balls spaced around the aperture.
  • the constraining means may be a resilient, flexible element such as a sheet of rubber.
  • the sensing means includes in said sensing space a source of light directed towards the stylus and the stylus carries a mirror to reflect light from the source back to the sensing means.
  • the amount of light received by the sensing means from the mirror varies in dependence on the displacement of the stylus.
  • the mirror is preferably concave.
  • the source of light may be one end of a flexible fibre optic extending from a radiator of light at the other end of the fibre optic remote from the probe.
  • the light reflected by the stylus mirror may be collected by the or another fibre optic and carried to means to detect a change in the amount of light collected.
  • the sensing means may include means to compare the amount of light radiated from the radiator and the amount collected and determine, subject to compensation for the amount actually radiated, a change in the amount collected resulting from significant movement of the stylus.
  • the stylus may have a disc-shaped, knife-edged part to touch an object to be measured.
  • the significant movement of the stylus is that to displace to said neutral axis the part of the stylus in contact with an object to be measured.
  • FIG. 1 this shows a housing, indicated generally at 10, and including a body 11 with a mounting shank 12, and a cover 13 threaded internally to receive a stylus carrier 14, secured by a lock-ring 16.
  • a sensing space 60 Inside the housing is a sensing space 60.
  • the stylus carrier 14 has an aperture 15 across which a resilient flexible element 20, for example thin rubber sheet, is secured by a retainer 21.
  • the stylus, indicated generally at 40 passes through and is connected to the element 20, conveniently by means of screwed-together parts 44 and 45 which grip the element, and has at the inner end, within sensing space 60, a mirror 42 which is preferably concave.
  • the mirror is conveniently on a part-spherical portion 43 of the stylus, which portion rests on a low-friction support conveniently formed by three balls, one only being shown at 50, seated in a ball seat 17 formed in stylus carrier 14.
  • the flexible element forms a seal for the aperture.
  • a fibre optic 30 is mounted on cover 13 by a suitable element 31 and the end of fibre optic 30 is exposed to mirror 42 through a window 32 in cover 13.
  • the end 33 of the fibre optic is on the longitudinal neutral axis of the probe and concave mirror 42 is also on this axis.
  • the resilient flexible element 20 is preferably evenly stressed when the stylus is undeflected.
  • the resilient flexible element exemplifies means to constrain the stylus on to the low-friction support and towards the neutral axis, permitting displacement on the support and returning the stylus towards the neutral axis after deflection.
  • the action of the probe is as follows.
  • Light from the fibre optic end 33 is directed along the above-mentioned undeflected longitudinal, neutral, axis towards the mirror 42 for incidence thereon.
  • the light from fibre optic end 33 is reflected back to the fibre optic end 33 and returns along the fibre optic.
  • suitable techniques well-known in the art such as beam-splitting, the light reflected from the mirror can be compared with the light incident thereon in suitable optoelectronic means or like comparator.
  • the stylus is deflected from the neutral axis the part-spherical portion 43 turns about its centre of curvature by moving over the balls 50, being constrained against the balls by the constraining means 20.
  • the mirror moves with portion 43 and the light reflected by the mirror is directed away from fibre optic end 33.
  • the amount of reflected light returning along the fibre optic is reduced and by suitable means a signal indicating that a reduction has occurred is produced by the comparator.
  • the constraining means such as resilient flexible element 20 restores the stylus towards the undeflected position.
  • the probe embodying the invention is of much simpler construction than those known hitherto and the sensing of the occurrence of stylus displacement does not rely on electromechanical switching nor is the sensing action affected by the direction of stylus deflection.
  • the comparator means is preferably arranged to indicate that a reduction in reflected light has occurred only when a significant reduction to a predetermined level has occurred.
  • this predetermined reduction is that which occurs when the ball 41 on the stylus is deflected by contact with a body so that the contact point on the ball 41 is on the neutral axis mentioned above.
