EP0407960B1 - Antistatisches Kern-Mantel-Filament - Google Patents

Antistatisches Kern-Mantel-Filament Download PDF

Info

Publication number
EP0407960B1
EP0407960B1 EP90113145A EP90113145A EP0407960B1 EP 0407960 B1 EP0407960 B1 EP 0407960B1 EP 90113145 A EP90113145 A EP 90113145A EP 90113145 A EP90113145 A EP 90113145A EP 0407960 B1 EP0407960 B1 EP 0407960B1
Authority
EP
European Patent Office
Prior art keywords
core
sheath
polymer
bicomponent filament
filaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90113145A
Other languages
English (en)
French (fr)
Other versions
EP0407960A2 (de
EP0407960A3 (en
Inventor
Werner Bruckner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0407960A2 publication Critical patent/EP0407960A2/de
Publication of EP0407960A3 publication Critical patent/EP0407960A3/de
Application granted granted Critical
Publication of EP0407960B1 publication Critical patent/EP0407960B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]

Definitions

  • the present invention relates to antistatic, synthetic two-component filaments of the core-shell type, in which both the core and the shell have an increased electrical conductivity.
  • Core-sheath filaments with an electrically conductive core are already known from DEC-23 37 103.
  • the conductive core of these filaments contains finely divided, electrically conductive carbon black in amounts of 15 to 50%.
  • the sheath of these filaments is free from dispersed carbon black and other additives that increase conductivity and is therefore electrically non-conductive.
  • sufficient electrical conductivity only arises when a relatively high electrical voltage is applied to them. Therefore, the antistatic effect of these known filaments does not meet higher requirements, such as those e.g. when used in clean room clothing.
  • Filaments that contain carbon black dispersed over their entire cross-section are not only unsightly, but because of their low strength they are difficult to process further and also show poor wearing properties.
  • GB-A-2,077,182 discloses core-sheath filaments.
  • the addition of metal salts of long-chain aliphatic radicals acting sulfonic or carboxylic acids to the coat is not known from this document.
  • the antistatic, synthetic two-component filaments according to the invention have a considerably improved property profile compared to the known antistatic filaments of the core-sheath type.
  • the antistatic, synthetic two-component filaments according to the invention are those of the core-shell type, with a core of increased electrical conductivity; However, they are distinguished from the known ones in that their sheath also has an increased electrical conductivity.
  • the core and sheath of the filaments according to the invention contain different conductivity additives. While the core consists of a synthetic polymer in which solid, electrically conductive particles are dispersed, the sheath consists of a thread-forming polymer, which contains an addition of known antistatic agents based on sulfonate or carboxylate groups, organic compounds with low diffusivity in the Contains polymer; these are metal salts of a long aliphatic radical having sulfonic or carboxylic acid.
  • the solid, electrically conductive particles of the core material consist of conductive carbon modifications or of semiconductor materials known per se.
  • Conductive carbon black or graphite can be considered as conductive carbon modifications.
  • furnace black, oil furnace black or gas black, acetylene black, in particular their special, electrically highly conductive types can be used as conductive carbon black.
  • high-conductivity carbon blacks such as e.g. the commercially available high conductivity carbon black (R) Printex XE2 from Degussa, Frankfurt (M).
  • Semiconductor materials which are suitable in fine distribution to impart the desired conductivity to the core material of the filaments according to the invention are, for example, n- or p-doped metal oxides.
  • Electrically conductive materials based on metal oxides consist of mixed oxides in which an oxide component of a metal which is present in a smaller or smaller amount with a different valence or with a different ion radius is built into the crystal lattice of the main component.
  • Examples of such mixed oxides are nickel oxide, cobalt oxide, iron oxide or manganese oxide, doped with lithium oxide; Zinc oxide doped with aluminum oxide; Titanium oxide doped with tantalum oxide; Bismuth oxide doped with barium oxide; Iron oxide (Fe2O3) doped with titanium oxide; Titanium barium oxide (BaTiO3) doped with lanthanum or tantalum oxide; Chromium-lanthanum oxide (LaCrO3) or manganese-lanthanum oxide (LaHnO3) doped with strontium oxide or chromium oxide doped with magnesium oxide.
  • the above list is by no means exhaustive. Numerous other known mixed oxides are suitable, but also other known compounds with electrical semiconductor properties, e.g. those based on metal sulfides.
  • a preferred solid semiconductor material that can impart the desired electrical conductivity to the core material of the filaments according to the invention in finely divided form is e.g. antimony or iodine-doped tin oxide.
  • the electrically conductive particles dispersed in the core of the electrically conductive filaments according to the invention have an average particle size, which is expediently below 5 »m for" textile "filament titers.
  • the conductive particles preferably have an average particle size below 1 »m, in particular below 0.3» m.
  • the amount of conductive particles contained in the core polymer depends on the requirements placed on the conductivity of the filament and on the nature of the conductivity additive.
  • Conductive carbon modifications are dispersed in a fine distribution in the core of the filaments according to the invention in an amount of 5-60% by weight, preferably 5 to 30% by weight, in particular 8-15% by weight.
  • Semiconductor materials e.g. the above-mentioned, based on doped metal oxides, are contained in the core in an amount of 60-80% by weight, preferably 65-75% by weight.
  • the antistatic contained in the sheath of the filaments according to the invention has sulfonate or carboxylate groups, ie salts of sulfonic or carboxylic acids.
  • the nature of the salt-forming metal is of minor importance in principle. However, preference is given to sulfonates or carboxylates which have a mono- or divalent metal, preferably an alkali metal or an alkaline earth metal. Of the two salt-forming groups mentioned, the sulfonic acid group and thus the sulfonates are particularly preferred.
  • the organic compounds containing the sulfonate or carboxylate groups should diffuse as little as possible in the sheath polymer of the filaments according to the invention.
  • One way of keeping the diffusion of these antistatic additives low is to use compounds which have a long-chain polyether or alkyl radical which has 8 to 30 C atoms in its chain.
  • compositions which contain an alkyl chain having 8 to 30, preferably 12 to 18, carbon atoms are particularly preferred.
  • Particularly preferred as antistatic agents for the shell polymer of the filaments according to the invention are alkanesulfonates with the chain lengths mentioned above, in particular their sodium or potassium salts.
