EP1446678B1 - Procede et dispositif pour detecter et classifier des vehicules en deplacement - Google Patents

Procede et dispositif pour detecter et classifier des vehicules en deplacement Download PDF

Info

Publication number
EP1446678B1
EP1446678B1 EP02754376A EP02754376A EP1446678B1 EP 1446678 B1 EP1446678 B1 EP 1446678B1 EP 02754376 A EP02754376 A EP 02754376A EP 02754376 A EP02754376 A EP 02754376A EP 1446678 B1 EP1446678 B1 EP 1446678B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
data
lane
lidar
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02754376A
Other languages
German (de)
English (en)
Other versions
EP1446678A2 (fr
Inventor
Reinhard KOY-OBERTHÜR
Lothar Brenneis
Thomas MÜNSTERER
Norbert Stein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitronic Dr Ing Stein Bildverarbeitungssysteme GmbH
Original Assignee
Vitronic Dr Ing Stein Bildverarbeitungssysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitronic Dr Ing Stein Bildverarbeitungssysteme GmbH filed Critical Vitronic Dr Ing Stein Bildverarbeitungssysteme GmbH
Publication of EP1446678A2 publication Critical patent/EP1446678A2/fr
Application granted granted Critical
Publication of EP1446678B1 publication Critical patent/EP1446678B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles

Definitions

  • the present invention relates to a method for detecting vehicles in motion, in particular trucks on motorways, with the aid of at least one camera and / or other means for detecting the contour or spatial structure of a vehicle and, where appropriate, its speed.
  • the present invention also relates to a device for detecting vehicles in motion, in particular trucks on highways, which has at least one camera and / or other means for detecting the contour or spatial structure of the vehicle and optionally its speed.
  • a corresponding method and also a corresponding devices are known from US-A-5,717,390 known.
  • the contour of a passing under a measuring bridge vehicle is detected by means of a scanner and at the same time is directed by a spaced behind it second measuring bridge from the measuring beam of a Doppler radar system to the area below the first measuring bridge to detect the speed of just passing under the measuring bridge vehicle and assign this speed of the vehicle contour detected there.
  • both of the methods and devices described above are unable to accurately detect the vectorial velocity, ie the absolute amount of the speed and the current direction of travel of a vehicle, with the aid of the speed-measuring device.
  • these known methods and devices which use overlay measurements utilizing the Doppler effect, basically only detect the relative speed between the radar or laser system on the one hand and the vehicle on the other hand , ie only the speed component measured precisely in the direction of the radar or laser beam.
  • the angle between the measuring beam and the direction of the lane could be taken into account as a correction factor, but without this direction having to coincide with the direction actually traveled, which is not the case in particular when changing lanes.
  • Corresponding systems are used both for speed measuring points for detecting speeding and for toll monitoring.
  • toll devices often also have communication devices which communicate with corresponding communication devices which are arranged on a vehicle, and in doing so exchange all data relevant for the toll calculation. This can also be associated with automatic booking and communication to a central facility.
  • the toll stations with stop and pay stations or with verification have the disadvantage that they are usually quite large buildings, since they usually have far more cash or paying points must have as the highway in question has tracks to avoid significant congestion on the Highway to be created.
  • these toll booths have the disadvantage that they must either be additionally provided at each exit or driveway of a highway or that between two corresponding toll booths no further driveway or exit may be present. This leads to the fact that the user may have to accept long distances or detours until reaching the next highway entrance or exit, which significantly reduces the acceptance of such a system and at least partially nullifies the desired time gain. Moreover, such a system is totally impractical in cases where only a certain part, although under certain circumstances a significant part of the vehicles using a highway, is chargeable. This applies, for example, to a motorway toll limited to lorries, as currently envisaged for the Federal Republic of Germany. The lump-sum collection of a toll for each truck is sometimes rejected as very unfair and therefore politically undesirable.
  • An up-to-date toll collection system should therefore limit vehicle sticking to the absolutely unavoidable level, ie, for example, the maximum one-time toll payment per day, as far as travel can be anticipated. Otherwise, tolls may be paid for longer periods, in packages for certain routes or for any number of kilometers, and registration of the vehicle with an automatic debit system should also be possible. In conjunction with modern communication and navigation technology, such systems can completely dispense with the setting up of toll booths when opportunities are created to safely identify any toll buffers.
  • a corresponding system must therefore be secure enough to effectively prevent any manipulation attempts and any attempt to drive a certain distance without paying the due fees.
  • the toll authorities must therefore be in a position to clearly identify each vehicle that is subject to a toll as such, with the error rate as low as possible. This means that, on the one hand, it is not permissible to register vehicles which are not subject to the toll charge and, on the other hand, toll vehicles for which a toll has actually been paid should not give the false declaration that the charge has not been paid. Finally, however, all toll vehicles should actually be recorded as such.
  • the present invention has the object to provide a method and apparatus for detecting vehicles in motion, which are able to make an improved automatic distinction between toll and non-toll vehicles, so as the unnecessary detection to avoid large amounts of data.
  • this system can also be extended to cover only toll vehicles in which the proper payment of tolls is in doubt.
  • a further object of the present invention is to provide a method and a device for assigning a measured speed, even under difficult conditions, such as, for example, a lane change, better and more clearly to an additionally differently detected vehicle.
  • an independent speed and distance estimation by a LIDAR system which can be estimated from the LIDAR data path and speed of the vehicle with sufficient accuracy to clearly the independently measured structure data, ie in particular height and / or width of the vehicle, the number of axles, the type of vehicle, the license plate etc., to be able to assign the LIDAR data.
  • From these data together then, e.g. the approximate length, width and / or height and other parameters of the vehicle and whether or not the vehicle may have a trailer.
  • This information is sufficient to classify the vehicle with high accuracy, whereby it is important to distinguish with a sufficient accuracy trucks from a certain size and weight class, so that false reports of the system are largely avoided.
  • the corresponding device is characterized in that it comprises a LIDAR system, which together with an evaluation device for detecting and tracking a vehicle is arranged at a distance before reaching a measuring point or recording position of a camera, the camera and / or the other means for detecting structural data are arranged and designed so that they at least one of the dimensions height or width of the previously detected by the LIDAR and for the Enter the measuring point of the vehicle calculated in advance.
  • the at least one profile parameter (height or width) of the vehicle is detected by laser distance sensors which are oriented substantially perpendicular to the direction of travel of the vehicle, so that any perspective distortions are minimal and can be easily corrected.
  • the laser distance sensors associated with the monitoring of a lane are arranged above the lane and laterally offset therefrom, and in particular if a pair of corresponding laser distance sensors is used. These then simultaneously capture a side front and the roof of the vehicle and the comparison of the data determined by both laser sensors then allows a precise, stereoscopic determination of the cross section. In this case, to further improve the accuracy of the height and width dimensions, a method is preferred in which the data of the laser distance sensors are statistically evaluated or averaged.
  • successively several independent distance measurements are made by the laser distance sensors and the data acquired thereby are processed statistically, so that the accuracy of the height and width dimensions can be improved by averaging.
  • the system must distinguish the dimensions of a cab from the dimensions of a subsequent box or tarpaulin body or other loading section of a truck.
  • this can also be done relatively easily with the aid of corresponding statistical means, for example by forming an average value only from a group of successive measured data if the individual data do not exceed a certain, predetermined fluctuation range compared to the mean value.