  • a further advantage of this arrangement is that the stylus does not have to be returned exactly to the neutral axis position by the action of constraining means 20. Provided the stylus is returned close enough to the neutral axis to reflect light to above the predetermined level the next measurement will be accurate.
  • the light supplied for radiation by fibre optic 30 can be monitored to ensure that compensation for any changes in the radiated level can be made when determining that the predetermined reduction has occurred by movement of the stylus, and thus of the mirror 42.
  • the preferred optical arrangement is for the centre of curvature of the mirror to be at the surface 33 of the fibre optic 30 and for the mirror to be a part-spherical concave reflecting surface large enough to contain as much as possible of the light output from the fibre optic (in the neutral axis position).
  • the coefficient of r is actually twice the value of the arc sin of the numerical aperture.
  • a fibre optic diameter in the order of one millimetre is found to be convenient as this larger size reduces alignment problems.
  • Light can be supplied to fibre optic 30 by an infra-red (about 950 nanometres) LED, essentially of conventional form but modified by grinding away the diffuser lens to increase the transfer to the fibre optic.
  • the LED is conveniently some distance from the probe, for example at the other end of about one metre of fibre optic 30.
  • the light supplied to the fibre optic can be monitored by another fibre optic which picks up the light from the rear of the LED.
  • the proper operation of the optical system is ensured by causing the part-spherical portion 43 to be kept in contact with the three balls 50, which are equally spaced in the stylus carrier 14, by the action of the constraining means such as resilient flexible element 20 which is under a certain tension by the connection to the stylus drawing the element into carrier 14 even when the stylus is on the neutral axis. In this way the part-spherical portion 43 also moves about the centre of the spherical surface of the portion.
  • the balls 50 can be of stainless steel or other hard material such as ruby or tungsten carbide and highly spherical.
  • portion 43 can be formed from a phosphor bronze, stainless steel or above hard material ball which is highly spherical.
  • the fibre 30 and element 20 are preferably adjustable for the accurate setting up of the device.
  • Figure 2 shows a circuit for one form of optoelectronic circuit to form the comparator and produce an output trigger signal on the predetermined reduction of reflected light. Careful electrical screening is needed to avoid spurious results.
  • a light source 70 which includes an infra-red LED 71 to supply light to fibre optic 30.
  • the light supplied to the fibre optic 30 is monitored by circuit 72, which includes photodiode 73 to respond to the light from LED 71.
  • Light reflected from mirror 42 to return along the fibre optic 30 is responded to by photodiode 75 of circuit 74.
  • the outputs of circuit 72 and circuit 74 are compared in circuit 76 to give an output signal for use at terminal 77, for example as a trigger signal for the coordinate measuring machine.
  • the deflection of the reflected light can also be detected by using a fibre optic with a core of fibres along which light is supplied and an outer layer of fibres along which light deflected light is returned to a detector.
  • a flexible element of rubber or like material can be degraded or exhibit hysteresis.
  • an element of thin metal can be used.
  • Fig. la shows the form of the relevant part of Figure 1 when such a metal element is used as the constraining means.
  • the stylus carrier 114 is threaded internally to receive a threaded retainer 121 which secures a constraining means of a metal diaphragm/spring element 120 in place.
  • the stylus is conveniently connected to the element as before by the screwed together parts 44 and 45.
  • a seat 118 is provided to define the diameter of the element 120 when installed.
  • the element 120 has to be “dished” a little to be inserted into seat 118. This "dishing” produces a stress in the element which is used to constrain the stylus against the low-friction support 50.
  • the element is corrugated, for example with concentric zones. The element may be “dished” by forcing it into seat 118 the element being slightly oversize for the seat.
  • a magnetic field constraining means When a magnetic field constraining means is used this may be formed by one or more permanent magnets inside aperture 15 on the stylus part 44 and an energisable coil arranged circumferentially around the inside of aperture 15. The energisation of the coil can be adjustable overall or locally to produce required forms of constraining action. A membrane between the stylus and the carrier 14 can be used to provide a seal and, if required, auxiliary positioning.
