EP0400343A1 - Stromwandleranordnung mit erhöhter Genauigkeit - Google Patents
Stromwandleranordnung mit erhöhter Genauigkeit Download PDFInfo
- Publication number
- EP0400343A1 EP0400343A1 EP90108288A EP90108288A EP0400343A1 EP 0400343 A1 EP0400343 A1 EP 0400343A1 EP 90108288 A EP90108288 A EP 90108288A EP 90108288 A EP90108288 A EP 90108288A EP 0400343 A1 EP0400343 A1 EP 0400343A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- converter
- comparator
- winding
- arrangement according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/42—Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
- H01F27/422—Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers
- H01F27/427—Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers for current transformers
Definitions
- the invention relates to a current transformer arrangement with increased accuracy, in which a comparator converter and a power converter with their primary windings are connected in series in a main circuit, in which a compensation current is fed from a secondary winding of the power converter to a winding of the comparator converter to reduce the magnetization of the core of the comparator converter and in which an indicator winding of the comparator converter outputs a differential signal corresponding to the remaining magnetic flux, which is amplified and fed as a differential current to another winding of the comparator converter, the sum of the compensation current and the differential current forming the output signal.
- Static household electricity meters must therefore have a certain DC independence. So-called precision comparison counters are used for the metrological examination and checking both in the laboratory and at the installation site, which must have a much higher accuracy than the test object.
- the current input circuit of the test meter must not have greater measurement uncertainties in mixed current operation than in pure alternating current operation.
- the invention has for its object to achieve a high accuracy both with alternating current and for mixed current with a cost-effective design in a current transformer arrangement of the type mentioned.
- the magnetic effect of the direct current component of the main current is at least almost compensated for in the comparator core, so that an impermissible operating point shift due to the direct current is avoided.
- the comparator converter then works like a direct current-free main current.
- FIG. 1 A known current transformer arrangement is shown in FIG.
- the primary winding 10 of a comparator converter 11 and the primary winding 12 of a power converter 13 are connected in series by a main current Ih between the terminals 14 and 15.
- the comparator converter 11 carries a first secondary winding 16, which is loaded with a load 18, in particular an ohmic resistance, to earth.
- a current I1 is fed to the other end of the winding 16 from a secondary winding 17 of the power converter 13 connected to earth on the other side.
- this disadvantageous influence of a direct current component of the main current Ih is to be eliminated or at least greatly reduced.
- the main current Ih flows between the terminals 14 and 15 through the primary winding 21 of a comparator converter 22 and through the primary winding 23 of a power converter 24.
- a magnetic field-dependent signal converter (sensor) 25 By means of a magnetic field-dependent signal converter (sensor) 25, the magnetic flux caused by the main current Ih in the core of the power converter 24 is detected.
- the magnetic field-dependent electrical variable obtained in this way is converted via an electronic amplifier 26 and a voltage / current converter 27 into a current I3, which leads through a secondary winding 28 on the core of the comparator converter 22 to an electronic amplifier 30 which is coupled back via a resistor 29.
- the direct current component is separated from the amplified mixed current I3 from the output of the amplifier 30 via a capacitor 31 and the alternating current component is fed to the output via an impedance 32, which is formed by an electronic amplifier 34 which is coupled against an impedance 33 in front of the output terminal A.
- the current I3 largely compensates for the magnetic flux in the core of the comparator converter 22 caused by the main current Ih with its alternating current components and its direct current component. Due to the remaining magnetic flux, a signal is generated in an indicator winding 36, which supplies a current I4 for a secondary winding 38 via an amplifier 37.
- This secondary winding 38 is attached and dimensioned in such a way that it counteracts the residual magnetic flux in the core of the comparator converter 22 and largely compensates for this, corresponding to the degree of amplification of the amplifier 37. Since the compensation current I3 through the secondary winding 28 also contains the DC component, this too is largely compensated for in the core of the comparator converter 22.
- the current I4 of the winding 36 only reduces the alternating components in the magnetic flux.
- This current I4 is also fed to the input of the amplifier 34, so that, as in FIG. 1, a signal occurs at the output terminal A, which is composed of the sum of the AC components of the currents I3 and I4 and from the primary-side control of the comparator converter 22 is independent except for a very small error.
- the power converter 24 does not need to apply power in the actual sense here, since the energy for the compensating current I3 is supplied by the amplifier 26 and possibly the U / I converter 27.