  • the number of vehicle axles, the type character (the mark), the mark (eg from video data) can be determined.
  • the LIDAR is a laser or maser measuring system, which usually consists of a larger number of individual jets which span a plane in the manner of a fan, wherein the opening angle of this fan for the purposes of the present invention is preferably not substantially greater than 60 ° is.
  • each lane is assigned its own LIDAR system and a corresponding LIDAR camera is preferably arranged above and next to the lane to be monitored by it.
  • the plane spanned by the individual beams of the LIDAR is tilted both with respect to the street level and with respect to a plane perpendicular to the street level.
  • the plane spanned by the LIDAR is rotated by all three axes.
  • a line of intersection of the LIDAR plane with the plane of the road runs along a line which intersects the direction of travel at an acute angle, and for a plane parallel to the road plane, this section line accordingly moves closer to the LIDAR system.
  • Each of the n lasers spanning the LIDAR plane is capable of distance measurement over the duration of a reflected laser beam.
  • a vehicle In the described orientation of the LIDAR, a vehicle must necessarily break through the LIDAR plane and thereby generates corresponding distance data, which are only evaluated so that from it the way, the speed and the acceleration of the vehicle or "object" can be estimated. This results in particular, whether the vehicle remains on the track on which it was detected or whether it is making a lane change.
  • the LIDAR system can then determine the location and time of the structural measurement or height and width measurement from these travel and speed data, that is, it can unambiguously associate the travel and speed data with the measured data of the corresponding sensors. Furthermore, due to the LIDAR data, an appropriate time may be determined at which an identification camera is triggered, which detects substantially the front of a vehicle.
  • the optical axis of the camera is preferably inclined at an angle between 15 and 70 °, preferably at an angle between 25 and 40 ° relative to the road plane and the camera itself is located as far as possible directly above the lane on which it detects the vehicles. Conveniently, this is done using an infrared camera with an infrared flash, which does not dazzle the drivers of the vehicles and which generally has a long life.
  • the flash is preferably located in the vicinity of the camera, so that retroreflective portions, as they are widely used in license plates, clearly stand out as a brighter image area.
  • communication devices are also provided which allow communication with a corresponding communication device provided in a vehicle.
  • a corresponding communication device provided in a vehicle.
  • At least one communication device and preferably even two or more communication devices per lane are provided for each lane of a lane, although each of these communication devices has only a relatively narrow detection range.
  • transmitting and Receiving devices or in the case of the use of microwave or infrared radiation as a carrier of the communication link through diaphragms, one can produce an approximately conical detection area with elliptical cross section, wherein the longitudinal axis of the elliptical cross section in the direction of the lane and the short half axis of the elliptical cross section perpendicular to do this.
  • the detection ranges may be less than the width of a lane and the length may for example be two to three times the width, but is limited to a maximum of 20 m as a rule.
  • This communication device should preferably contain the data on the type and type and size class of the vehicle, its identity (license plate, including country code), and toll fee data, so that the detection system can dispense with the capture or storage of already recorded data, if the proper payment of tolls is determined by the communication device.
  • an embodiment is preferred in which exactly one communication device, preferably based on infrared, is used per lane, wherein the detection ranges can certainly overlap.
  • the double detection of vehicles that is possible in the event of a lane change due to the overlapping of the coverage areas can be corrected later by adjusting the data.
  • the simultaneous detection of a vehicle by two communication devices also provides the additional information about the current position of this vehicle.
  • all or most of the sensors of the system according to the invention are arranged on the cross member of a bridge spanning the lane or lanes, whereby a part of the sensors can also be arranged on the vertical pillars of such a bridge if required.
  • a highway bridge 10 the cross member 12 extends over three parallel lanes and a standstill away, the cross member 12 rests on two pillars 11.
  • the Bridge may be a normal road bridge, but will typically be a separate bridge of the type of known gantries or bridges for accommodating speed gauges and cameras.
  • the bridge 10 may also be designed walkable, here not shown safety devices on the pillars 11 ensure that climbing the bridge 10 is prevented by unauthorized persons in general.
  • the viewing direction in Figure 1 is the direction of travel and it recognizes a right lane width b and then left three lanes of the width S, where on the right and on the middle lane each still the contour of two trucks 8 are recognizable in a rear view.
  • 1 designates a license plate camera with integrated lighting, which operates preferably on the basis of infrared.
  • a number plate camera 1 is arranged approximately in the center above the right and left lanes, whereas on the left lane an overview camera 6 is provided with an LED flash illumination 5.
  • the cameras 1 as well as the overview camera 6 work preferably on the basis of infrared, which has the advantage, inter alia, that the drivers of the motor vehicles are not blinded by the flashes of light which are required anyway in poor visibility, with corresponding infrared flash units also having a very long service life.
  • the overview camera 6 with the corresponding flash 5 could also be replaced by another, the left lane detecting license plate camera 1, but here it is assumed that on the left lane for trucks driving prohibition and the bridge presented here for a system is envisaged in which only trucks are to be detected.
  • the LIDAR camera 2 is attached to the right pillar 11 and is provided for the monitoring of the right lane, while the above the right lane on the cross member 12 of Bridge 10 mounted LIDAR camera 2 'is provided for the detection of the middle lane.
  • laser distance sensors 3, 3 ' which are provided in pairs for each lane.
  • the one pair 3 of laser distance sensors each consist of a line camera and a laser beam scanned over an angle of slightly more than 90 °, one of the laser distance sensors 3 being mounted on the right pillar 11 and the other laser distance sensor 3 being mounted above the left lane, but it should detect vehicles in the right lane and is evaluated only for the detection of vehicles in the right lane.
  • This sensor pair is mounted above the left and right lanes so that each of these laser sensors 3 'detects both the roof and top of a truck and one of the sides, that is, either the right or left side of the truck.
  • the transition along the right and left edges of the roof is very easy to detect on the basis of the abruptly changing distance data and by adjusting the data detected by both line scan cameras or laser distance sensors 3 'a stereoscopic image or an exact cross section can be generated, during transit a truck through the bridge 10, if possible, a plurality of measurement series with each of the laser distance sensors 3, 3 'are taken, so that in addition to the comparison of the data of the pairs of sensors, which have each detected the same vehicle from different positions, to determine the true dimensions ( Height and width), a statistical averaging over several measurements can be made.
  • the dimensions in the longitudinal direction of the truck 8 can be detected under certain circumstances alone by the laser distance sensors 3, 3 ', since during the passage of the truck and the laterally recognizable wheels or axles of the trucks are detected.
