EP0413948B1 - Système de transmission optique de données, de préférence pour la perception automatique des redevances routières - Google Patents

Système de transmission optique de données, de préférence pour la perception automatique des redevances routières Download PDF

Info

Publication number
EP0413948B1
EP0413948B1 EP90113494A EP90113494A EP0413948B1 EP 0413948 B1 EP0413948 B1 EP 0413948B1 EP 90113494 A EP90113494 A EP 90113494A EP 90113494 A EP90113494 A EP 90113494A EP 0413948 B1 EP0413948 B1 EP 0413948B1
Authority
EP
European Patent Office
Prior art keywords
transmitting
vehicle
mask
receiving
active area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90113494A
Other languages
German (de)
English (en)
Other versions
EP0413948A1 (fr
Inventor
Gottfried Engelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0413948A1 publication Critical patent/EP0413948A1/fr
Application granted granted Critical
Publication of EP0413948B1 publication Critical patent/EP0413948B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/06Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems
    • G07B15/063Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems using wireless information transmission between the vehicle and a fixed station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1143Bidirectional transmission

Definitions

  • the invention relates to a system for optical data transmission between a stationary station provided in the area of a roadway and individual passing vehicles according to the preamble of claim 1.
  • the exchange of information between vehicles and stationary devices with optical data transmission, in particular with infrared radiation is known, for example from DE-A-28 26 055 or DE-A-32 48 544.
  • Such systems are used in location and guidance systems, on the one hand to transmit information and data, for example traffic data, such as travel times and traffic jam times, from the vehicle to fixed beacons and, on the other hand, to transmit information and data, such as guidance information for the guidance of the vehicle, from the fixed beacons to the vehicle device.
  • traffic data such as travel times and traffic jam times
  • guidance information for the guidance of the vehicle from the fixed beacons to the vehicle device.
  • the vehicle device which contains a transmitting and receiving device for infrared transmission, is attached to the windshield FS, so that the optical information exchange can take place directly with a stationary station as it drives past. Every time the vehicle FZ passes a toll station MS (see FIG. 2), a certain fee is automatically debited from the memory card SK in the vehicle.
  • the data exchange between the toll station M and the individual vehicles FZ takes place in such a way that stationary transmitting and receiving devices SE attached to a portal P in the toll station send 58 information in a specific radiation area and also in such a radiation area - in the form may differ, as will be described later - receive information from a particular vehicle in each case.
  • US Pat. No. 4,325,146 discloses a system for optical data transmission between a stationary station provided in the area of a carriageway and individual passing vehicles, in which at least one transmitting device with one in each case in the station above the carriageway and in the vehicle on the other hand Light transmitter arrangement and / or at least one receiving device with a light receiver arrangement is provided, wherein in the stationary transmission or
  • Each receiving device is provided with an optical device which maps the driving area of the passing vehicles onto an image plane lying in front of the light transmitter arrangement or the light receiver arrangement. Nothing is disclosed about the arrangement and design of masks for specifiable aperture openings for the optical transmission device.
  • a plurality of masks with a number of diaphragm openings are provided in order to form separate active surfaces.
  • an active surface is formed for the transmitting device and two separate active surfaces are formed for the receiving device, the aperture openings forming separate radiation regions for the transmitting device and the receiving device.
  • data is transmitted between the station and a vehicle transmitting and receiving device as part of a dialog traffic, and an acknowledgment signal.
  • the tear-off edge of the aperture of the transmitting device is shaped in such a way that there is an active surface which has sharp edges transversely to the direction of travel, on the basis of which at least the end of the radiation area of the transmitting device is caused by an abrupt jump in the level in the vehicle transmitting and receiving device is recognized and this causes it to emit the acknowledgment signal.
  • a plurality of optical systems each with its own mask, or an optical system with a mask, to which a plurality of diaphragm openings are assigned, can be provided for this.
  • the line at which the dialog area ends can be defined for the problem of the distinction between dialog area and localization area described at the beginning. If the vehicle leaves this dialog area, the radiation level drops suddenly; this so-called "tear-off edge" of the stationary radiation transmitter thus separates the dialog area from the localization area and can be used to trigger the transmission of the aforementioned acknowledgment signal in the vehicle device.
  • the masking according to the invention also makes it possible, in the application of the toll station, to delimit the localization area very precisely, so that it exactly matches the detection area of a vehicle detector, for example a loop detector. From the coincidence of the detector signal with the acknowledgment signal of the assigned receiver In the stationary receiving facility of the toll booth, the proper payment of fees for the determined vehicle can thus be confirmed. If it is not confirmed, further steps for identifying the vehicle can be initiated.