- the compensating current I3 as in FIG. 2 is generated by the power converter 23 with a DC converter-independent measuring transducer core via the magnetoelectric sensor 25 attached in an air gap and the Amplifier 26 and the U / I converter 27 are generated.
- This current I3 is fed via a winding 41 of the comparator converter 22 to the load 42 to earth, and the output signal generated thereon is taken off in a DC-free manner at a separating capacitor 43 at the output terminal A.
- the comparator converter Due to the current I3 flowing in opposite directions, the comparator converter largely compensates for the Main current Ih and the magnetic flux caused by the compensation current I3 causes the core of the comparator converter 22 to remain largely in a magnetic flux-free state, both with regard to the AC component desired for the measurement and also with regard to the generally undesirable one DC component.
- the indicator winding 44 By means of the indicator winding 44, the remaining alternating current magnetic flux (flow difference) still occurring in the comparator converter 22 is determined and converted via an amplifier 45 and a U / I converter 46 into a compensation current I4, which together with the current I3 of the secondary winding 41 leads to the output becomes.
- the compensation current I4 thus, like in the figures above, causes the compensation of the alternating current magnetic flux in the core of the comparator converter 22 very precisely.
- a converter suitable for a power converter 24 according to FIG. 2 or 3 can be designed in a ring with an air gap, the air gap on the one hand reducing the risk of saturation in a simple manner and on the other hand a magneto-electrical element as a signal converter (sensor) for measuring of the magnetic flux can be attached.
- the magnetic field dependent sensor can work using the Hall effect or take advantage of the magnetoresistive effect, i.e. a change in the electrical resistance depending on an applied magnetic field.
- a magneto-optical effect can also be used with corresponding additional optical sensor elements.
- FIG. 4 shows an embodiment in which the magnetic flux in the power converter 24 is largely compensated for.
- the electrical signal from the magneto-electrical signal converter (sensor) 25 is fed to an amplifier 48, which supplies a current I5 that initially flows through a secondary winding 49 of the power converter 24.
- the number of turns of the primary winding 23 and this secondary winding 49 and the degree of amplification of the amplifier 48 are dimensioned such that, apart from a small control error, the magnetic flux in the core of the power converter 24 is compensated for.
- the equalizing current I5 continues to flow through a secondary winding 50 of the comparator converter 22 to the burden 42;
- the DC-free output signal can be taken from terminal A via the isolating capacitor 43.
- a winding 44 is further attached to the comparator core 22, which supplies an alternating current signal I4 corresponding to the residual magnetic flux in the core of the converter 22 via an amplifier 45 and a U / I converter 46, since it is at the connection point of the secondary windings 49 and 50 is fed in and flows with to the load 42, whereby a very precise compensation of the alternating current magnetic flux in the comparator converter 22 is brought about.
- the embodiment according to FIG. 5 is largely the same as that of FIG. 4 and also has the same reference numerals for corresponding parts.
- the comparator converter 22 is also equipped with a magnetoelectric sensor 52, which supplies the flow difference signal via an amplifier 53 and a U / I converter 54 as a corrective compensation current I6 to the connection point of the windings 49 and 50.
- a composite current I5 + I6 thus flows to the load 42, which is also compensated for direct current at the comparator converter 22.
- Another difference is that there is a mix in the load 42 at the output Am electricity is available, which is in a very precise ratio to the primary mixed current Ih, which therefore contains a DC component.
- the AC-free DC component can also be removed at an output Ag via an AC blocking filter 56.
- both converters 22 and 24 need to transmit very little power, so that very small cores can be used. However, the power must be applied by the amplifiers in the case of compensated converters.
- the new arrangement has created a current transformer arrangement with increased accuracy, in which a power converter (24) and a comparator converter (22) with their primary windings (21, 23) lie in series in a main circuit (Ih), in which the power converter (13 ) a current is generated with which the magnetic flux is compensated for at least almost to zero in the comparator converter (22), whereby according to the invention the DC component of the main current (Ih) is also detected with the aid of a magnetoelectric signal converter (25) and used for the compensation ( Fig.2).