  • the length of a truck obtained by the laser distance sensors 3, 3 'in a plurality of successive cross-sectional measurements may then be e.g. be determined on the condition that the wheels detected in these measurements must have a substantially circular shape.
  • this boundary condition can also be introduced as a control condition if, moreover, the length of the truck is determined solely from the transit time (total acquisition time of the distance sensors 3, 3 ') and the independently determined speed of the truck 8.
  • the LIDAR systems 2, 2 ' are used. These will be explained in more detail in connection with FIG.
  • DSRC units 4 which are used to communicate with appropriate built-in truck communication units.
  • each of these communication units 4 has a detection area 4 'which has the shape of an oblong ellipse, with the major axis of the ellipse approximately in the direction of travel and the minor axis perpendicular thereto.
  • Each lane is covered by two of these communication units 4, wherein the overlap with the communication units of adjacent lanes is kept as low as possible.
  • the length of the elliptical detection areas 4 ' is in any case less than 20 m and in the case shown concretely is about 8 m. This means that for the communication between a communication unit 4 with the corresponding devices in a truck about 0.35 seconds are available when the truck 8 moves at a speed of 80 km / h through the area 4 '.
  • the communication system must exchange all relevant data, that is to record the identity of the vehicle, preferably via its electronically transmitted license plate, the previously traveled or intended route and the receipt of a toll or the indication a toll payment office where a corresponding toll has been paid or will be paid.
  • the communication system may decide, if necessary also using a central registration office, whether the other recorded or still to be recorded data of the vehicle in question must be stored or if data storage is obsolete because it has been proven that the vehicle in question pays the required toll has been.
  • the detection areas 9 and 9 'of the two LIDAR systems 2 and 2' continue.
  • the LIDAR cameras 2 and 2 'span with a plurality of laser beams on a plane whose lying above the road surface area 9 or 9' in Figure 2 is shown hatched. That is, the each extending obliquely to the lanes boundary line of the hatched areas 9, 9 'defines the intersection of the plane defined by the LIDAR laser plane with the road surface.
  • the LIDAR system detects corresponding laser echoes, generally in parallel on several channels, according to the number of laser beams used. In the present case, a number of 16 individual laser beams for LIDAR 2 or 2 'has been found to be sufficient.
  • the LIDAR data is processed automatically, that is, the echoes of the various laser beams are assigned to the front or side surfaces of a truck because of their slightly or more widely divergent values.
  • This assignment of the individual laser channels to the front or side surface of a truck allows due to the continuously continued measurement, the determination of the current speed and the direction of travel of a vehicle or truck, in particular, lane changes can be detected and predicted. If, for example, such a lane change takes place just under the bridge or in the detection areas 4 'of the communication units 4, it can accordingly be predicted from the LIDAR data through which of the elliptical areas the lorry 8 in question has passed or passes, so that the data collected by the communication exchange can be unambiguously assigned to the truck 8 previously detected by means of the LIDAR.
  • the recording with the help of the number plates cameras 1 and optionally also the laser distance sensors 3, 3 'are controlled.
  • the number-plate cameras 1 are each arranged approximately centrally above the right and middle tracks and are inclined with their optical axis approximately 30 ° downwards in the direction of the road surface. They are triggered precisely at the time when the front of the vehicle is substantially completely in the field of vision of the camera 1, this time also being determined from the data of the associated LIDAR 2 or 2 '.
  • the laser distance sensors 3, 3 ' permanently scan the empty road space, they can also be selectively switched on if necessary before a truck 8 detected and tracked by the LIDAR system has reached the detection range of the laser distance sensors 3, 3' , They could be switched off again after a time interval sufficient at the detected speed of the truck and a theoretical maximum length of a truck-trailer (trailer) to pass through the bridge, these times being calculated again from the speed data acquired with the help of the LIDAR can.
  • all images and data are digitally captured and stored and optionally forwarded to a central office.
  • further (not shown) communication facilities are provided.
  • the local system mounted on a bridge 10 is sufficiently self-sufficient that it itself decides which data is to be transmitted to the control center and which does not need to be transmitted.
  • both the remote transmission of the data and the data exchange between the communication devices 4 and corresponding counterparts in the truck should be cryptographically secured and made tamper-resistant, if possible.
  • the identity of the lorry in question must first be established by other means. Although these take in principle a complete front view of a truck, but this is detected with sufficiently high resolution in order to be able to increase or evaluate in particular the surface of the license plate. There are now numerous systems for automatic reading of license plates known so that these systems need not be discussed here. Once the license plate has been detected not only visually, but also logically, the communication device (not shown) can connect to a central location to check whether there is data on the payment of tolls are stored to the respective license plate.
  • the recorded data of the vehicle cross section, the number of its axes and the determination of whether a trailer is present or not can be compared with the data stored centrally to the indicator, for example, to exclude tampering by using false number plates.
  • the data of the vehicles for which the charges have been clearly paid can be deleted immediately, unless they are to be used for statistical purposes or to issue a complete billing statement nevertheless store and process further.
  • FIG. 1 shows a surveillance camera 7 which is intended to prevent possible manipulation attempts on the bridge or on the sensors mounted thereon.
  • Figure 3 is shown schematically how the number-plate cameras 1 work by an infrared flash 13 is aligned and mounted at a small angle of 1 ° to 10 ° relative to the axis of the camera 1 and mounted so that the infra-reflective surface also for infrared light of Trucks emerge as particularly bright picture elements in the captured by the camera 1 image.
  • the overview image generated with a similar camera 6 is also needed only in cases of doubt.
  • it serves as a classification aid to a human observer, who has received corresponding data in a central office, in order to decide whether a given vehicle is a toll vehicle.
  • FIG. 4 shows the schematic sequence of the communication process, as well as of the cryptographic process (encryption / decryption, digital signature etc.). This process preferably takes place on a plug-in card 32.
  • the images digitized in FIG. 21 are digitally signed 32 before being evaluated by various image processing methods 25. Together with the DSRC data, the data obtained from the image processing is supplied to the decision process 26. If there are significant deviations between the data from communication and image processing, the corresponding vehicle is classified as a toll-bumper. The data from the communication is then digitally signed and stored as evidence along with the digitally signed images. In the other case, the data is deleted at 31.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Sorting Of Articles (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Claims (25)