  • the shape of the active surface can be determined by the shape of the aperture in the mask. As a rule, a rectangular effective area corresponding to the vehicle base area and the planned dwell time will be determined, which is achieved with a nearly vertical angle between the road and the imaging plane through a trapezoidal aperture in the mask. However, if only a sharp end edge of the active surface is important, a half-moon-shaped aperture can be provided in the mask.
  • the defined effective area could be defined in the area of the road surface.
  • the vehicle transmitters and receivers are generally arranged in the upper area of the vehicle, for example in the area of the windscreen or on the roof, the respective effective area is defined at a corresponding height above the road surface.
  • the optical device which can be formed by a commercially available camera lens, is expediently inclined towards the road, in such a way that its optical axis roughly intersects the effective area in the central region thereof. If, for example, two active surfaces are defined with the optical system, the optical axis can be placed in the web between the active surfaces lying one behind the other. Furthermore, it can be expedient to arrange the image plane formed by the mask at an incline both with respect to the roadway and with respect to the objective plane, in order to achieve the least possible distortion of the image. It is useful if the so-called Scheimpflug condition is met, ie that the active surface plane, the objective plane and the image plane intersect in a line.
  • the transmitter arrangement is expediently formed by a transmitter diode array, and the receiver arrangement by a receiver diode array, in a preferred embodiment each being an infrared diode.
  • the diode axes are radially aligned with the center of the optical device, wherein they are expediently arranged on a concave, preferably spherical rear wall surface.
  • the rear wall surface behind the transmitter diodes is expediently mirrored.
  • a further improvement in the irradiance results if the side walls of the space between the transmitter arrangement and the mask also reflect.
  • this can be a reflective hollow cylinder wall or a prism wall formed from plane mirrors.
  • a light-scattering device is expediently additionally provided in the area between the transmitter arrangement or the receiver arrangement and the mask, for example in the form of a diffuser, a soft focus or the like. It is also possible to make the mirror surface mentioned uneven and thereby scatter the reflected light.
  • FIG. 1 shows a section of the dashboard of a vehicle FZ with the obliquely extending front window FS.
  • a vehicle device namely a vehicle transmitting and receiving device FSE, which contains an infrared receiver and an infrared transmitter for data exchange between the vehicle and a stationary station, is attached to this windshield.
  • the aforementioned memory card SK which was loaded with a certain amount of money, is inserted into this vehicle device FSE.
  • FIG. 2 also shows a freeway for the application of automatic toll payment, namely only a directional lane RB, on which several vehicles FZ are traveling.
  • These vehicles FZ pass an automatic toll station MS with a portal P above the directional lane RB, stationary transmission and reception devices SE being attached to the portal.
  • These transmitting and receiving devices SE each use a radiation area SB to detect those that pass Vehicles FZ in order to carry out the aforementioned debiting of the fee in the vehicle devices FSE.
  • the vehicles do not have to stop or significantly reduce the speed as long as it is in an area that allows sufficient dialogue with the given effective areas.
  • FIG. 3 schematically shows the formation of active areas at an automatic toll station MS, a portal arrangement P being arranged as a fixed transmitting and receiving station above the directional lane RB with three lanes SP1, SP2 and SP3 and the hard shoulder SS4 and SS5.
  • individual transmitting and receiving devices SEI to SE7 are arranged on the cross member of the portal P, which are directed obliquely to the lane at the passing vehicles; the direction of travel is indicated by the arrow FR.
  • the number of transmitters and receivers is greater than the number of lanes, so that all vehicles are continuously recorded, even if they are not driving in a certain lane - or even on a hard shoulder.
  • Each transmitting and receiving device has a radiation area SB. These radiation areas overlap; For the sake of clarity, only radiation regions associated with some of the transmitting and receiving devices are therefore indicated.
  • the transmitting and receiving devices SE1 to SE7 are designed in such a way that they emit their light radiation onto precisely defined active areas and, conversely, the light radiation or infrared radiation from the individual vehicle also only from the receive precisely defined effective areas.
  • Some such active surfaces are indicated in FIG.
  • the transmitting and receiving device SE1 it is indicated for the transmitting and receiving device SE1 that two pyramid-shaped, sharp-edged beam regions SB1 and SB2 are formed in the device due to the mask optics to be described later. This means, for example, that only infrared light that is inside can be received in the transmitting and receiving device SE1 by a vehicle the beam area SB1 or the beam area SB2 arrives.
  • an effective area F11 is formed; accordingly, the beam area SB2 forms the effective area F12 in the intersection with the roadway RB.
  • These active areas F11 and F12 are diagonally hatched.
  • the effective area is even smaller if the vehicle transmitter is arranged on the roof of a truck, for example.