  • the sensing means is conveniently arranged to provide a "switching" output which changes state only after a certain amount of stylus movement. If required the output can vary to show the amount of movement, i.e. an analog output.
  • Figure lb shows one arrangement.
  • a beam splitter 35 is placed in the light path 34 from fibre optic 30. Light reflected from mirror 42 is deflected from the line of light path 34 and then by the beam splitter, eg as shown at 39, to fall on a detector 36 which can identify the position of the deflected beam.
  • a detector array or other device can be used to indicate the movement of the beam along the arrow 37.
  • the output of the detector 36 is available over connection 38.
  • This arrangement provides for monitoring of the probe position in the X-Y plane, e.g. for rapid scanning of surfaces and measurement when the coordinate measuring machine is stationary with the probe resting on a surface and can provide higher precision measurement.
  • a "trigger" arrangement can respond to the detector output to stop the measurement machine and read the data.
  • Analog measurement can be made after the measurement machine has stopped, so avoiding vibration problems. Analog measurement can reduce the performance required from the stylus restoring technique.
  • the fibres be arranged as described above but other arrangements are possible.
  • the fibre supplying light can be on the axis and the receiving fibre alongside. Any "lobing" in the sensing pattern can be predicted and compensated for in electronic circuitry processing the electrical output produced by the reflected light.
  • An important advantage of the probes embodying the invention is that the switching action on the stylus being displaced is a "clean" fast one as no mechanical switch elements are involved.
  • Light (be it infra-red, visible or ultra-violet) is described for the radiation used to detect mirror, and therefore stylus, movement but other radiation could be used with appropriate adaption, even variation of electrical capacitance may be possible.
  • Light is convenient as it is relatively easily focussed and reflected and exemplifies the higher speed of use, lower stylus force and cleaner switching action achieved by removing the existing mechanical switch.
  • the constraining means such as the resilient flexible element not having to have particularly high standards of precision provided it is adequate to return the mirror to within the required area around the neutral axis.
  • the constraining means could be used. Examples of these are the force of gravity, magnetic field, or air flow.
  • the stylus support could be an air-bearing. The location of part of the sensing means away from the sensing space can reduce the size of the probe.
  • Figure 3 shows an improved stylus form which can be used to improve the performance of the probe on certain surfaces, particularly smoothly-curving ones as are found on aerofoils or certain medical devices such as prostheses.
  • the stylus form shown in Figure 3 can be arranged so that the part 70 can rotate on the stylus shaft as an axis. An accuracy of about 1 micron or better is preferred for the rotation of the part 70. This arrangement can greatly reduce drag at large angles of approach incidence, the part 70 rotating.
  • Figure 3 shows only the parts of Figure around the portion 43 together with the improved stylus 70 itself and a typical non-spherically curved object 80, such as part of a prosthesis for bone replacement. (The exact type of prosthesis is not relevant but such objects need to be measured very precisely and their non-spherical shape causes great problems for measurement.)
  • the improved stylus 70 replaces the conventional ball-ended type.
  • Stylus 70 is conveniently a knife-edged disc mounted so that the neutral axis passes through the plane of the disc at its centre. Suitable forms of construction and material will be apparent to those skilled in the art but an exemplary stylus can be turned from metal and the knife-edge hardened if required.
  • the stylus In use the stylus is fitted to replace the ball-end type and brought to touch the object to be measured. As before the deflection of the stylus which is determined by the comparator is that when the contact point of the stylus and an object to be measured is on the neutral axis of the stylus.
  • the probe is conveniently mounted on a precision coupling of known type in a co-ordinate measuring machine by which the probe can be moved from a position in which the neutral axis is vertical to one in which it is horizontal. In this way the two-dimensional action of the probe can be used for three-dimensional measurement.
  • the techniques described above provide an improved probe for co-ordinate measuring machines and, additionally, an improved stylus.