- the DC component can even be available in the secondary current as a precise image of the primary current (Fig. 5).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
- Transformers For Measuring Instruments (AREA)
- Control Of Eletrric Generators (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
- Die Erfindung betrifft eine Stromwandleranordnung mit erhöhter Genauigkeit, bei der ein Komparatorwandler und ein Leistungswandler mit ihren Primärwicklungen in einem Hauptstromkreis in Reihe liegen, bei dem von einer Sekundärwicklung des Leistungswandlers ein Kompensationsstrom einer Wicklung des Komparatorwandlers zur Herabsetzung der Magnetisierung des Kernes des Komparatorwandlers zugeführt wird und bei der eine Indikator-Wicklung des Komparatorwandlers ein dem verbleibenden Magnetfluß entsprechendes Differenz-Signal abgibt, das verstärkt wird und als Differenzstrom einer anderen Wicklung des Komparatorwandlers zugeführt wird, wobei die Summe des Kompensationsstromes und des Differenz-Stromes das Ausgangssignal bilden.
- Zur Verrechnung der verbrauchten Energie werden u.a. statische Elektrizitätszähler eingesetzt, die gegen Mischströme, d.h. Wechselströme mit einem Gleichstromanteil, unempfindlich sein müssen. Der Gleichstromanteil führt in den dabei verwendeten induktiven Wandlern zu Sättigungserscheinungen. Die Wandler müssen aber aus Kostengründen möglichst materialsparend aufgebaut sein.
- Statische Haushalts-Elektrizitätszähler müssen daher eine bestimmte Gleichstrom-Unabhängigkeit aufweisen. Zur meßtechnischen Untersuchung und Überprüfung sowohl im Labor wie auch am Einbauort werden sog. Präzisions-Vergleichszähler benutzt, die eine wesentlich höhere Genauigkeit aufweisen müssen als der Prüfling. Der Stromeingangskreis der Prüfzähler darf im Mischstrom-Betrieb keine größeren Meßunsicherheiten aufweisen als im reinen Wechselstrom-Betrieb.
- Bekannte Stromwandleranordnungen mit erhöhter Genauigkeit arbeiteten mit aufwendigen elektronischen Hilfsschaltungen.
- Der Erfindung liegt die Aufgabe zugrunde, bei einer Stromwandleranordnung der eingangs erwähnten Art eine hohe Genauigkeit sowohl bei Wechselstrom als auch für Mischstrom mit einer kostengünstigen Ausführung zu erreichen.
- Diese Aufgabe wird erfüllt mit den Merkmalen des Kennzeichens von Anspruch 1.
- Durch den Gleichstromanteil des Stromes durch die Wicklung des Komparatorwandlers wird im Komparatorkern die magnetische Wirkung der Gleichstromkomponente des Hauptstromes wenigstens nahezu ausgeglichen, so daß eine unzulässige Arbeitspunktverschiebung durch den Gleichstrom vermieden ist. Der Komparatorwandler arbeitet dann so wie bei einem gleichstromfreien Hauptstrom.
- Die Erfindung wird nachstehend anhand der Zeichnung beispielsweise näher erläutert. Es zeigen in schematischen Darstellungen
- Fig. 1 eine bekannte Stromwandleranordnung,
- Fig. 2 eine Stromwandleranordnung nach der Erfindung, bei der auf den Komparatorwandler eine zusätzliche Wicklung angebracht ist,
- Fig. 3 eine Stromwandleranordnung nach der Erfindung, bei der eine Sekundärwicklung des Komparatorwandlers für beide Korrekturströme ausgenutzt wird,
- Fig. 4 eine Stromwandleranordnung nach der Erfindung, bei der auch der Kern des Leistungswandlers weitgehend durchflutungsfrei gehalten wird, und
- Fig. 5 eine Stromwandleranordnung nach der Erfindung, bei der auch am Komparatorwandler der Gleichstromanteil der Durchflutungsdifferenz festgestellt und so ein Sekundärmischstrom erzeugt wird.
- In Figur 1 ist eine bekannte Stromwandleranordnung dargestellt. Hierbei wird die Primärwicklung 10 eines Komparatorwandlers 11 und die Primärwicklung 12 eines Leistungswandlers 13 in Reihenschaltung von einem Hauptstrom Ih zwischen den Klemmen 14 und 15 durchflossen. Der Komparatorwandler 11 trägt eine erste Sekundärwicklung 16, die mit einer Bürde 18, insbesondere einem Ohm'schen Widerstand, gegen Erde belastet ist. Dem anderen Ende der Wicklung 16 wird von einer auf der anderen Seite an Erde angeschlossenen Sekundärwicklung 17 des Leistungswandlers 13 ein Strom I1 zugeführt. Mittels der Übersetzungsverhältnisse der genannten Wicklungen der Wandler 11 und 13 ist dieser Strom so be messen, daß er über die Sekundärwicklung 16 im Komparatorwandler 11 über seine Amperewindungszahl etwa die gleiche Durchflutung hervorruft, wie die Primärwicklung 10 infolge des Hauptstromes Ih. Soweit sich die Magnetflüsse (Amperewindungszahlen) der Wicklung 10 und der Wicklung 16 nicht aufheben, bleibt eine Durchflutungsdifferenz; diese erzeugt über eine zweite Sekundärwicklung 19 des Komparatorwandlers 11 und einen nachgeschalteten elektronischen Verstärker 20 einen Differenz-Strom I2, der dem Verbindungspunkt der Sekundärwicklungen 16 und 17 zugeführt wird und durch die Wicklung 16 zusammen mit dem Strom I1 zur Bürde 18 gelangt. An einer Ausgangsklemme A kann gegen Erde ein Signal entnommen werden, das dem Hauptstrom Ih entspricht.