  • the effective area F31 results in the beam area SB1 and the effective area F32 in the beam area SB2.
  • These effective areas for trucks are marked in longitudinal stripes.
  • trucks generally drive slower than passenger cars, a smaller effective area is usually sufficient to handle the necessary dialogue, so that the beam area does not have to be set larger because of the higher transmitters in trucks.
  • the effective areas should be delimited as sharply as possible in order to separate vehicles that conduct the debit dialog from those that send their acknowledgment signal.
  • An optical arrangement for example a lens L, is provided in the transmitting and receiving device SE, which images the roadway area on an image plane, which is represented by a mask M. If it is a receiving device, the light coming from the roadway area is thrown through the image plane through the image plane onto receiving diodes DE. If it is a transmission device, corresponding transmission diodes are provided instead of the receiving diodes DE, the light of which is thrown onto the roadway area by the lens arrangement. Since the mask M covers the image plane, the respective light can only pass through the apertures B1 and B2. The shape of these diaphragm openings B1 and B2 then limits the active surfaces already described with reference to FIG.
  • the effective area F21 is defined by the aperture B1 and the effective area F22 by the aperture B2.
  • a vehicle on the directional lane RB can therefore only have a dialogue with the transmitter diodes or receiver diodes, as long as this vehicle or, more precisely, its infrared transmitter or receiver is located in the area of the active surfaces F21 or F22.
  • the optical device L is expediently aligned such that the optical axis intersects the active surface approximately in its central region, as is shown in FIG. 4 at point S1 with respect to the active surface F21. However, this is only useful if there is a single effective area. If, as is also indicated in FIG. 4, a second active surface F22 is provided, it would be expedient to incline the optical device L further, as shown in FIG. 4, so that its optical axis encompasses the active plane in the area would cut between the effective surfaces F21 and F22, i.e. at point S2.
  • FIGS. 5 to 7 show, for example, three different configurations of the mask or the diaphragm openings that are expedient for the present application.
  • 5 shows in a mask 1 a circular mask field 2, in which a trapezoidal diaphragm opening is provided.
  • This trapezoidal diaphragm opening creates a rectangular active surface, as is shown, for example, in FIG. 3.
  • Such an active surface is sharply delimited in its four sides, the dimensions of the individual side lengths being able to be determined by the design of the aperture 3 and by the design of the optical system.
  • FIG. 6 shows a crescent-shaped diaphragm opening 4 in a circular mask field 2.
  • a crescent-shaped diaphragm opening 4 is useful if it is only a matter of maintaining a sharp front edge for an active surface.
  • Such a sharp front edge is defined by the edge of the aperture, while the remaining circular border of the aperture results in a corresponding lobe-shaped design of the active field.
  • FIG. 3 it is expedient, for example, to provide two different active fields for the reception from the vehicle, a rectangular configuration being necessary only for the active field F22, while only a sharp front edge, designated F21 in FIG. 3, is required for the active field F21. necessary is.
  • the active surface F21 in FIG. 3 does not correspond to the diaphragm opening in FIG. 6, but one Diaphragm opening of Figure 5, but that for practical use instead of the effective surface F21, a club-shaped active surface achieved by the aperture 4 with a sharp front edge F21 can be used.
  • FIG. 7 again shows a crescent-shaped diaphragm opening 6, the diaphragm opening occupying more than half of the mask field 2.
  • Such an aperture is expediently used for transmitter optics if the stationary transmitter device is to be used to produce a relatively broadly projecting active surface with only a sharp front edge.
  • overlapping active surfaces are generated in the driving area with transmitting devices lying next to one another, in order in any case to also reach between the lanes or vehicles traveling diagonally to them.
  • the masks shown there with different diaphragm openings 3, 4 and 6 can be used individually and combined with their own optical device. So if you want to create two different effective areas for the receiving device with the aperture 3 and the aperture 4 and a third effective area for the transmitting device with the aperture 6, three different optical devices with three different masks 1 and with correspondingly assigned transmitter or Combine receiver arrangements. It is more expedient to provide and combine the three mask fields 2 in a single mask 7 in accordance with FIG. 8, with three different optical devices also having to be arranged next to one another in the case of an arrangement in accordance with FIG.
  • FIG. 9 shows a mask 8, with 9 in a first mask field the two diaphragm openings 3 and 4 are arranged in combination while in a second mask field 10 the aperture 6 is formed.
  • the two active fields F21 and F22 in FIG. 3 can be generated via a single receiver optics, the web 11 in FIG. 9 generating a delimited area between the two active fields in which reception is not possible.
  • the shape of the active surface F21 in FIG. 3 is not produced by the aperture 4 in accordance with FIG.
  • the diaphragm opening 4 in FIG. 9 would also have to be designed trapezoidal, similar to the diaphragm opening 3.
  • the aperture 6 serves for the generation of a transmitting effective area, as already mentioned, whereby a separate optical device is required for the transmitting device and the mask field 10.