  • the polymers used for the core and the sheath of the two-component filaments according to the invention can be the same or different. With regard to the functions of the core and the sheath, it has proven to be advantageous to use different materials that can be optimally adapted to the desired function.
  • the sheath is expediently made of a polymer which conveys the desired textile properties, in particular strength and further processability, to the two-component filament according to the invention, while the core must guarantee the permanent electrical conductivity of the material, ie that it maintains its continuity in all further processing steps of the filament must maintain and have an optimal carrying capacity for the dispersed solid semiconductor material. It is not essential for the core that the polymer can be spun into threads on its own and therefore no thread-forming polymer has to be used for this. On the other hand, the use of thread-forming polymers for the core material is generally advisable.
  • a polymer for the core of the two-component filaments according to the invention which has a lower melting point than the polymer of the sheath.
  • the melting point difference should be at least 20 ° C, preferably at least 40 ° C.
  • the polymer of the core consists of polyethylene or polyamide 6 or of a copolyamide or a copolyester, the co-components of which are selected in a manner known per se so that the desired melting point difference is obtained.
  • suitable polymers for the core of the filaments according to the invention are block copolymers with hard and soft segments, e.g. Block polyether esters or other polyalkylenes such as e.g. rel. low molecular weight polypropylene.
  • High-molecular polymers in particular polyesters or polyamides, are particularly suitable as the material for the sheath of the two-component filaments according to the invention, which preferably determines the textile properties of the filament material.
  • Particularly advantageous properties have two-component filaments according to the invention, the sheath of which consists of polyesters, preferably of polyethylene terephthalate.
  • the volume fraction of the core in the total filament according to the invention is 2 to 50, preferably 5 to 20%.
  • the sheath of the antistatic filaments according to the invention can also contain other additives customary in synthetic fibers, such as e.g. Matting agents or pigments, contained in the usual amounts.
  • the sheath of the filaments according to the invention contains a matting agent which prevents or reduces the shining through of the core, which may be colored due to its added conductivity.
  • the amount of matting agent is chosen so that the desired effect is achieved.
  • a preferred matting agent is titanium dioxide, which can usually be present in the filament sheath in proportions of 0.5 to 3% by weight.
  • the electrically conductive two-component filaments according to the invention are produced by first producing a core material by homogeneously mixing in a finely divided form or preparation, e.g. a powder or a user-friendly powder preparation in granular or pearl form, one of the above-mentioned electrically conductive materials made of conductive carbon or of semiconductor materials in a first polymer material that a jacket material is produced by homogeneously mixing in one of the above-mentioned antistatic agents based on a metal salt of a long-chain aliphatic residue having carbon or sulfonic acid and optionally other conventional additives in a second polymer material, wherein the first and second polymer material can also be identical in that the prepared core and sheath materials are spun out of a known spinning arrangement to core-sheath filaments, the volume shares of core and cladding material spun out in the time unit are in a ratio of 2:98 to 1: 1.
  • a core material by homogeneously mixing in a finely divided form or preparation
  • filaments with different degrees of orientation and thus different mechanical properties e.g. Tear resistance, extensibility, initial modulus, preserved.
  • the filaments, as they are spun already have a high degree of orientation and therefore good mechanical and textile technology quality.
  • This stretching takes place in the range from 5% above the natural stretching ratio to 95% of the maximum stretching ratio, preferably in a ratio of 1: 3 to 1: 5, in particular from 1: 3 to 1: 4.
  • the filaments can, if desired, also be subjected to a conventional fixing treatment, a shrinkage of 0 to 8%, preferably 0 to 4%, being generally permitted during the fixing or immediately thereafter.
  • the drawing and fixing temperatures are adapted to the processed fiber material in a known manner.
  • the stretching temperature is usually in the range from 40 to 200 ° C., preferably from 40 to 160 ° C., while the fixing treatment is carried out in the temperature range from 100 to 240 ° C.
  • the filaments thus produced can then be further processed into textile products in any known manner.
  • the filaments can be combined to form continuous yarns and, if necessary, textured in the usual way, for example by blast texturing, by a false twist process or by further stretch texturing, or the spun filaments can be subjected to compression crimping before or after texturing, cut into staple fibers and secondary spun.
  • Preference is given to further processing the electrically conductive filaments according to the invention into continuous yarns, which are then converted into the desired textile products in a manner known per se.
  • the textile products produced from the electrically conductive two-component filaments according to the invention such as continuous yarn in textured or non-textured form, staple fiber yarn, but also intermediate forms such as cables or filament tapes, and those made from the filamentary materials sheet-like textile products are the subject of this invention.
  • the electrically conductive filaments according to the invention surprisingly have good electrical conductivity even at low voltages, which means that only significantly lower electrical charges can result than with conventional filaments with an electrically conductive core.
  • the electrical conductivity of the filaments according to the invention has a significantly better wash resistance than known filaments which are modified in a conventional manner with antistatic agents.
  • the particularly advantageous conductivity behavior of the filaments according to the invention is supplemented by excellent textile technology properties.
  • a core-sheath thread was spun from these two components using a bicomponent melt spinning unit at 265 ° C. from a 32-hole nozzle and spooled at 700 m / min.
  • the volume fraction of the core was 10%.
  • a core-sheath thread was produced from these two components as described in Example 1.
  • Example 1 The antistatic jacket material from Example 1 was spun on the same bicomponent system, but no core material was added, so that a One-component thread was obtained, which was drawn as in Examples 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Multicomponent Fibers (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