- In einer solchen bekannten Stromwandleranordnung, wie sie z.B. aus DE-Z "meßtechnik" 10/68, Seite 242 ff., bekannt ist, zeigen sich Sättigungserscheinungen im Kern des Wandlers 11 und/oder des Wandlers 13, wenn im Hauptstrom Ih ein Gleichstromanteil enthalten ist. Dieser tritt auf, wenn ein Verbraucher über einen Einweggleichrichter betrieben wird, dann ist auch die Summe der Ströme I1 + I2 dem Hauptstrom Ih nicht mehr genau proportional, und es ergeben sich Meßfehler.
- Erfindungsgemäß soll dieser nachteilige Einfluß einer Gleichstromkomponente des Hauptstromes Ih ausgeschaltet oder wenigstens stark vermindert werden.
- In der Stromwandlerschaltung gemäß Fig. 2 fließt dazu der Hauptstrom Ih zwischen den Klemmen 14 und 15 durch die Primärwicklung 21 eines Komparatorwandlers 22 und durch die Primärwicklung 23 eines Leistungswandlers 24. Mittels eines magnetfeldabhängigen Signalwandlers (Sensor) 25 wird der durch den Hauptstrom Ih im Kern des Leistungswandlers 24 hervorgerufene Magnetfluß erfaßt. Die dabei erhaltene magnetfeldabhängige elektrische Größe wird über einen elektronischen Verstärker 26 und einen Spannungs-/Strom-Wandler 27 in einen Strom I3 übergeführt, der durch eine Sekundärwicklung 28 auf dem Kern des Komparatorwandlers 22 zu einem über einen Widerstand 29 gegengekoppelten elektronischen Verstärker 30 geführt. Vom Ausgang des Verstärkers 30 wird über einen Kondensator 31 die Gleichstromkomponente aus dem verstärkten Mischstrom I3 abgetrennt und die Wechselstromkomponente über eine Impedanz 32 dem Ausgang zugeführt, die durch einen über eine Impedanz 33 gegengekoppelten elektronischen Verstärker 34 vor der Ausgangsklemme A gebildet wird.
- Durch den Strom I3 wird der durch den Hauptstrom Ih mit seinen Wechselstromkomponenten und seiner Gleichstromkomponente hervorgerufene Magnetfluß im Kern des Komparatorwandlers 22 weitgehend ausgeglichen. Durch den noch verbleibenden Rest-Magnetfluß wird in einer Indikatorwicklung 36 ein Signal erzeugt, das über einen Verstärker 37 einen Strom I4 für eine Sekundärwicklung 38 liefert. Diese Sekundärwicklung 38 ist derart angebracht und bemessen, daß sie dem Rest-Magnetfluß im Kern des Komparatorwandlers 22 entgegenwirkt und diesen weitgehend, entsprechend dem Verstärkungsgrad des Verstärkers 37, ausgleicht. Da der Kompensationsstrom I3 durch die Sekundärwicklung 28 auch die Gleichstromkomponente enthält, wird auch diese im Kern des Komparatorwandlers 22 weitgehend mit ausgeglichen. Der Strom I4 von der Wicklung 36 reduziert nur die Wechselanteile im Magnetfluß. Dieser Strom I4 wird auch dem Eingang des Verstärkers 34 zugeführt, so daß, wie in Fig.1, an der Ausgangsklemme A ein Signal auftritt, das aus der Summe der Wechselstromanteile der Ströme I3 und I4 zusammengesetzt ist und von der primärseitigen Ansteuerung des Komparatorwandlers 22 bis auf einen sehr geringen Fehler unabhängig ist. Der Leistungswandler 24 braucht hierbei allerdings nicht im tatsächlichen Sinne Leistung aufzubringen, da die Energie für den kompensierenden Strom I3 vom Verstärker 26 und ggf. dem U/I-Wandler 27 geliefert wird.