  • FIG. 1 A possible embodiment of a receiving device with two active surfaces is shown schematically in FIG.
  • An optical device 13 is provided in a housing 12, for example in the form of a camera lens, which is attached to an open side of the housing.
  • a mask 14 is arranged in the housing, which has, for example, two diaphragm openings 15 and 16 corresponding to the diaphragm openings 3 and 4 in FIG. 9.
  • receiver diodes 17 are arranged, which receive the light arriving through the optical device 13 and the respective aperture 15 or 16 and evaluate the information associated therewith.
  • the diodes 17 are seated on a circuit board 18, which otherwise carries a conventional evaluation circuit.
  • the back of the circuit board is closed with a cover 19.
  • the receiver space 20 is divided by an intermediate wall 21a into two separate spaces 20a and 20b, so that the receiving diodes 17 in the first reception space 20a receive the light falling through the aperture 15, the receiving diodes 17 in the receiver space 20b receive the light falling through the aperture 16.
  • FIG. 10 different housing parts are joined together as individual parts, for example the mask 14 is attached to the housing 12, then the receiver space 20 with a wall 21.
  • the housing 12 with the mask 14 it is also possible to enclose the housing 12 with the mask 14 and to form the receiver room wall 21 in a block.
  • This block can additionally have an adapter part 22, which already defines a predetermined angle of inclination of the receiving device and, if appropriate, a transmitting device accommodated in the same housing relative to the fastening plane 23 on the underside of the portal P (FIG. 3). This eliminates the need for adjustment work when installing the transmitting and receiving devices.
  • the optical device can additionally be provided with a field of view diaphragm 24.
  • FIG. 11 also schematically shows an expedient embodiment of a transmission device.
  • This transmission device in turn has an optical device 33, which in turn can be formed by a commercially available camera lens.
  • a mask 34 with an aperture 35 is arranged in the image plane.
  • Behind it is a transmitter room 36, on the rear of which the individual LED transmit diodes 37 are arranged.
  • the rear wall 38 is spherically curved so that the axis of the individual transmission diodes is aligned with the center of the optical device.
  • the center point for the radius R of the rear wall 38 thus lies in the middle of the entrance to the optical device 33, so that all of the main rays of the transmitter diodes pass through the central region of the optical device.
  • the rear wall 38 is expediently mirrored on its surface.
  • the side walls 39 and 40 are also mirrored in order to direct the side radiation, for example indicated by the beam 41, into the optical arrangement. This results in the best possible utilization of the transmitter light, which is in view of the relatively large effective areas in the distant lane area important is.
  • the side walls 39 and 40, as well as the invisible remaining side walls, can be designed as a plane mirror. However, it would be conceivable, depending on the application, to provide a cylindrical or otherwise designed side wall which is mirrored on the inside.
  • a light-scattering device is also provided in the area between the diodes 17 and 37 and the mask 14 and 34.
  • a diffuser disc 25 is shown in FIG. 10, for example.
  • a corresponding disk can also be provided in FIG. 11, although it is not shown there.
  • other options for light scattering can also be used, for example a blur device or a ribbed version of the mirrored side walls.
  • a condenser e.g. a Fresnel lens.
  • the inside walls of the housing in the area between the mask and the optical device are blackened, if possible, or are otherwise light-absorbing in order not to blur the desired sharp delimitation of the active surfaces.
  • FIGS. 12 and 13 show a housing of this type in two schematic views, the design in some cases deviating from the illustration in FIGS. 10 and 11. Nevertheless, the same reference numerals are used for parts with the same function.
  • FIG. 12 shows the front view of a mask 14, which also contains the mask 34 indicated in FIG. 11 in one piece. In this mask, the mask fields 49 and 50 are provided, which in turn contain the aperture openings 43 and 44 and 46. Receiver diodes 17 and transmitter diodes 37 are partially visible behind these diaphragm openings.
  • the aperture 43 corresponds to the aperture 3 in Figures 5 to 9; it results in a rectangular effective area.
  • the aperture 44 has two straight end edges 44a and 44b for the application to be described later, whereby an active surface is formed with an exact edge on the front and rear, while the remaining circular side edges 44c and 44d of the aperture define a less sharply defined one The course of the associated active surface in the side area results.
  • Figure 13 shows the housing of Figure 12 in cross section.
  • a common circuit board 18 carries the receiver diodes 17 and the evaluation circuit also for the transmitter diodes, which are in the spherical arrangement mentioned sit on a rear wall 38 according to FIG.
  • FIG. 12 shows, for example, a uniform matrix arrangement of the transmitter diodes 37.
  • FIG. 14a shows the position of the respective radiation areas above the roadway level of a directional roadway RB and at the respective spatial distance from it Portal P with the individual transmitting and receiving devices SE. Since the car transmitter and receiver are at a height h1 above the road level R, the associated effective areas are at the corresponding height.