  • Die vorliegende Erfindung betrifft antistatische, synthetische Zweikomponentenfilamente vom Kern-Mantel-Typ, bei denen sowohl der Kern als auch der Mantel eine erhöhte elektrische Leitfähigkeit aufweisen.
  • Kern-Mantel-Filamente mit elektrisch leitfähigem Kern sind bereits aus der DEC-23 37 103 bekannt. Der leitfähige Kern dieser Filamente enthält feinverteilten, elektrisch leitenden Ruß in Mengen von 15 bis 50 %. Der Mantel dieser Filamente ist frei von dispergiertem Ruß und anderen, die Leitfähigkeit erhöhenden Zusätzen und daher elektrisch nichtleitend. Bei diesen bekannten Filamenten stellt sich eine ausreichende elektrische Leitfähigkeit erst dann ein, wenn an ihnen eine relativ hohe elektrische Spannung anliegt. Deshalb genügt die antistatische Wirkung dieser bekannten Filamente nicht höheren Anforderungen, wie sie z.B. beim Einsatz in Reinraumkleidung gestellt werden.
  • Filamente, die über ihren gesamten Querschnitt dispergierten Ruß enthalten, sind nicht nur unansehnlich, sondern sie lassen sich aufgrund ihrer geringen Festigkeit nur schwierig textil weiterverarbeiten und zeigen auch mangelhafte Trageeigenschaften.
  • Aus der US-A-4,207,376 sind Filamente bekannt, deren Mantel ein Antistatikum enthält und daher eine gute Leitfähigkeit aufweist. Diese Filamente haben obligatorisch einen dreischichtigen Aufbau.
  • Aus der GB-A-2,077,182 sind Kern-Mantel-Filamente bekannt. Der Zusatz von Metallsalzen von langkettigen aliphatischen Resten aufwirkenden Sulfon- oder Carbonsäuren zum Mantel ist aus dieser Schrift nicht bekannt.
  • Aus der DE-A-19 08 173 sind elektrisch leitfähige Polyester-Filamente bekannt, die einen Zusatz von Paraffinsulfonaten als Antistatikum aufweisen. Dieser Zusatz und damit der elektrostatische Effekt erweist sich jedoch als nicht genügend waschbeständig um z.B. zur Herstellung von Reinraumkleidung eingesetzt werden zu können. Ähnliche Erfahrungen gibt es mit nahezu allen antistatischen Zusätzen, so daß weiterhin der Zusatz von Ruß oder anderen leitfähigen Partikeln zu dem faserbildenden Polymer die beste antistatische Wirkung ergibt.
    Es bestand daher nach wie vor ein dringendes Bedürfnis nach synthetischen Filamenten, die gute, waschbeständige elektrische Leitfähigkeit aufweisen und dabei gleichzeitig gute textile Verarbeitungs- und Trageeigenschaften haben.
  • Die erfindungsgemäßen antistatischen, synthetischen Zweikomponenten-Filamente weisen gegenüber den bekannten antistatischen Filamenten vom Kern-Mantel-Typ ein erheblich verbessertes Eigenschaftsprofil auf. Die erfindungsgemäßen antistatischen, synthetischen Zweikomponenten-Filamente sind solche vom Kern-Mantel-Typ, mit einem Kern erhöhter elektrischer Leitfähigkeit; sie zeichnen sich gegenüber den bekannten jedoch dadurch aus, daß auch ihr Mantel eine erhöhte elektrische Leitfähigkeit hat.
  • Kern und Mantel der erfindungsgemäßen Filamente enthalten unterschiedliche Leitfähigkeitszusätze. Während der Kern aus einem synthetischen Polymer besteht, in dem feste, elektrisch leitfähige Partikel dispergiert sind, besteht der Mantel aus einem fadenbildenden Polymer, das einen Zusatz an sich bekannter Antistatika auf der Basis Sulfonat- oder Carboxylatgruppen aufweisender, organischer Verbindungen mit geringem Diffusionsvermögen in dem Polymer enthält; dabei handelt es sich um Metallsalze einer einen langen aliphatischen Rest aufweisen Sulfon- oder Carbonsäure.
  • Die festen, elektrisch leitfähigen Partikel des Kernmaterials bestehen aus leitfähigen Kohlenstoffmodifikationen oder aus an sich bekannten Halbleitermaterialien.
  • Als leitfähige Kohlenstoffmodifikationen kommen leitfähiger Ruß oder Graphit in Betracht. Als leitfähiger Ruß können beispielsweise Ofenruß, Ölofenruß oder Gasruß, Acetylenruß, insbesondere deren spezielle, elektrisch hochleitfähige Typen, eingesetzt werden.
  • Besonders bevorzugt sind selbstverständlich spezielle Hochleitfähigkeitsruße wie z.B. der handelsübliche Hochleitfähigkeitsruß (R) Printex XE2 der Firma Degussa, Frankfurt (M).
  • Halbleitermaterialien, die in feiner Verteilung geeignet sind, dem Kernmaterial der erfindungsgemäßen Filamente die gewünschte Leitfähigkeit zu vermitteln, sind beispielsweise n- oder p-leitend dotierte Metalloxide.
  • Elektrisch leitende Materialien auf Basis von Metalloxiden bestehen aus Mischoxiden, bei denen in das Kristallgitter der Hauptkomponente eine in kleiner oder geringerer Menge vorhandene Oxidkomponente eines Metalls mit einer vom Metall des Hauptgitters abweichenden Valenz oder mit unterschiedlichem Ionenradius eingebaut ist. Beispiele für solche Mischoxide sind Nickeloxid, Kobaltoxid, Eisenoxid oder Manganoxid, dotiert mit Lithiumoxid; Zinkoxid dotiert mit Aluminiumoxid; Titanoxid dotiert mit Tantaloxid; Wismutoxid dotiert mit Bariumoxid; Eisenoxid (Fe₂O₃) dotiert mit Titanoxid; Titan-Bariumoxid (BaTiO₃) dotiert mit Lanthan- oder Tantaloxid; Chrom-Lanthanoxid (LaCrO₃) oder Mangan-Lanthanoxid (LaHnO₃) dotiert mit Strontiumoxid oder Chromoxid dotiert mit Magnesiumoxid. Die obige Aufzählung ist keineswegs erschöpfend. Geeignet sind zahlreiche andere bekannte Mischoxide, aber auch andere bekannte Verbindungen mit elektrischen Halbleitereigenschaften, z.B. solchen, die auf Metallsulfiden basieren. Ein bevorzugtes festes Halbleitermaterial, das in feinverteilter Form dem Kernmaterial der erfindungsgemäßen Filamente die gewünschte elektrische Leitfähigkeit vermitteln kann ist z.B. antimon- oder jod-dotiertes Zinnoxid.
  • Die im Kern der erfindungsgemäßen elektrisch leitfähigen Filamente dispergierten, elektrisch leitfähigen Partikel haben eine mittlere Teilchengröße, die zweckmäßigerweise für "textile" Filamenttiter unter 5 »m liegt. Vorzugsweise haben die leitfähigen Partikel eine mittlere Teilchengröße unter 1 »m, insbesondere unter 0,3 »m.