Abstract

Une sonde pour un appareil de détermination de position et analogue comprend un logement (10) dans lequel se trouve un espace de détection (60), ainsi qu'une ouverture (15) sur l'espace de détection, un palpeur (40) s'étendant hors dudit espace de détection par ladite ouverture, un moyen de support (50, 17) du palpeur à faible frottement situé autour de ladite ouverture, un moyen (20, 120) destiné à maintenir ledit palpeur sur ledit moyen de support et de manière générale vers un axe neutre tout en permettant un déplacement de détermination de position sur ledit moyen de support contre ledit moyen de maintien. Ledit moyen de maintien se trouve hors de l'espace de détection, et dans ledit espace de détection se trouve un moyen de détection (30, 42; 30, 42, 35, 37) séparé dudit moyen de maintien afin de détecter directement un mouvement significatif dudit palpeur à partir dudit axe neutre, sans contact avec le palpeur, et d'indiquer ledit mouvement significatif du palpeur comme étant un déplacement de détermination de position.

Claims (16)

  1. Sonde pour dispositif de détermination de position comprenant un logement (10) et, dans le logement, un espace de détection (60) et une ouverture (15) vers l'espace de détection, un stylet (40) s'étendant hors de l'espace de détection (60) par ladite ouverture (15), des moyens de support à faible frottement (50) pour le stylet autour de ladite ouverture, et une portion de support de stylet (43) pour supporter le stylet (40) sur lesdits moyens de support (50), des moyens de retenue (20) pour retenir ledit stylet sur lesdits moyens de support et généralement en direction d'un axe neutre tout en permettant un déplacement de détermination de position sur lesdits moyens de support à l'encontre desdits moyens de retenue, caractérisé en ce que ladite portion de support de stylet (43) comprend une surface en partie sphérique qui est disposée de façon à se déplacer sur les moyens de support à faible frottement (50) du stylet de manière que le stylet (40), avec la portion de support de stylet (43), pivote autour d'un point qui est le centre de courbure de la surface partiellement sphérique sans déplacement dudit point, en ce que lesdits moyens de retenue (20) sont situés à l'extérieur dudit espace de détection (60) et en ce que ledit espace de détection (60) est constitué par des moyens de détection (30, 42) séparés des moyens de retenue (20) pour détecter directement un mouvement significatif du stylet (40) à partir dudit axe neutre sans contact avec le stylet (40) et qui indiquent (70, 72) ledit mouvement significatif du stylet (40) en tant que déplacement de détermination de position.
  2. Sonde selon la revendication 1, dans laquelle les moyens de support de stylet à faible frottement sont constitués par une pluralité de billes (50) espacées autour de l'ouverture (15).
  3. Sonde selon la revendication 1, dans laquelle les moyens de retenue (20) sont constitués par une feuille de matériau.
  4. Sonde selon la revendication 1, dans laquelle les moyens de retenue (20) comprennent au moins un élément flexible et élastique.
  5. Sonde selon la revendication 3, dans laquelle les moyens de retenue (20) sont constitués en totalité par au moins une feuille de caoutchouc et une feuille en métal élastique en travers de ladite ouverture.
  6. Sonde selon la revendication 1, dans laquelle les moyens de retenue (20) comprennent des moyens à champ magnétique pour retenir le stylet sur les moyens de support.
  7. Sonde selon la revendication 1, dans laquelle les moyens de détection comprennent dans ledit espace de détection (60) une source de lumière (71, 30) dirigée vers le stylet et le stylet supporte un miroir (42) pour réfléchir la lumière provenant de la source vers les moyens de détection (75).
  8. Sonde selon la revendication 7, dans laquelle la quantité de lumière reçue par les moyens de détection et provenant du miroir (42) varie en fonction du déplacement du stylet.
  9. Sonde selon la revendication 7, dans laquelle le miroir (42) est concave.
  10. Sonde selon la revendication 9, dans laquelle la source de lumière est constituée par une extrémité d'une fibre optique flexible s'étendant à partir d'un dispositif de rayonnement de lumière à l'autre extrémité de la fibre optique qui est éloignée de la sonde.
  11. Sonde selon la revendication 10, dans laquelle la lumière réfléchie par le miroir du stylet est recueillie par la fibre optique ou par une autre fibre optique et transportée vers des moyens pour détecter une modification de la quantité de lumière recueillie.
  12. Sonde selon la revendication 7 ou toute revendication qui en dépend, dans laquelle les moyens de détection comprennent des moyens (73) pour comparer la quantité de lumière rayonnée par le dispositif de rayonnement et la quantité recueillie et déterminent, en fonction d'une compensation de la quantité effectivement rayonnée, une modification de la quantité recueillie résultant dudit mouvement significatif du stylet.
  13. Sonde selon la revendication 7, dans laquelle lesdits moyens de détection comprennent des moyens pour déterminer la quantité de déflexion dudit stylet à partir du mouvement de la position de la lumière réfléchie par le miroir.
  14. Sonde selon la revendication 13, comprenant un diviseur de faisceau pour diriger la lumière réfléchie par le miroir vers un détecteur de position.
  15. Sonde selon l'une quelconque des revendications précédentes, dans laquelle le stylet comprend une partie en forme de disque et à bord en couteau (70) pour toucher un objet à mesurer.
  16. Sonde selon l'une quelconque des revendications précédentes, dans laquelle ledit mouvement significatif est celui qui déplace la partie du stylet qui est en contact avec un objet à mesurer par rapport audit axe neutre.
EP89908243A 1988-07-05 1989-07-04 Sondes Expired - Lifetime EP0423209B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB8815984 1988-07-05
GB888815984A GB8815984D0 (en) 1988-07-05 1988-07-05 Probes
PCT/GB1989/000755 WO1990000717A1 (fr) 1988-07-05 1989-07-04 Sondes