  • the radiation area EBD delimited by the points E, P1 and P2 in FIG. 14a (solid line), results in an effective area for the dialogue traffic DF which lies at the corresponding height h1 between the points P1 and P2.
  • This effective area is generated by the aperture 44 in FIG.
  • the active surface DF has a sharp start edge corresponding to the edge 44b in FIG. 12 and a sharp end edge KP2 corresponding to the edge 44a, while the sides of this active surface DF are not sharply delimited. This is shown in Figure 14d.
  • the aperture 43 in FIG. 12 and the resulting acknowledgment receiver radiation area EBQ result in a second effective area, which is delimited by points E, P3 and P4 in FIG. 14a.
  • a rectangular active surface QF is thus formed, which has four sharp edges and precisely defines the area in which the vehicle must send an acknowledgment signal to the stationary receiving device.
  • the aperture opening 46 in FIG. 12 also forms a transmitter radiation region SBD (framed in dashed lines in FIG. 14a), which is framed in FIG. 14a by points S, P1 and P5.
  • a transmitter active area DS is formed between the points P1 and P5 in FIG. 14a or between the terminating edges KP1 and KP5 in FIG. 14d, within which the vehicle device can receive information from the stationary transmission device S in dialog traffic.
  • the sharp terminating edges KP1 and KP5 of this active transmitting area DS are formed by the edges 46b and 46a of the aperture 46 in FIG. 12, while in this case too there is no sharp terminating of the effective area in the side regions.
  • the end edge KP5 through which the end of dialog traffic is determined in the vehicle. At the same time this will End of dialog traffic in the vehicle evaluated as a request to submit the acknowledgment signal. Since the vehicle is already in the effective area QF at this point in time, ie at point P5, the acknowledgment signal subsequently emitted can be received by the stationary receiving device E in the area of this effective area QF.
  • FIG. 14 b shows the course of the signal level in the vehicle receiver, that is to say the signal emitted by the stationary transmission device S and to be received in the vehicle. It has an approximately constant high level in the area of the active surface DS, a steeply rising flank at point P1 and a steeply falling flank at point P5, as a result of which the mentioned closing edges KP1 and KP5 are formed.
  • FIG. 14c shows the level curve of the signal emitted by the vehicle and received in the stationary receiving device E. This shows that there is an almost constant level within the effective areas DF and QF, while this level rises steeply at points P1 and P3 (edge KP1) and falls steeply at points P2 and P4 (edges KP2 and KP4).
  • the effective area QF within which the acknowledgment signal is to be issued, is assigned a loop detector below the road surface RB, with which each passing vehicle is located. In the toll station, when a vehicle is located, it can thus be determined whether the relevant vehicle, which is then in the area of the effective area QF, is also issuing an acknowledgment signal that the toll fee has been paid.
  • a vehicle approaching the toll booth MS enters the area of the effective area DF with its vehicle device FSE at point P1 and receives the request in dialogue with the stationary transmitting and receiving device SE to provide a specific one Debit amount to be debited.
  • the vehicle leaves the active area DF; From this point on, it can initially no longer transmit any data to the stationary device, but it still receives information from the stationary device up to point P5.
  • the vehicle already enters the effective area QF and is located at the same time by the loop detector SD. The vehicle device is prompted for the receipt of the receipt by the end of the transmitter active area DS.
  • the mobile receiving device If it has now debited the relevant fee amount from its money store (card SK), it can emit the acknowledgment signal in the area of the effective area QF so that it is picked up by the stationary receiving device. If an acknowledgment signal is not issued even though a vehicle has been located via the loop detector SD, this is indicated by appropriate display means on the portal or at another location.
  • the vehicle can also be identified, for example, by photography.
  • FIG. 15 shows the corresponding position of the active surfaces for a truck, with otherwise the arrangement of the stationary devices as in FIG. 14.
  • the individual points and surfaces are therefore designated in FIG. 15 in the same way as in FIG. 15
  • the higher arrangement of the vehicle's own transmission and reception device FSE at a height h2 above the directional lane RB correspondingly shifted closer to the portal.
  • the distances between the points P1 to P5 and the edges KP1 to KP5 are smaller.
  • the course of the dialogue between the vehicle and the stationary transmitting and receiving device, the localization and the receipt take place in the same way as in a car, so that the description of FIG. 14 also applies to FIG. 15 without further ado.
  • a plurality of transmitting and receiving devices are arranged above the carriageway in such a way that all vehicles are continuously detected.
  • the transmit and Receiving devices are arranged at a mutual distance across the width of the roadway, which is less than a predetermined minimum vehicle width. This prevents a vehicle from not being detected because it is in the same localization area or in the same dialog area with another vehicle.
  • the adaptation of the system according to the invention thus also means that the active surfaces of the adjacent transmitting and receiving devices overlap laterally, but that the end edges of these active surfaces, for example KP2 or KP5, match or are in alignment with one another.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Traffic Control Systems (AREA)
  • Optical Communication System (AREA)