  • Die Menge der im Kernpolymer enthaltenen leitfähigen Partikel richtet sich nach den Anforderungen, die an die Leitfähigkeit des Filaments gestellt werden und nach der Natur des Leitfähigskeitszusatzes.
  • Leitfähige Kohlenstoffmodifikationen sind im Kern der erfindungsgemäßen Filamente in einer Menge von 5 - 60 Gew.-%, vorzugsweise 5 bis 30 Gew.-%, insbesondere 8 - 15 Gew.-% in feiner Verteilung dispergiert.
  • Halbleitermaterialien, wie z.B. die oben genannten auf Basis von dotierten Metalloxiden, sind im Kern in einer Menge von 60 - 80 Gew.-%, vorzugsweise 65 - 75 Gew.-% enthalten.
  • Das im Mantel der erfindungsgemäßen Filamente enthaltene Antistatikum weist Sulfonat- oder Carboxylatgruppen auf, d.h. Salze von Sulfon- oder Carbonsäuren. Die Natur des salzbildenden Metalls ist im Prinzip von untergeordneter Bedeutung. Bevorzugt sind Jedoch Sulfonate oder Carboxylate, die ein ein- oder zweiwertiges Metall, vorzugsweise ein Alkali- oder ein Erdalkalimetall aufweisen. Von den beiden genannten salzbildenden Gruppen sind die Sulfonsäuregruppe und damit die Sulfonate besonders bevorzugt. Die, die Sulfonat- bzw. Carboxylatgruppen aufweisenden organischen Verbindungen sollen in dem Mantelpolymer der erfindungsgemäßen Filamente möglichst wenig diffundieren.
    Eine Möglichkeit, die Diffusion dieser antistatischen Zusätze gering zu halten, besteht darin, Verbindungen einzusetzen, die einen langkettigen Polyether- oder Alkylrest aufweisen, der in seiner Kette 8 bis 30 C-Atome aufweist.
  • Besonders bevorzugt sind dabei Verbindungen, die eine Alkylkette mit 8 bis 30, vorzugsweise 12 bis 18 C-Atomen enthalten. Besonders bevorzugt als Antistatika für das Mantelpolymer der erfindungsgemäßen Filamente sind Alkansulfonate mit den oben genannten Kettenlängen, insbesondere deren Natrium- oder Kaliumsalze.
  • Die für den Kern und den Mantel der erfindungsgemäßen Zweikomponentenfilamente eingesetzten Polymere können gleich oder verschieden sein. Im Hinblick auf die Funktionen von Kern und Mantel hat es sich als vorteilhaft erwiesen, unterschiedliche Materialien einzusetzen, die der gewünschten Funktion optimal angepaßt werden können.
    Zweckmäßigerweise wird der Mantel aus einem Polymer gefertigt, der dem erfindungsgemäßen Zweikomponenten-Filament die gewünschten textilen Eigenschaften, insbesondere Festigkeit und Weiterverarbeitbarkeit vermittelt, während der Kern die permanente elektrische Leitfähigkeit des Materials garantieren muß, d.h. daß er bei allen weiteren Verarbeitungsschritten des Filaments, seine Kontinuität beibehalten muß und ein optimales Tragevermögen für das dispergierte feste Halbleitermaterial aufweisen muß.
    Für den Kern ist es nicht wesentlich, daß sich das Polymer für sich allein zu Fäden verspinnen läßt und daher muß dafür auch kein fadenbildendes Polymerisat eingesetzt werden. Andererseits ist der Einsatz fadenbildender Polymerisate für das Kernmaterial in der Regel zweckmäßig.
  • Es hat sich jedoch als sehr vorteilhaft erwiesen, für den Kern der erfindungsgemäßen Zweikomponenten-Filamente ein Polymer einzusetzen, welches einen niedrigeren Schmelzpunkt hat als das Polymer des Mantels. Die Schmelzpunktsdifferenz sollte mindestens 20°C, vorzugsweise mindestens 40°C betragen.
  • Bei einem bevorzugten erfindungsgemäßen Filamentmaterial besteht das Polymer des Kerns aus Polyethylen oder Polyamid 6 oder aus einem Copolyamid oder einem Copolyester, deren Co-Komponenten in an sich bekannter Weise so ausgewählt sind, daß sich die gewünschte Schmelzpunktsdifferenz einstellt. Weitere geeignete Polymere für den Kern der erfindungsgemäßen Filamente sind Blockcopolymere mit Hart-und Weichsegmenten, z.B. Blockpolyether-ester oder andere Polyalkylene wie z.B. rel. niedermolekulares Polypropylen.
  • Als Material für den Mantel der erfindungsgemäßen Zweikomponenten-Filamente, der vorzugsweise die textiltechnischen Eigenschaften des Filamentmaterials bestimmt, kommen insbesondere hochmolekulare Polymere, insbesondere Polyester oder Polyamide in Betracht. Besonders vorteilhafte Eigenschaften weisen erfindungsgemäße Zweikomponenten-Filamente auf, deren Mantel aus Polyestern, vorzugsweise aus Polyethylenterephthalat besteht.
  • Der Volumenanteil des Kerns am gesamten erfindungsgemäßen Filament beträgt 2 bis 50, vorzugsweise 5 bis 20 %.
  • Der Mantel der erfindungsgemäßen antistatischen Filamente kann neben dem Antistatikum noch weitere, in synthetischen Fasern übliche Zusätze, wie z.B. Mattierungsmittel oder Pigmente, in den üblichen Mengen enthalten.
  • In einer bevorzugten Ausführungsform enthält der Mantel der erfindungsgemäßen Filamente ein Mattierungsmittel, welches das Durchscheinen des aufgrund seines Leitfähigkeitszusatzes eventuell gefärbten Kerns durch den Mantel verhindert oder vermindert. Die Menge des Mattierungsmittels wird so gewählt, daß der gewünschte Effekt erzielt wird.
  • Ein bevorzugtes Mattierungsmittel ist Titandioxid, das üblicherweise in Mengenanteilen von 0,5 bis 3 Gew.-% im Filamentmantel enthalten sein kann.
  • Die Herstellung der erfindungsgemäßen elektrisch leitfähigen Zweikomponenten-Filamente erfolgt in der Weise, daß zunächst ein Kernmaterial hergestellt wird durch homogenes Einmischen einer feinteiligen Form oder Zubereitung, z.B. eines Pulvers oder einer anwenderfreundlichen Pulverzubereitung in Granulat- oder Perlform, eines der obengenannten elektrisch leitfähigen Materialien aus leitfähigem Kohlenstoff oder aus Halbleitermaterialien in ein erstes Polymermaterial, daß ein Mantelmaterial hergestellt wird durch homogenes Einmischen eines der obengenannten Antistatika auf Basis eines Metallsalzes einer einen langkettigen aliphatischen Rest aufweisenden Carbon- oder Sulfonsäure und gegebenenfalls weiterer üblicher Zusätze in ein zweites Polymermaterial, wobei das erste und das zweite Polymermaterial auch identisch sein können, daß die vorbereiteten Kern- und Mantelmaterialien aus einer an sich bekannten Spinnanordnung zu Kern-Mantel Filamenten ausgesponnen werden, wobei die in der Zeiteinheit ausgesponnenen Volumenanteile von Kern- und Mantelmaterial im Verhältnis von 2:98 bis 1:1 stehen.