Publications (2)

Publication Number Publication Date
EP0423209A1 EP0423209A1 (fr) 1991-04-24
EP0423209B1 true EP0423209B1 (fr) 1995-02-01

Family

ID=10639900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89908243A Expired - Lifetime EP0423209B1 (fr) 1988-07-05 1989-07-04 Sondes

Country Status (7)

Country Link
US (1) US5222304A (fr)
EP (1) EP0423209B1 (fr)
JP (1) JPH03502603A (fr)
DD (1) DD287572A5 (fr)
DE (1) DE68921003T2 (fr)
GB (2) GB8815984D0 (fr)
WO (1) WO1990000717A1 (fr)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644883B1 (fr) * 1989-03-23 1992-11-20 Commissariat Energie Atomique Capteur de contact multidirectionnel pour machines de controle
GB2238616B (en) * 1989-10-18 1993-06-23 Mitutoyo Corp Touch signal probe
US5491904A (en) * 1990-02-23 1996-02-20 Mcmurtry; David R. Touch probe
GB9004117D0 (en) * 1990-02-23 1990-04-18 Renishaw Plc Touch probe
EP0521092B1 (fr) * 1990-03-23 1997-08-13 Geotronics Ab Capteur a deplacement analogique
GB9116044D0 (en) * 1991-07-24 1991-09-11 Nat Res Dev Probes
JP3153111B2 (ja) * 1995-09-18 2001-04-03 株式会社ミツトヨ 手動操作型三次元測定機
IT1299954B1 (it) * 1998-04-06 2000-04-04 Marposs Spa Sonda a rilevamento di contatto.
DE19848067B4 (de) * 1998-10-19 2004-05-19 Siemens Ag Einrichtung zur Erfassung der räumlichen Verlagerung von Konstruktionsteilen und/oder Strukturen
GB9907643D0 (en) * 1999-04-06 1999-05-26 Renishaw Plc Measuring probe
JP4663378B2 (ja) * 2005-04-01 2011-04-06 パナソニック株式会社 形状測定装置及び方法
US7422634B2 (en) 2005-04-07 2008-09-09 Cree, Inc. Three inch silicon carbide wafer with low warp, bow, and TTV
GB0508388D0 (en) * 2005-04-26 2005-06-01 Renishaw Plc Surface sensing device with optical sensor
DE102005054593B4 (de) * 2005-11-14 2018-04-26 Immobiliengesellschaft Helmut Fischer Gmbh & Co. Kg Messonde zur Messung der Dicke dünner Schichten
GB0608998D0 (en) * 2006-05-08 2006-06-14 Renishaw Plc Contact sensing probe
JP5276803B2 (ja) * 2007-06-11 2013-08-28 パナソニック株式会社 形状測定方法
EP2028439A1 (fr) * 2007-07-26 2009-02-25 Renishaw plc Appareil de mesure pouvant être désactivé
EP2018934A1 (fr) * 2007-07-26 2009-01-28 Renishaw plc Dispositif de mesure doté d'un module d'authentification
WO2010109975A1 (fr) * 2009-03-24 2010-09-30 コニカミノルタオプト株式会社 Dispositif de mesure de la forme
EP2385339A1 (fr) 2010-05-05 2011-11-09 Leica Geosystems AG Dispositif de détection de surface doté d'un système de surveillance optique
CN103328919B (zh) 2011-01-19 2016-08-17 瑞尼斯豪公司 用于机床设备的模拟测量探头和操作方法
EP2615425B1 (fr) 2012-01-13 2018-03-07 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Système de mesure pour déclencheur tactile optique ou sonde de balayage doté d'un miroir concave
CN102749032A (zh) * 2012-06-26 2012-10-24 浙江省质量检测科学研究院 光磁结合的全角度三维探测系统
JP6108757B2 (ja) 2012-10-19 2017-04-05 株式会社ミツトヨ 複円錐型スタイラスの校正方法
EP2977714B1 (fr) * 2014-07-22 2016-05-18 Tschorn GmbH Palpeur de mesure doté d'un bras palpeur et d'un corps de palpeur conique
US9803972B2 (en) * 2015-12-17 2017-10-31 Mitutoyo Corporation Optical configuration for measurement device
US9791262B2 (en) * 2015-12-17 2017-10-17 Mitutoyo Corporation Measurement device with multiplexed position signals
DE102016117980A1 (de) * 2016-09-23 2018-03-29 M & H Inprocess Messtechnik Gmbh Tastfühler
DE102016117970A1 (de) * 2016-09-23 2018-03-29 M & H Inprocess Messtechnik Gmbh Tastfühler
GB201806830D0 (en) * 2018-04-26 2018-06-13 Renishaw Plc Surface finish stylus
GB201806828D0 (en) 2018-04-26 2018-06-13 Renishaw Plc Surface finish stylus
JP6799815B2 (ja) * 2018-05-21 2020-12-16 パナソニックIpマネジメント株式会社 形状測定用プローブ
IT201900006536A1 (it) 2019-05-06 2020-11-06 Marposs Spa Sonda per il controllo della posizione o di dimensioni lineari di una parte meccanica