Claims (16)

  1. Système pour la transmission optique de données entre un poste (P) prévu au voisinage d'une voie de circulation (RB), et des véhicules individuels qui passent, et dans lequel respectivement au moins un dispositif d'émission (S) comportant un dispositif à source de lumière et/ou au moins un dispositif de réception (E) comportant un dispositif de réception de lumière est prévu, d'une part, dans le poste au-dessus de la voie de circulation et, d'autre part, dans le véhicule, et respectivement un dispositif optique (L), qui forme l'image de la zone de déplacement des véhicules, qui passent, dans un plan image (A3) situé en amont du dispositif d'émission de lumière ou du dispositif de réception de lumière, dans le dispositif fixe d'émission ou de réception (SE1...SE7),
    caractérisé par le fait qu'il est prévu un ou plusieurs masques (M) comportant un nombre d'ouvertures de diaphragmes (F1,F2), qui servent à définir des surfaces actives séparées (21,22), une surface active (DS) étant formée pour le dispositif d'émission tandis que deux surfaces actives séparées (DF,QF) sont formées pour le dispositif de réception,
    que les ouvertures de diaphragmes déterminent des zones séparées de rayonnement (SBD,EBD et EBQ) pour le dispositif d'émission et le dispositif de réception, auquel cas à l'intérieur des zones de rayonnement prévues à cet effet, des données sont transmises entre le poste (N) et un dispositif d'émission et de réception (SE) d'un véhicule, dans le cadre d'un trafic en dialogue ou bien au moyen d'un signal d'accusé de réception, et que les bords terminaux de l'ouverture de diaphragme du dispositif d'émission sont formés de telle sorte qu'on obtient une surface active (DS), qui comporte des arêtes vives (KP1, KP5) transversalement par rapport à la direction du déplacement, et sur la base de laquelle au moins l'extrémité de la zone de rayonnement (SBD) du dispositif d'émission est identifiée par un saut brusque du niveau de réception dans le dispositif (FSE) d'émission et de réception du véhicule et que de ce fait, ce dispositif est déclenché pour la délivrance de l'accusé de réception.
  2. Système suivant la revendication 1, caractérisé par le fait que plusieurs systèmes optiques comportant chacun un masque particulier sont prévus ou bien qu'il est prévu un système optique comportant un masque (8), auquel sont associées en commun plusieurs ouvertures de diaphragme (3,4).
  3. Système suivant la revendication 1 ou 2, caractérisé par le fait que dans un boîtier commun (12) sont prévus respectivement un dispositif émetteur (37) comportant un dispositif optique (33) et une ou plusieurs ouvertures de diaphragmes (6) dans une zone circulaire de masque d'émetteur (10), ainsi qu'un dispositif récepteur (17) comportant un dispositif optique (13) et une ou plusieurs ouvertures de diaphragme (3,4) dans une zone circulaire de masque de récepteur (9), la zone de masque de récepteur (10) et la zone de masque de récepteur (9) étant réalisées dans une paroi commune de masque (14).
  4. Système suivant la revendication 3, caractérisé par le fait que la paroi de masque (14) est réalisée d'un seul tenant avec le boîtier (12).
  5. Système suivant la revendication 2 à 4, caractérisé par le fait que le masque respectif (M; 14) est approximativement perpendiculaire à la surface de la chaussée, auquel cas une ouverture de diaphragme de forme trapézoïdale (3) est prévue pour l'obtention d'une surface active rectangulaire (F22).
  6. Système suivant l'une des revendications 1 à 4, caractérisé par le fait qu'il est prévu une ouverture de diaphragme en forme de croissant (4) servant à produire une surface active possédant un bord avant à arête vive (f21).
  7. Système suivant l'une des revendications 1 à 6, caractérisé par le fait que le dispositif optique (L;13,33) est incliné par rapport à la chaussée (RB) de telle sorte que l'axe optique (A1) recoupe la surface active (F21) ou la région de la surface active dans une section médiane.
  8. Système suivant la revendication 7, caractérisé par le fait que le plan image (A3) formé par le masque (M) est incliné par rapport à la chaussée et par rapport au dispositif optique de telle sorte que le plan (A4) de la surface active, le plan (A2) de l'objectif et le plan image (A3) se coupent suivant une droite (condition de coïncidence apparente).
  9. Système suivant l'une des revendications précédentes, caractérisé par le fait que le dispositif d'émission de lumière est formé de façon connue en soi par un panneau de diodes émissives (37), le dispositif de réception de lumière est formé par un panneau de diodes réceptrices (17) , qu'au moins les diodes émissives (37) sont disposées sur une surface concave (38) de la paroi arrière et/ou que les axes des diodes sont dirigés radialement vers le dispositif optique (33), la surface (38) de la paroi arrière étant rendue réfléchissante en arrière des diodes émissives.
  10. Système suivant la revendication 9, caractérisé par le fait que la face intérieure (39,40) du boîtier possède des caractéristiques réfléchissantes dans la zone située entre les diodes émissives (37) et le masque (34).
  11. Système suivant la revendication 9 ou 10, caractérisé par le fait qu'un dispositif (24) de dispersion de la lumière est prévu dans la zone située entre les diodes émissives ou réceptrices (37,17) et le masque (14;34)
  12. Système suivant la revendication 9 à 11, caractérisé par le fait que la zone du dispositif d'émission, qui sert à éclairer la zone distante d'une surface active (F21,F22), possède une densité de diodes émissives (37), supérieure à celle de la zone émettrice utilisée pour éclairer la zone proche de la surface active.
  13. Système suivant l'une des revendications précédentes, caractérisé par le fait qu'on utilise comme rayonnement lumineux un rayonnement infrarouge.
  14. Système suivant l'une des revendications précédentes, caractérisé par le fait qu'une surface active d'émission (DS) possédant un bord terminal en forme d'arête vive (KP5), une première surface active de réception (DF) possédant un bord de terminaison à arête vive (KP2) ainsi qu'une seconde surface de réception (QF) comportant une limitation à arête vive de tous côtés sont fixées par un dispositif à masque correspondant (14) situé dans le dispositif fixe d'émission et de réception (SE), que la surface active d'émission (DS) ainsi que la première surface active de réception (DF) sont utilisées pour un dialogue entre l'appareil (FFE) monté dans le véhicule et dans le dispositif fixe d'émission et de réception (FE), et que la seconde surface active de réception (QF) est utilisée pour la délivrance d'un signal d'accusé de réception par le véhicule au dispositif fixe d'émission et de réception.
  15. Système suivant la revendication 14, caractérisé par le fait que la seconde surface active de réception (QF) coïncide approximativement avec la zone de détection d'un dispositif détecteur (SD) monté sur le véhicule et que dans un dispositif fixe de contrôle, un contrôle est exécuté pour déterminer si, lors de la détection d'un véhicule (FZ), un signal d'accusé de réception a été reçu simultanément par le dispositif détecteur (SD).
  16. Système suivant l'une des revendications précédentes, caractérisé par le fait que des dispositifs fixes d'émission et de réception (FE) sont disposés sur la largeur de la voie de circulation (RB), à une distance réciproque qui est inférieure à une largeur minimale prédéterminée de véhicule, et que les surfaces actives, qui sont fixées par les dispositifs d'émission et de réception, se recoupent entre elles en largeur, mais possèdent des bords terminaux alignés entre eux.
EP90113494A 1989-08-21 1990-07-13 Système de transmission optique de données, de préférence pour la perception automatique des redevances routières Expired - Lifetime EP0413948B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP89115386 1989-08-21
EP89115386 1989-08-21