  • Je nach der gewählten Spinnabzugsgeschwindigkeit, die entsprechend der apparativen Ausrüstung heute in der Regel im Bereich von einigen 100 m/min bis etwa 8000 m/min liegen kann, werden Filamente mit unterschiedlichem Orientierungsgrad und damit unterschiedlichen mechanischen Eigenschaften, wie z.B. Reißfestigkeit, Dehnbarkeit, Anfangsmodul, erhalten. Im Bereich der höchsten Spinngeschwindigkeiten haben die Filamente, so wie sie ersponnen sind, bereits einen hohen Orientierungsgrad und damit gute mechanische und textiltechnologische Qualität.
  • Bei Anwendung niedrigerer Spinngeschwindigkeiten werden primär weniger hoch orientierte, d.h. weniger feste, stärker dehnbare Filamente erhalten, die in an sich bekannter Weise verstreckt werden können, um die erforderlichen mechanischen Daten einzustellen.
  • Diese Verstreckung erfolgt im Bereich von 5 % oberhalb des natürlichen Verstreckverhältnisses bis zu 95 % des maximalen Verstreckverhältnisses, vorzugsweise im Verhältnis 1:3 bis 1:5, insbesondere von 1:3 bis 1:4.
  • Im Anschluß an die Verstreckung können die Filamente gewünschtenfalls noch einer üblichen Fixierbehandlung unterworfen werden, wobei in der Regel während des Fixierens oder unmittelbar danach ein Schrumpf von 0 bis 8 %, vorzugsweise von 0 bis 4 % zugelassen wird.
  • Verstreck- und Fixiertemperatur werden in bekannter Weise dem verarbeiteten Fasermaterial angepaßt. Üblicherweise liegt die Verstrecktemperatur im Bereich von 40 bis 200°C, vorzugsweise von 40 bis 160°C, während die Fixierbehandlung im Temperaturbereich von 100 bis 240°C durchgeführt wird.
  • Anschließend können die so hergestellten Filamente in jeder bekannten Weise zu textilen Erzeugnissen weiterverarbeitet werden. Beispielsweise können die Filamente zu Endlosgarnen zusammengefaßt und gegebenenfalls in üblicher Weise texturiert werden, z.B. durch eine Blastexturierung, durch einen Falschdrallprozeß oder durch eine weitere Strecktexturierung oder die ersponnenen Filamente können vor oder nach einer Texturierung z.B. einer Stauchkräuselung unterworfen, zu Stapelfasern geschnitten und sekundärgesponnen werden. Bevorzugt ist die Weiterverarbeitung der erfindungsgemäßen, elektrisch leitfähigen Filamente zu Endlosgarnen, die dann in an sich bekannter Weise in die gewünschten textilen Erzeugnisse übergeführt werden. Auch die aus den erfindungsgemäßen, elektrisch leitfähigen Zweikomponenten-Filamenten hergestellten Textilerzeugnisse, wie z.B. Endlosgarn in texturierter oder nicht-texturierter Form, Stapelfasergarn, aber auch Zwischenformen wie z.B. Kabel oder Filamentbänder sowie die aus den fadenförmigen Materialien hergestellten flächenförmigen Textilerzeugnisse, sind Gegenstand dieser Erfindung.
  • Die erfindungsgemäßen, elektrisch leitfähigen Filamente weisen überraschenderweise bereits bei geringen anliegenden Spannungen eine gute elektrische Leitfähigkeit auf, was zur Folge hat, daß sich nur wesentlich geringere elektrische Aufladungen ergeben können, als bei herkömmlichen Filamenten mit elektrisch leitfähigem Kern. Darüber hinaus hat die elektrische Leitfähigkeit der erfindungsgemäßen Filamente eine wesentlich bessere Waschbeständigkeit als bei bekannten Filamenten, die in herkömmlicher Weise mit Antistatika modifiziert sind. Das besonders vorteilhafte Leitfähigkeitsverhalten der erfindungsgemäßen Filamente wird ergänzt durch ausgezeichnete textiltechnologische Eigenschaften.
  • Die folgenden Beispiele veranschaulichen die Herstellung der erfindungsgemäßen, elektrisch leitfähigen Filamente und zeigen die überraschende Wirkung des an sich nur schwach elektrisch leitfähigen Filamentmantels auf die antistatische Wirkung des Gesamtfilaments und die sehr gute Beständigkeit dieser Wirkung bei intensiver Waschbehandlung.
  • Beispiel 1 (Erfindungsgemäßer Faden)
  • Zur Herstellung des Kernmaterials wurden in 100 Gewichtsteile niederviskoses Polyethylen ((R)Riblene VG 1800 V der Firma Enichem) 10 Gewichtsteile Ruß ((R)Printex XE2 der Degussa) bei 170°C in einem Kneter eingearbeitet.
  • Zur Herstellung des Mantelmaterials wurden 100 Gewichtsteile polyethylenterephthalat, 2 Gewichtsteile Titandioxid und 2 Gewichtsteile Natriumparaffinsulfonat ((R)Hostastat HS 1 der Hoechst AG) bei 275°C in einem Doppelschneckenextruder eingemischt.
  • Aus diesen beiden Komponenten wurde mit einer Bikomponenten-Schmelzspinnalage bei 265°C aus einer 32 Loch-Düse ein Kern-Mantel-Faden ersponnen und mit 700 m/min aufgespult. Der Volumenanteil des Kerns betrug 10 %.
  • Der Faden wurde über ein 3-Galetten-Streckwerk verstreckt, einer Wärmebehandlung unterzogen und aufgespult:
    • 1. Galette 95°C, 55 m/min
    • 2. Galette 180°C, 181,5 m/min
    • 3. Galette 30°C, 176 m/min
  • Der spezifische Widerstand des Fadens ist in der Tabelle aufgeführt.
  • Beispiel 2 (Leitfähiger Kern, nichtleitender Mantel)
  • Zur Herstellung des Kernmaterials wurde wie im Beispiel 1 verfahren.
  • Zur Herstellung des Mantelmaterials wurde in 100 Gewichtsteile Polyethylenterephthalat 2 Gewichtsteile Titandioxid bei 275°C in einem Doppelschneckenextruder eingemischt. Es wurde kein Antistatikum zugesetzt.
  • Aus diesen beiden Komponenten wurde wie im Beispiel 1 beschrieben ein Kern-Mantel-Faden hergestellt.
  • Der spezifische Widerstand des Fadens ist in der Tabelle aufgeführt.
  • Beispiel 3 (Antistatisch ausgerüsteter Einkomponentenfaden)
  • Das antistatisch ausgerüstete Mantelmaterial aus Beispiel 1 wurde auf derselben Bikomponentenanlage versponnen, es wurde aber kein Kernmaterial zugesetzt, so daß ein Einkomponentenfaden erhalten wurde, der wie in den Beispielen 1 und 2 verstreckt wurde.
  • Der spezifische Widerstand des Fadens ist in der Tabelle aufgeführt.
    Figure imgb0001