  1. Procédé de détection de véhicules en mouvement, notamment de camions sur des autoroutes, au moyen d'au moins une caméra et/ou d'autres dispositifs de détection du contour ou de la structure spatiale du véhicule et éventuellement de sa vitesse, caractérisé en ce que, avant de détecter le contour et/ou la structure spatiale, le véhicule est détecté et suivi par un système LIDAR qui couvre un plan avec une pluralité de faisceaux laser, le chemin, y compris la distance et la direction de roulement actuels, et la vitesse actuelle du véhicule étant évalués à partir de données LIDAR se présentant sous la forme de temps de propagation des faisceaux laser qui sont associés à des données de contour et de structure déterminées par la suite.
  2. Procédé selon la revendication 1, caractérisé en ce qu'au moins un des paramètres de profil, largeur ou hauteur du véhicule, est détecté par des capteurs de distance à laser qui sont orientés sensiblement perpendiculairement à la direction de roulement du véhicule respectivement à une voie de circulation.
  3. Procédé selon la revendication 2, caractérisé en ce que les données des capteurs de distance à laser sont exploitées statistiquement.
  4. Procédé selon la revendication 2 ou 3, caractérisé en ce que la section de roulement existante du véhicule est détectée par des capteurs de distance à laser qui sont formés de caméras à balayage par lignes.
  5. Procédé selon la revendication 1 ou 2, caractérisé en ce que des instants ou intervalles de détection de données du véhicule sont déterminés à partir des données de chemin et/ou de vitesse LIDAR pour les autres dispositifs.
  6. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la marque du véhicule et/ou une identification du type sont détectées par un enregistrement frontal par caméra, l'axe optique de la caméra étant incliné d'un angle compris entre 15 et 70°, avantageusement entre 25 et 40°, par rapport à la surface de la route.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'une liaison de communication est établie avec le véhicule, avantageusement à base d'ondes infrarouges ou de micro-ondes.
  8. Procédé selon la revendication 7, caractérisé en ce que la portée et l'orientation de la liaison de communication sont limitées au maximum à la largeur d'une voie de circulation et au maximum à 20 m dans la direction longitudinale de la voie.
  9. Procédé selon la revendication 7 ou 8, caractérisé en ce que l'on utilise pour une voie de circulation plusieurs dispositifs de communication, et en ce que l'on utilise pour plusieurs voies de circulation un nombre de dispositifs de communication qui correspond au moins au nombre de voies de circulation et qui est avantageusement égal au moins à son double.
  10. Procédé selon l'une des revendications 2 à 9, caractérisé en ce que les enregistrements par caméra et capteur tout comme les enregistrements LIDAR sont effectués à partir d'une position élevée à une hauteur d'au moins 1,5 m et au moins partiellement depuis un pont enjambant la voie de circulation.
  11. Procédé selon l'une des revendications 2 à 10, caractérisé en ce que le système LIDAR et les capteurs de distance à laser sont disposés en étant décalés latéralement de la voie de circulation sur laquelle ils détectent des véhicules.
  12. Procédé selon l'une des revendications 2 à 11, caractérisé en ce que le nombre d'essieux d'un véhicule est déterminé à partir des données des capteurs de distance à laser.
  13. Dispositif de détection de véhicules en mouvement, notamment de camions sur des autoroutes, lequel dispositif comporte au moins une caméra d'enregistrement d'une image vidéo du véhicule et d'autres dispositifs de détection du contour et/ou de la structure spatiale du véhicule et éventuellement de sa vitesse, caractérisé en ce que le dispositif comporte un système LIDAR qui est conçu de façon à détecter un véhicule se trouvant à distance devant la position d'enregistrement de la caméra et/ou des autres dispositifs et comporte une unité informatique qui est reliée au système LIDAR et qui évalue, à partir des données LIDAR se présentant sous la forme de temps de propagation des faisceaux laser, le chemin, c'est-à-dire la distance et la direction de roulement actuels, et la vitesse actuelle du véhicule, corrige éventuellement ces données et, en se fondant sur ces données, effectue une association avec des données de l'autre dispositif et/ou de l'image vidéo détectée.
  14. Dispositif selon la revendication 13, caractérisé en ce que le système LIDAR est conçu pour détecter et suivre un véhicule à distance avant qu'il n'atteigne un emplacement de mesure respectivement un position d'enregistrement de la caméra ou des autres dispositifs.
  15. Dispositif selon l'une des revendications 13 et 14, caractérisé en ce que les autres dispositifs détectent au moins une des dimensions, hauteur ou largeur, et avantageusement tout le contour dans la vue latérale du véhicule détecté auparavant par le système LIDAR et calculé à l'avance pour atteindre l'emplacement de mesure.
  16. Dispositif selon l'une des revendications 13 à 15, caractérisé en ce que les autres dispositifs comportent des capteurs de distance à laser qui sont disposés avantageusement par paires à coté et au-dessus d'une voie de circulation à surveiller.
  17. Dispositif selon la revendication 16, caractérisé en ce que le plan de mesure des capteurs de distance à laser s'étend sensiblement perpendiculairement à la direction de roulement.
  18. Dispositif selon l'une des revendications 13 à 17, caractérisé en ce qu'il est prévu une caméra destinée à détecter le côté avant et/ou la marque du véhicule.
  19. Dispositif selon la revendication 18, caractérisé en ce que la caméra est montée au-dessus de la voie de circulation à surveiller et est avantageusement inclinée de sorte que les axes optiques sont inclinés de 15 à 70°, avantageusement de 25 à 40°, par rapport au plan de la voie de circulation.
  20. Dispositif selon la revendication 16 ou l'une des revendications dépendant de la revendication 16, caractérisé en ce qu'il est prévu au moins un dispositif de communication par voie de circulation, lequel est apte à communiquer avec un dispositif correspondant dans le véhicule.
  21. Dispositif selon la revendication 20, caractérisé en ce que la portée du dispositif de communication est limitée à un secteur sensiblement conique de section elliptique dont la largeur est inférieure à la largeur d'une voie de circulation et dont la longueur est à peu près égale au double de la largeur de la voie de circulation et en tout cas inférieure à 20 m.
  22. Dispositif selon l'une des revendications 13 à 21, caractérisé en ce qu'il comporte une caméra supplémentaire pour enregistrer une vue d'ensemble d'une ou plusieurs voies de circulation.
  23. Dispositif selon la revendication 16 ou l'une des revendications dépendant de la revendication 16, caractérisé en ce que les capteurs de distance à laser, le système LIDAR et également les dispositifs de communication sont disposés sur la pile verticale ou la traverse d'un pont enjambant la voie de circulation, respectivement les voies de circulation.
  24. Dispositif selon la revendication 23, caractérisé en ce que les capteurs de distance à laser surveillant une voie de circulation sont décalés de la voie à surveiller à peu près de la moitié de la largeur de celle-ci.
  25. Dispositif selon la revendication 16 ou l'une des revendications dépendant de la revendication 16, caractérisé en ce qu'il comporte au moins une unité informatique qui exploite les données du système LIDAR et/ou des capteurs de distance à laser et/ou de la caméra et les met en relation les uns avec les autres.
EP02754376A 2001-09-29 2002-07-17 Procede et dispositif pour detecter et classifier des vehicules en deplacement Expired - Lifetime EP1446678B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10148289 2001-09-29
DE10148289A DE10148289A1 (de) 2001-09-29 2001-09-29 Verfahren und Vorrichtung zum Erfassen und Klassifizieren von Fahrzeugen in Bewegung
PCT/DE2002/002621 WO2003036319A2 (fr) 2001-09-29 2002-07-17 Procede et dispositif pour detecter et classifier des vehicules en deplacement