Publications (2)

Publication Number Publication Date
EP0413948A1 EP0413948A1 (fr) 1991-02-27
EP0413948B1 true EP0413948B1 (fr) 1995-03-22

Family

ID=8201789

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90113494A Expired - Lifetime EP0413948B1 (fr) 1989-08-21 1990-07-13 Système de transmission optique de données, de préférence pour la perception automatique des redevances routières

Country Status (5)

Country Link
EP (1) EP0413948B1 (fr)
AT (1) ATE120320T1 (fr)
DE (1) DE59008747D1 (fr)
DK (1) DK0413948T3 (fr)
ES (1) ES2069636T3 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1257419B (it) * 1992-09-03 1996-01-15 Marconi Spa Impianto e metodo di rilevamento automatico di veicoli in movimento, con interscambio di dati, in particolare con addebito automatico di pedaggi.
DE4239863A1 (en) * 1992-11-27 1993-04-29 Gerd Sauer Optical data transmitter for car traffic - has photosensitive sensor with optical focussing OS reception beam, and directional control
EP0616302B1 (fr) * 1993-02-19 1999-06-23 Mitsubishi Jukogyo Kabushiki Kaisha Système de réception électronique des droits de péage
DE4307354A1 (de) * 1993-03-09 1994-09-15 Bosch Gmbh Robert Anordnung zur optischen Datenübertragung
DE4310580A1 (de) * 1993-03-31 1994-10-06 Siemens Ag Automatisches Gebührenerfassungssystem
US5485520A (en) * 1993-10-07 1996-01-16 Amtech Corporation Automatic real-time highway toll collection from moving vehicles
GB9401924D0 (en) * 1994-02-01 1994-03-30 Jonhig Ltd System for road toll payment
FR2716990A1 (fr) * 1994-03-01 1995-09-08 Actipole Dispositif d'identification et de pointage de mobiles.
JP3275620B2 (ja) * 1994-04-13 2002-04-15 トヨタ自動車株式会社 自動課金システム
JP3365050B2 (ja) * 1994-06-16 2003-01-08 トヨタ自動車株式会社 車両用情報伝達装置
JP3243941B2 (ja) * 1994-08-05 2002-01-07 トヨタ自動車株式会社 自動料金支払装置用車載機
JP3095654B2 (ja) * 1995-02-06 2000-10-10 三菱重工業株式会社 移動体監視装置
IT1281810B1 (it) * 1995-04-13 1998-03-03 Marconi Spa Impianto e metodo di rilevamento automatico di veicoli in movimento, con interscambio di dati, in particolare con addebito automatico di
DE19515197A1 (de) * 1995-04-25 1996-10-31 Siemens Ag System zur örtlich flexiblen Telekommunikation
DE19522928C1 (de) * 1995-06-23 1996-12-19 Siemens Ag Verfahren und Einrichtung zur Verschlüsselung und Überprüfung von Informationen in Form einer Vignette
AT412695B (de) * 2001-11-20 2005-05-25 Efkon Ag Infrarot (ir-)-übertragungseinrichtung
AT414052B (de) 2002-12-19 2006-08-15 Efkon Ag Kraftfahrzeug-infrarot(ir)- kommunikationseinrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR558100A (fr) * 1922-03-03 1923-08-21 Ouvrard Villars & Perez Reunis écran pour phares d'automobiles
US4325146A (en) * 1979-12-20 1982-04-13 Lennington John W Non-synchronous object identification system
DE3718642C1 (de) * 1987-06-04 1988-10-20 Friemann & Wolf Gmbh Abgeblendeter Fahrzeugscheinwerfer fuer Grubenfahrzeuge