Claims (10)

  1. Antistatische synthetische Zweikomponenten-Filamente vom Kern-Mantel-Typ mit einem Kern erhöhter elektrischer Leitfähigkeit aus einem synthetischen Polymer, in dem feste, elektrisch leitfähige Partikel dispergiert sind, die festen leitfähigen Partikel des Kerns aus leitfähigem Kohlenstoff oder aus bekannten Halbleitermaterialien bestehen, dadurch gekennzeichnet, daß der Mantel ebenfalls eine erhöhte Leitfähigkeit hat und aus einem fadenbildenden Polymer besteht, das ein Metallsalz einer einen langkettigen aliphatischen Rest aufweisenden Sulfon- oder Carbonsäure enthält, wobei die Menge an leitfähigen Kohlenstoff im Kern 3 bis 60 Gew.-% beträgt und die Menge an Halbleitermaterialien im Kern 60 bis 80 Gew.-% beträgt.
  2. Zweikomponenten-Filamente gemäß Anspruch 1, dadurch gekennzeichnet, daß die festen, leitfähigen Partikel des Kernmaterials aus hochleitfähigem Ruß oder aus antimon- oder joddotiertem Zinnoxid bestehen.
  3. Zweikomponenten-Filamente gemäß einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß im Kern 5 bis 30 Gew.-% leitfähiger Kohlenstoff oder 65 bis 75 Gew.-% Halbleitermaterialien in feiner Verteilung dispergiert sind.
  4. Zweikomponenten-Filamente gemäß mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Antistatikum des Mantels ein Metallsalz einer Alkylsulfonsäure mit 8 bis 30, vorzugsweise 12 bis 18 C-Atomen ist.
  5. Zweikomponenten-Filamente gemäß mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das als Antistatikum des Mantels eingesetzte Metallsalz ein Natrium- oder Kaliumsalz ist.
  6. Zweikomponenten-Filamente gemäß mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Polymer des Kerns einen niedrigeren Schmelzpunkt hat als das des Mantels.
  7. Zweikomponenten-Filamente gemäß mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Polymer des Kerns Polyethylen oder ein Blockpolyetherester ist.
  8. Zweikomponenten-Filamente gemäß mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Polymer des Mantels ein Polyamid oder ein Polyester, vorzugsweise Polyethylenterephthalat ist.
  9. Die antistatischen, synthetischen Zweikomponenten-Filamente des Anspruchs 1 in Form fadenförmiger oder flächenförmiger Textilmaterialien.
  10. Verfahren zur Herstellung eines antistatischen synthetischen Zweikomponenten-Filaments vom Kern-Mantel-Typ, dadurch gekennzeichnet, daß ein Kernmaterial hergestellt wird durch homogenes Einmischen eines feinteiligen, festen, elektrisch leitfähigen Materials aus leitfähigem Kohlenstoff oder aus Halbleitermaterialien in ein erstes Polymermaterial, daß ein Mantelmaterial hergestellt wird durch homogenes Einmischen eines Metallsalzes einer einen langkettigen aliphatischen Rest aufweisenden Sulfon- oder Carbonsäure in ein zweites Polymermaterial, daß das Kern- und das Mantelmaterial aus einer an sich bekannten Spinndüsenanordnung zu Kern-Mantel-Filamenten ausgesponnen werden, wobei die vom Kern- und Mantelmaterial in der Zeiteinheit ausgesponnenen Volumenanteile im Verhältnis von 2:98 bis 1:1 stehen, daß die erhaltenen Filamente im Bereich von 5 % oberhalb des natürlichen Verstreckverhältnisses bis zu 95 % des maximalen Verstreckverhältnisses bei einer Verstrecktemperatur von 90 bis 200°C verstreckt und anschließend bei 100 bis 240°C unter Zulassung einer Längenänderung von 0 bis 8 %, vorzugsweise 0 bis 4 % fixiert werden.
EP90113145A 1989-07-13 1990-07-10 Antistatisches Kern-Mantel-Filament Expired - Lifetime EP0407960B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3923086 1989-07-13
DE3923086A DE3923086A1 (de) 1989-07-13 1989-07-13 Antistatisches kern-mantel-filament