Publications (2)

Publication Number Publication Date
EP1446678A2 EP1446678A2 (fr) 2004-08-18
EP1446678B1 true EP1446678B1 (fr) 2007-09-05

Family

ID=7700900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754376A Expired - Lifetime EP1446678B1 (fr) 2001-09-29 2002-07-17 Procede et dispositif pour detecter et classifier des vehicules en deplacement

Country Status (5)

Country Link
EP (1) EP1446678B1 (fr)
AT (1) ATE372523T1 (fr)
AU (2) AU2002320979A1 (fr)
DE (2) DE10148289A1 (fr)
WO (2) WO2003036319A2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008003979U1 (de) 2008-03-20 2008-06-26 Fraas, Alfred, Dipl.-Ing. Messsystem für die Verkehrsstromanalyse
DE102008035424A1 (de) * 2008-07-30 2010-02-11 Siemens Ag Österreich Kamerasystem zur Aufnahme bewegter Objekte
CN102682489A (zh) * 2012-05-25 2012-09-19 梁嘉麟 利用高速公路车辆超速摄像监控系统兼顾自动计费的方法
CN102693561A (zh) * 2012-05-25 2012-09-26 王骊 让高速公路车辆超速摄像监控系统兼顾自动收费的方法
CN102708595A (zh) * 2012-05-25 2012-10-03 中国计量学院 高速公路车辆超速摄像监控系统同时执行公路自动收费的方法
US8493238B2 (en) 2009-10-01 2013-07-23 Kapsch Trafficcom Ag Device and method for detecting wheel axles
US8497783B2 (en) 2009-10-01 2013-07-30 Kapsch Trafficcom Ag Device and method for determining the direction, speed and/or distance of vehicles
US9269197B2 (en) 2009-11-23 2016-02-23 Kapsch Trafficcom Ag Method and device for generating toll information in a road-toll system
EP3136635A1 (fr) 2015-08-25 2017-03-01 Toll Collect GmbH Procede et systeme destines a la detection imagee d'un vehicule automobile
EP3136636A1 (fr) * 2015-08-25 2017-03-01 Toll Collect GmbH Procede et systeme destines a la detection imagee d'un vehicule automobile