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB773238A (en) * 1955-01-12 1957-04-24 Ass Elect Ind Improvements relating to apparatus for indicating small movements
US3571934A (en) * 1968-06-24 1971-03-23 Lockheed Aircraft Corp Three-axis inspection probe
US3520063A (en) * 1968-08-30 1970-07-14 Rohr Corp Multiaxis inspection probe
CH611196A5 (fr) * 1976-09-27 1979-05-31 Int De Rech Tech Et De Consule
DE2712181C3 (de) * 1977-03-19 1981-01-22 Fa. Carl Zeiss, 7920 Heidenheim Tastsystem
FR2458791A1 (fr) * 1979-06-13 1981-01-02 Seiv Automation Dispositif de mesure a commande numerique
JPS5828601A (ja) * 1981-08-13 1983-02-19 Hitachi Metals Ltd タツチセンサ−
JPS58169001A (ja) * 1982-03-31 1983-10-05 Mitsutoyo Mfg Co Ltd 2方向タツチセンサ
DE3215878A1 (de) * 1982-04-29 1983-11-03 Fa. Carl Zeiss, 7920 Heidenheim Tastkopf fuer koordinatenmessgeraete
DE3229992C2 (de) * 1982-08-12 1986-02-06 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Mehrkoordinaten-Tastkopf
DE8222757U1 (de) * 1982-08-12 1986-10-23 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Mehrkoordinaten-Tastkopf
US4513507A (en) * 1983-09-02 1985-04-30 Bendix Automation Company Contact sensing probe for a measuring apparatus
JPS631207U (fr) * 1986-06-20 1988-01-07
FR2614690B1 (fr) * 1987-04-28 1990-11-09 Essilor Int Appareil de lecture de contour, notamment pour monture de lunettes

Also Published As

Publication number Publication date
GB2220748B (en) 1992-07-29
DE68921003T2 (de) 1995-06-22
GB2220748A (en) 1990-01-17
GB8915303D0 (en) 1989-08-23
JPH03502603A (ja) 1991-06-13
EP0423209A1 (fr) 1991-04-24
DE68921003D1 (de) 1995-03-16
GB8815984D0 (en) 1988-08-10
WO1990000717A1 (fr) 1990-01-25
US5222304A (en) 1993-06-29
DD287572A5 (de) 1991-02-28

Similar Documents

Publication Publication Date Title
EP0423209B1 (fr) Sondes
EP1086354B1 (fr) Dispositif de detection de surface a capteur optique
EP0544854B1 (fr) Palpeur de mesure
US4177568A (en) Measurement head
EP0598709B1 (fr) Palpeur à contact
US5323540A (en) Touch probe
US5917181A (en) Profile measuring apparatus
US7146741B2 (en) Measuring probe with diaphragms and modules
EP0501710B1 (fr) Palpeur à contact
US5509211A (en) Multi-coordinate probe
EP0548328B1 (fr) Sonde de contact
US6459492B1 (en) Non-contact position sensor
EP0510059B1 (fr) Sondes
GB2238616A (en) Touch signal probe
EP0884564B1 (fr) Capteur de déplacement et procédé pour déposer un marquage de visée
KR100498192B1 (ko) 비-접촉 위치 센서
Butler et al. Precision co-ordinate measurement using a fibre optic touch probe
JPH03115913A (ja) レーザ変位計用治具
KR19980042510U (ko) 원판 접촉식 트리거 프로브

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19920310

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BRITISH TECHNOLOGY GROUP LTD

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950201

Ref country code: CH

Effective date: 19950201

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 68921003

Country of ref document: DE

Date of ref document: 19950316

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20030702

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030711

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030717

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050704