Publications (3)

Publication Number Publication Date
EP0407960A2 EP0407960A2 (de) 1991-01-16
EP0407960A3 EP0407960A3 (en) 1991-09-11
EP0407960B1 true EP0407960B1 (de) 1995-06-28

Family

ID=6384904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90113145A Expired - Lifetime EP0407960B1 (de) 1989-07-13 1990-07-10 Antistatisches Kern-Mantel-Filament

Country Status (8)

Country Link
US (1) US5213892A (de)
EP (1) EP0407960B1 (de)
JP (1) JPH0345705A (de)
AT (1) ATE124473T1 (de)
BR (1) BR9003334A (de)
CA (1) CA2021011A1 (de)
DE (2) DE3923086A1 (de)
ES (1) ES2076267T3 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9108057U1 (de) * 1991-07-01 1991-08-22 August Mink Kg, 7320 Goeppingen, De
US5391432A (en) * 1993-04-28 1995-02-21 Mitchnick; Mark Antistatic fibers
US5562978A (en) * 1994-03-14 1996-10-08 E. I. Du Pont De Nemours And Company Polymer-coated inorganic particles
US5932309A (en) 1995-09-28 1999-08-03 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
US5916506A (en) * 1996-09-30 1999-06-29 Hoechst Celanese Corp Electrically conductive heterofil
JPH10140420A (ja) * 1996-11-07 1998-05-26 Japan Exlan Co Ltd 無機微粒子含有繊維とその製造方法
DE19646519A1 (de) * 1996-11-12 1998-05-14 Pedex & Co Gmbh Zahnpflegegerät und Verfahren zur Herstellung von Reinigungselementen für Zahnpflegegeräte
US6589392B1 (en) * 2001-10-18 2003-07-08 Shakespeare Company Llc Multicomponent monofilament for papermaking forming fabric
US6893489B2 (en) 2001-12-20 2005-05-17 Honeywell International Inc. Physical colored inks and coatings
US7238415B2 (en) * 2004-07-23 2007-07-03 Catalytic Materials, Llc Multi-component conductive polymer structures and a method for producing same
FR2933426B1 (fr) * 2008-07-03 2010-07-30 Arkema France Procede de fabrication de fibres conductrices composites, fibres obtenues par le procede et utilisation de telles fibres
PT3199673T (pt) * 2014-09-24 2020-10-15 Kai Li Huang Fibra de controle ambiental de energia verde, método de fabricação e tecidos feitos pelo mesmo
WO2017176604A1 (en) * 2016-04-06 2017-10-12 Ascend Performance Materials Operations Llc Light color /low resistance anti-static fiber and textiles incorporating the fiber
WO2018084040A1 (ja) * 2016-11-01 2018-05-11 帝人株式会社 布帛およびその製造方法および繊維製品
US10760186B2 (en) * 2017-03-29 2020-09-01 Welspun Flooring Limited Manufacture of bi-component continuous filaments and articles made therefrom
JP7394439B2 (ja) * 2019-09-25 2023-12-08 日本エステル株式会社 導電性マルチフィラメント、導電性マルチフィラメントの製造方法、織編物およびブラシ
DE102020120303A1 (de) 2020-07-31 2022-02-03 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Elektrisch leitfähiges Monofilament