Also Published As

Publication number Publication date
EP0413948A1 (fr) 1991-02-27
DK0413948T3 (da) 1995-07-24
DE59008747D1 (de) 1995-04-27
ATE120320T1 (de) 1995-04-15
ES2069636T3 (es) 1995-05-16

Similar Documents

Publication Publication Date Title
EP0413948B1 (fr) Système de transmission optique de données, de préférence pour la perception automatique des redevances routières
EP1990655B1 (fr) Procédé de détermination appuyée par des preuves de la vitesse d'un véhicule
EP2048515B1 (fr) Procédé pour déterminer et documenter des infractions à un feux de signalisation
DE4317772C2 (de) Blendlichtsensor für Fahrzeuge
EP0625768B1 (fr) Système automatique de collection de droits de péage pour véhicules
DE4230515C2 (de) Strahlenbündelanordnung zur Verkehrsüberwachung
EP1446678B1 (fr) Procede et dispositif pour detecter et classifier des vehicules en deplacement
DE69634378T2 (de) Eine Spezifizierungs-Hilfsfunktion enthaltendes System zum Spezifizieren von sich bewegenden Fahrzeugen
DE19613054B4 (de) Gebührenabrechner
DE102016106513B4 (de) Verfahren zur Erfassung von geparkten Fahrzeugen
DE10214072A1 (de) System zur Überwachung von Straßenverkehr
EP2767964B1 (fr) Dispositif de mesure de véhicule
DE102015118598A1 (de) Verfahren zur erfassung von geparkten fahrzeugen und zur abrechnung von parkgebühren
EP0188694A2 (fr) Procédé et dispositif pour la registration photographique de véhicules
EP2341367B1 (fr) Procédé et agencement de détection des infractions au code de la route dans une zone de feux de signalisation
EP2483882B1 (fr) Procédé pour sanctionner immédiatement une infraction routière
DE19737415A1 (de) Fahrstreifenerfassungssystem für bewegliche Gegenstände und zugehörige Erfassungseinrichtung für bewegliche Gegenstände
EP2068291B1 (fr) Procédé et dispositif de détermination différenciée d'infractions routières dans une zone de blocage commandé par feu de circulation
EP0625767B1 (fr) Système de contrôle pour vérifier le paiement de taxes des utilisateurs de routes
DE4434131C2 (de) Anordnung und Verfahren zum Detektieren und Lokalisieren von Fahrzeugen
WO2012089206A1 (fr) Procédé pour établir un document image selon lequel un véhicule mesuré par un appareil radar peut être identifié et document image établi par ce procédé
DE4307354A1 (de) Anordnung zur optischen Datenübertragung
DE102019107279A1 (de) Verfahren und Vorrichtung zum Erkennen eines Verkehrsrechtsverstoßes durch Unterschreiten eines zulässigen Abstands zwischen einem Folgefahrzeug und einem Führungsfahrzeug
EP2605038A2 (fr) Procédé et dispositif destinés à la détection dýun objet dans un champ radar
DE102007038723A1 (de) Verfahren und Vorrichtung zur Bevorrechtigung von Sonderfahrzeugen an einem lichtsignalgesteuerten Knotenpunkt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19940301

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 120320

Country of ref document: AT

Date of ref document: 19950415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59008747

Country of ref document: DE

Date of ref document: 19950427

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2069636

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950526

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960711

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960717

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19960718

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960723

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961017

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970713

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970714

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19970714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19970731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 90113494.0

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010724

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050705

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050707

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050922

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060614

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060713

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070713