- Bei der Ausführungsform nach Fig.3, in der gegenüber Fig.2 gleiche Elemente mit gleichen Bezugszeichen bezeichnet sind, wird der kompensierende Strom I3 wie in Fig. 2 vom Leistungswandler 23 mit einem gleichstromunabhängigen Meßwandlerkern über den in einem Luftspalt angebrachten magnetoelektrischen Fühler 25 und den Verstärker 26 sowie den U/I-Wandler 27 erzeugt. Dieser Strom I3 wird über eine Wicklung 41 des Komparatorwandlers 22 der Bürde 42 gegen Erde zugeführt, und das an diesem entstehende Ausgangsignal wird über einen Trennkondensator 43 an der Ausgangsklemme A gleichstromfrei abgenommen .Durch den gegensinnig fließenden Strom I3 wird im Komparatorwandler eine weitgehende Kompensation des vom Hauptstrom Ih und des vom Kompensationsstrom I3 hervorgerufenen Magnetflusses bewirkt, so daß der Kern des Komparatorwandlers 22 weitgehend in einem magnetflußfreien Zustand bleibt, und zwar sowohl hinsichtlich der für die Messung erwünschten Wechselstromkomponente wie auch hinsichtlich der in der Regel unerwünschten Gleichstromkomponente. Mittels der Indikatorwicklung 44 wird der im Komparatorwandler 22 noch auftretende restliche Wechselstrom-Magnetfluß (Durchflutungsdifferenz) festgestellt und über einen Verstärker 45 und einen U/I-Wandler 46 in einen Kompensationsstrom I4 übergeführt, der zusammen mit dem Strom I3 der Sekundärwicklung 41 zum Ausgang geführt wird. Durch den Kompensationsstrom I4 wird somit, wie auch bei den oben stehenden Figuren, die Kompensation des Wechselstrom-Magnetflusses im Kern des Komparatorwandlers 22 sehr genau bewirkt.
- Ein für einen Leistungswandler 24 gemäß Fig. 2 oder 3 geeigneter Wandler kann ringförmig mit einem Luftspalt ausgebildet sein, wobei durch den Luftspalt einerseits in einfacher Weise die Gefahr der Sättigung verringert wird und darin andererseits ein magneto-elektrisches Element als Signalwandler (Sensor) zum Messen des Magnetflusses angebracht sein kann. Der magnetfeldabhängige Fühler kann unter Ausnutzung des Halleffektes arbeiten oder den magnetoresistiven Effekt ausnutzen, also eine Veränderung des elektrischen Widerstandes je nach einem anliegenden Magnetfeld. Auch ein magnetooptischer Effekt kann mit entsprechenden zusätzlichen optischen Sensorelementen ausgenutzt werden.
- Fig.4 zeigt eine Ausführungsform, bei der auch im Leistungswandler 24 der Magnetfluß weitgehend kompensiert ist. Dazu wird das elektrische Signal vom magneto-elektrischen Signalwandler (Sensor) 25 einem Verstärker 48 zugeführt, der einen Strom I5 liefert, der zunächst durch eine Sekundärwicklung 49 des Leistungswandlers 24 fließt.
- Die Windungszahlen der Primärwicklung 23 und dieser Sekundärwicklung 49 sowie der Verstärkungsgrad des Verstärkers 48 sind so bemessen, daß dadurch, bis auf einen kleinen Regelfehler, der Magnetfluß im Kern des Leistungswandlers 24 ausgeglichen wird. Der Ausgleichstrom I5 durchfließt weiter eine Sekundärwicklung 50 des Komparatorwandlers 22 zur Bürde 42; über den Trennkondensator 43 kann an der Klemme A das gleichstromfreie Ausgangssignal entnommen werden.
- Wie in den vorangehenden Figuren ist weiter am Komparatorkern 22 eine Wicklung 44 angebracht, die über einen Verstärker 45 und einen U/I-Wandler 46 einen dem Rest-Magnetfluß im Kern des Wandlers 22 entsprechendes Wechselstromsignal I4 liefert, da es am Verbindungspunkt der Sekundärwicklungen 49 und 50 eingespeist wird und mit zur Bürde 42 fließt, wodurch eine sehr präzise Kompensation des Wechselstrom-Magnetflusses im Komparatorwandler 22 bewirkt wird.