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1199115A (en) * 1968-03-22 1970-07-15 Ici Ltd Producing Sheath/Core Conjugate Polyester Filaments
DE1908173A1 (de) * 1969-02-19 1970-09-10 Hoechst Ag Fasern,Faeden und Folien aus paraffinsulfonathaltigen Polyestern
GB1316259A (en) * 1969-07-28 1973-05-09 Ici Ltd Bi-component filaments
US3803453A (en) * 1972-07-21 1974-04-09 Du Pont Synthetic filament having antistatic properties
JPS5149919A (de) * 1974-10-09 1976-04-30 Teijin Ltd
JPS551337A (en) * 1978-06-15 1980-01-08 Toray Ind Inc Electrically conducitive synthetic fiber and its production
US4357390A (en) * 1980-03-25 1982-11-02 Teijin Limited Antistatic polyester fibers
CA1158816A (en) * 1980-06-06 1983-12-20 Kazuo Okamoto Conductive composite filaments and methods for producing said composite filaments
ZA8289B (en) * 1981-01-15 1982-11-24 Akzo Nv Synthetic technical multifilament yarn and process for the manufacture thereof
JPS5930912A (ja) * 1982-08-09 1984-02-18 Unitika Ltd 易染性複合繊維
JPS60110921A (ja) * 1983-11-15 1985-06-17 Nippon Ester Co Ltd 制電性ポリエステル複合繊維
US4612150A (en) * 1983-11-28 1986-09-16 E. I. Du Pont De Nemours And Company Process for combining and codrawing antistatic filaments with undrawn nylon filaments
JPS61102474A (ja) * 1984-10-22 1986-05-21 帝人株式会社 導電性複合繊維の製造法
US4900495A (en) * 1988-04-08 1990-02-13 E. I. Du Pont De Nemours & Co. Process for producing anti-static yarns
DE68917784T2 (de) * 1988-05-27 1995-01-05 Kuraray Co Leitfähiges zusammengesetztes Filament und Verfahren zur Herstellung desselben.
US5026603A (en) * 1989-06-05 1991-06-25 E. I. Du Pont De Nemours And Company Staple fibers and process for making them

Also Published As

Publication number Publication date
US5213892A (en) 1993-05-25
EP0407960A2 (de) 1991-01-16
ES2076267T3 (es) 1995-11-01
EP0407960A3 (en) 1991-09-11
CA2021011A1 (en) 1991-01-14
JPH0345705A (ja) 1991-02-27
BR9003334A (pt) 1991-08-27
DE3923086A1 (de) 1991-01-24
ATE124473T1 (de) 1995-07-15
DE59009318D1 (de) 1995-08-03

Similar Documents

Publication Publication Date Title
EP0407960B1 (de) Antistatisches Kern-Mantel-Filament
DE3122497C2 (de)
DE2251071C3 (de)
EP0705931B1 (de) Vliese aus Elektretfasermischungen mit verbesserter Ladungsstabilität, Verfahren zu ihrer Herstellung, und ihre Verwendung
EP0615007B1 (de) Elektretfasern mit verbesserter Ladungsstabilität, Verfahren zu ihrer Herstellung, und Textilmaterial enthaltend diese Elektretfasern
EP0503421B1 (de) Mit Carbodiimiden modifizierte Polyesterfasern und Verfahren zu ihrer Herstellung
DE3227652C2 (de) Verfahren zur Herstellung eines thermisch gebundenen Verbundfaser-Vliesstoffs
EP1413653B1 (de) Leitfähige, schmutzabweisende Kern-Mantel-Faser mit hoher Chemikalienresistenz, Verfahren zur deren Herstellung und Verwendung
DE2251071B2 (de) Verfahren zur herstellung von leitenden faeden
DE2315144C3 (de) Kohlenstoffaser und Verfahren zu ihrer Herstellung
DE2834602B2 (de) Leitfähige Verbundfasern
DE2430533A1 (de) Polyesterfaeden und verfahren zu deren herstellung
DD201702A5 (de) Hochmodul- polyacrylnitrilfaeden und -fasern sowie verfahren zu ihrer herstellung
DE2703051A1 (de) Hydrophile polyesterfaeden
DE4321289A1 (de) Elektretfasern mit verbesserter Ladungsstabilität, Verfahren zu ihrer Herstellung, und Textilmaterial enthaltend diese Elektretfasern
EP0779382B1 (de) Hydrolysebeständige Polyesterfasern und -filamente, Masterbatches und Verfahren zur Herstellung von Polyesterfasern und -filamenten
DE69931918T2 (de) Feine elektrisch leitende faser und diese enthaltende harzzusammensetzung und elektrisch leitfähiges garn
DE4131746A1 (de) Fasern aus tetrafluorethylen-copolymeren, verfahren zu deren herstellung und deren verwendung
EP1392897A1 (de) Verfahren zur herstellung von feinen monofilamenten aus polypropylen, feine monofilamente aus polypropylen sowie deren verwendung
EP0105285A1 (de) Strecktexturierter, basisch färbbarer polyesterfaden.
DE2850713C2 (de) Antistatisches Fadengebilde
DE4307398A1 (de) Elektretfasern mit verbesserter Ladungsstabilität, Verfahren zu ihrer Herstellung, und Textilmaterial enthaltend diese Elektretfasern
DE1660446A1 (de) Verfahren zur Herstellung selbstkraeuselnder Fasern
DE19948977C2 (de) Polymerzusammensetzungen und deren Verwendung
DE2706032A1 (de) Verfahren zur herstellung hydrophiler acrylfasern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19901221

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

17Q First examination report despatched

Effective date: 19930315

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950621

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950626

Year of fee payment: 6

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI LU NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950628

Year of fee payment: 6

Ref country code: GB

Payment date: 19950628

Year of fee payment: 6

REF Corresponds to:

Ref document number: 124473

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950630

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19950701

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950710

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950712

Year of fee payment: 6

REF Corresponds to:

Ref document number: 59009318

Country of ref document: DE

Date of ref document: 19950803

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950920

Year of fee payment: 6

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950906

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076267

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960710

Ref country code: GB

Effective date: 19960710

Ref country code: AT

Effective date: 19960710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19960711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960731

Ref country code: CH

Effective date: 19960731

Ref country code: BE

Effective date: 19960731

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19960731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960710

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970402

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050710