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337619A1 (de) * 2003-08-16 2005-03-24 Daimlerchrysler Ag Einrichtung zur Bestimmung der Masse eines Verkehrsteilnehmers
DE10343331A1 (de) 2003-09-12 2005-04-07 Valeo Schalter Und Sensoren Gmbh Verfahren und Computerprogramm zum Erfassen der Kontur eines Hindernisses in der Umgebung eines Fahrzeugs
DE102012003776B3 (de) * 2012-02-25 2013-07-25 Volkswagen Ag Verfahren zum Identifizieren eines Fahrzeugs bei einer Fahrzeug-zu-Fahrzeug-Kommunikation
DE102012113009A1 (de) 2012-12-21 2014-06-26 Jenoptik Robot Gmbh Verfahren zum automatischen Klassifizieren von sich bewegenden Fahrzeugen
EP2955543A1 (fr) 2014-06-11 2015-12-16 VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH Dispositif de contrôle, agencement de contrôle et procédé de test d'un indicateur de vitesse et de distance optique
PL2960883T3 (pl) 2014-06-23 2018-02-28 Vitronic Dr.-Ing. Stein Bildverarbeitungssysteme Gmbh Określanie co najmniej jednej cechy pojazdu
DE102016221608A1 (de) * 2016-11-04 2018-05-09 Volkswagen Aktiengesellschaft Bestimmen der aktuellen Höhe eines Fahrzeugs
EP3621052A1 (fr) 2018-09-05 2020-03-11 VITRONIC Dr.-Ing. Stein Bildverarbeitungssysteme GmbH Procédé d'analyse du comportement routier de véhicules à moteur, dont de véhicules autonomes
CN113706878B (zh) * 2020-05-20 2023-02-28 宏碁智通股份有限公司 车牌拍摄系统与车牌拍摄方法
EP4224454A1 (fr) * 2022-02-04 2023-08-09 MOVYON S.p.A. Appareil et procédé de détection du transit d'un véhicule
CN114624726B (zh) * 2022-03-17 2023-05-16 南通探维光电科技有限公司 轮轴识别系统和轮轴识别方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3804750C1 (en) * 1988-02-16 1989-04-06 Gunther Dipl.-Phys. Dr. 8012 Ottobrunn De Sepp Remote detection of maximum speed excesses and of traffic flow in the road traffic
ATE203844T1 (de) * 1992-03-20 2001-08-15 Commw Scient Ind Res Org Gegenstands-überwachungsystem
US5321490A (en) * 1992-11-23 1994-06-14 Schwartz Electro-Optics, Inc. Active near-field object sensor and method employing object classification techniques
US5529138A (en) * 1993-01-22 1996-06-25 Shaw; David C. H. Vehicle collision avoidance system
SE502679C2 (sv) * 1993-05-28 1995-12-04 Saab Scania Combitech Ab Förfarande och anordning för registrering av ett fordons förflyttning på ett underlag
JP3186401B2 (ja) * 1994-02-10 2001-07-11 三菱電機株式会社 車両用距離データ処理装置
DE4411994A1 (de) * 1994-04-11 1995-11-02 Dornier Gmbh Verfahren und Vorrichtung zur Detektion, Klassifizierung und Verfolgung von Fahrzeugen, die am Straßenverkehr teilnehmen
JP3195177B2 (ja) * 1994-11-18 2001-08-06 株式会社豊田中央研究所 移動体特定装置
US5717390A (en) * 1995-03-20 1998-02-10 Hasselbring; Richard E. Doppler-radar based automatic vehicle-classification system
ATE269569T1 (de) * 1997-02-19 2004-07-15 Atx Europe Gmbh Vorrichtung zur erfassung bewegter objekte

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008003979U1 (de) 2008-03-20 2008-06-26 Fraas, Alfred, Dipl.-Ing. Messsystem für die Verkehrsstromanalyse
DE102009013841A1 (de) 2008-03-20 2009-09-24 Fraas, Alfred Messsystem für die Verkehrsstromanalyse
DE102008035424A1 (de) * 2008-07-30 2010-02-11 Siemens Ag Österreich Kamerasystem zur Aufnahme bewegter Objekte
US8493238B2 (en) 2009-10-01 2013-07-23 Kapsch Trafficcom Ag Device and method for detecting wheel axles
US8497783B2 (en) 2009-10-01 2013-07-30 Kapsch Trafficcom Ag Device and method for determining the direction, speed and/or distance of vehicles
US9269197B2 (en) 2009-11-23 2016-02-23 Kapsch Trafficcom Ag Method and device for generating toll information in a road-toll system
CN102682489A (zh) * 2012-05-25 2012-09-19 梁嘉麟 利用高速公路车辆超速摄像监控系统兼顾自动计费的方法
CN102693561A (zh) * 2012-05-25 2012-09-26 王骊 让高速公路车辆超速摄像监控系统兼顾自动收费的方法
CN102708595A (zh) * 2012-05-25 2012-10-03 中国计量学院 高速公路车辆超速摄像监控系统同时执行公路自动收费的方法
EP3136635A1 (fr) 2015-08-25 2017-03-01 Toll Collect GmbH Procede et systeme destines a la detection imagee d'un vehicule automobile
EP3136636A1 (fr) * 2015-08-25 2017-03-01 Toll Collect GmbH Procede et systeme destines a la detection imagee d'un vehicule automobile

Also Published As

Publication number Publication date
WO2003036320A3 (fr) 2003-07-24
DE10148289A1 (de) 2003-04-24
WO2003036319A3 (fr) 2003-07-31
AU2002320990A1 (en) 2003-05-06
ATE372523T1 (de) 2007-09-15
WO2003036320A2 (fr) 2003-05-01
WO2003036319A2 (fr) 2003-05-01
DE50210861D1 (de) 2007-10-18
EP1446678A2 (fr) 2004-08-18
AU2002320979A1 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
EP1446678B1 (fr) Procede et dispositif pour detecter et classifier des vehicules en deplacement
EP2312536B1 (fr) Appareil de véhicule pour système de péage de routes
EP2048515B1 (fr) Procédé pour déterminer et documenter des infractions à un feux de signalisation
EP1557692B1 (fr) Procédé de détection des emplacements dangereux et/ou des chantiers de construction marqués à proximité des routes
DE60025130T2 (de) System zum Verhindern von Zusammenstössen zwischen Fahrzeugen und Fussgängern
DE69213938T2 (de) Elektrooptisches überwachungssystem
DE102014208673A1 (de) Verfahren und Verkehrsüberwachungseinrichtung zum Feststellen einer Falschfahrt eines Kraftfahrzeugs
EP2391995A1 (fr) Procédé et dispositif permettant de détecter de manière probante un dépassement d'une vitesse maximale autorisée sur un tronçon d'une voie de circulation
DE102006028625A1 (de) Verfahren zum Vermessen von Fahrzeugen
EP0413948B1 (fr) Système de transmission optique de données, de préférence pour la perception automatique des redevances routières
EP2341367B1 (fr) Procédé et agencement de détection des infractions au code de la route dans une zone de feux de signalisation
DE19953010B4 (de) Vorrichtung zur Durchfahrtkontrolle bei Parkhäusern
EP2176837B2 (fr) Dispositif de transmission et procédé pour la transmission d'une position actuelle d'un véhicule à une centrale d'exploitation
DE60202328T2 (de) System zur Überwachung und Steuerung der Durchschnittsgeschwindigkeit von sich bewegenden Fahrzeugen und zur Untersuchung des Verkehrs auf Strassen und Autobahnen
DE10140802A1 (de) Führung von Kraftfahrzeugen
EP1094298B1 (fr) Méthode et dispositif pour conduire avec un support de navigation
DE4310579A1 (de) Kontrollsystem zur Überprüfung der Gebührenentrichtung von Straßenbenutzern
WO2020187581A1 (fr) Procédé et dispositif pour détecter une infraction au droit de la circulation par non-respect de la distance autorisée entre un véhicule suiveur et un véhicule de tête
CH695585A5 (de) Verfahren und Vorrichtung zur automatischen Mauterhebung.
DE4434131C2 (de) Anordnung und Verfahren zum Detektieren und Lokalisieren von Fahrzeugen
WO2003096300A1 (fr) Procede et dispositif de classification automatique de vehicules equipes de roues
EP1099960B1 (fr) Méthode de mesure de disposition et documentation de la distance entre deux véhicules
DE102005032972B4 (de) Verfahren zur Überwachung der Einhaltung einer auf einem Streckenabschnitt vorgegebenen Höchstgeschwindigkeit
EP1361554B1 (fr) Appareil d'identification de véhicules
DE102022102780A1 (de) Verfahren und System zur Erkennung von unerlaubten Fahrzeug-Überholvorgängen in einer Überholverbotszone eines Fahrwegs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040422

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040812

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRENNEIS, LOTHAR

Inventor name: KOY-OBERTHUER, REINHARD

Inventor name: MUENSTERER, THOMAS

Inventor name: STEIN, NORBERT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 17/58 20060101AFI20070216BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070921

REF Corresponds to:

Ref document number: 50210861

Country of ref document: DE

Date of ref document: 20071018

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071216

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

26N No opposition filed

Effective date: 20080606

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210861

Country of ref document: DE

Representative=s name: NEUMANN MUELLER OBERWALLENEY & PARTNER PATENTA, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140721

Year of fee payment: 13

Ref country code: FR

Payment date: 20140724

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150722

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150722

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150717

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210861

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 372523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160717