- Die Ausführungsform nach Fig.5 gleicht weitgehend derjenigen nach Fig.4 und trägt für entsprechenden Teile auch gleiche Bezugszeichen. Der Unterschied besteht darin, daß auch der Komparatorwandler 22 mit einem magnetoelektrischen Sensor 52 ausgerüstet ist, der das Durchflutungsdifferenzsignal über einen Verstärker 53 und einen U/I-Wandler 54 als einen korrigierenden Kompensationsstrom I6 an den Verbindungspunkt der Wicklungen 49 und 50 liefert. Zur Bürde 42 fließt somit ein zusammengesetzter Strom I5 + I6, der am Komparatorwandler 22 auch für Gleichstrom kompensiert ist. Ein weiterer Unterschied besteht darin, daß in der Bürde 42 am Ausgang Am ein Misch strom zur Verfügung steht, der in einem sehr präzisen Verhältnis zum Primärmischstrom Ih steht, der also einen Gleichstromanteil enthält.
- An einem Ausgang Ag kann über ein Wechselstrom sperrendes Filter 56 auch die wechselstromfreie Gleichstromkomponente entnommen werden.
- In der Schaltung nach Fig.5 wird für beide Kerne eine optimale Gleichstrom-Kompensation erreicht, so daß ein Maximum an Genauigkeit für einen Sekundär-Mischstrom erzielt werden kann.
- Durch das Kompensationsprinzip brauchen beide Wandler 22 und 24 nur sehr geringe Leistung zu übertragen, so daß sehr kleine Kerne Verwendung finden können. Die Leistung muß allerdings bei kompensierten Wandlern durch die Verstärker aufgebracht werden.
- Zusammenfassend wurde mit der neuen Anordnung eine Stromwandleranordnung mit erhöhter Genauigkeit geschaffen, bei der ein Leistungswandler (24) und ein Komparatorwandler (22) mit ihren Primärwicklungen (21,23) in einem Hauptstromkreis (Ih) in Reihe liegen, bei der vom Leistungswandler (13) ein Strom erzeugt wird, mit dem im Komparatorwandler (22) der Magnetfluß wenigstens nahezu zu Null kompensiert wird, wobei nach der Erfindung mit Hilfe eines magnetoelektrischen Signalwandlers (25) auch die Gleichstromkomponente des Hauptstromes (Ih) erfaßt und zur Kompensation mit herangezogen wird (Fig.2). Die Gleichstromkomponente kann sogar im Sekundärstrom als präzises Abbild des Primärstromes zur Verfügung stehen (Fig.5).
Claims (12)
dadurch gekennzeichnet,
daß der Leistungswandler (24) auch einen dem Gleichstromanteil des Hauptstromes (Ih) entsprechenden Anteil in den ersten Kompensationsstrom (I3) überträgt.
dadurch gekennzeichnet,
daß der dem Gleichstromanteil des Hauptstromes (Ih) entsprechende Anteil des Meßstromes vor dem Ausgang (A) wieder entfernt wird.
dadurch gekennzeichnet,
daß im Magnetfluß des Leistungsstromwandlers (24) ein magnetfeldabhängiger Signalwandler (Sensor) (25) angeordnet und an dem Eingang eines Verstärkers (26;27) angeordnet ist.
dadurch gekennzeichnet,
daß der Kompensationsstrom (I3) zum Ausgang (A) hin eine getrennte Wicklung (28) des Komparatorwandlers (22) durchfließt.
dadurch gekennzeichnet,
daß der Differenzstrom (I4) eine getrennte Wicklung (38) des Komparatorwandlers (22) durchfließt.
daß der Kompensationsstrom (I3) und der Differenzstrom (I4) die gleiche Wicklung (41) des Komparatorwandlers (22) zum Ausgang (A) hindurchfließen.
dadurch gekennzeichnet,
daß der Kompensationsstrom (I5) auch eine Wicklung (49) des Leistungswandlers (24) durchfließt.
dadurch gekennzeichnet,
daß am Komparatorwandler mittels eines magnetfeldabhängigen Signalwandlers (52) mit Verstärker (53) und ggf. Strom-Spannungs-Wandler (54) ein Differenzstrom-Signal (I6) erzeugt wird.
dadurch gekennzeichnet,
daß der magnetfeldabhängige Wandler (25;52) ein Hall-Generator (25;52) ist.
dadurch gekennzeichnet,
daß der Wandler (25;52) ein magnetfeldabhängiges Widerstandselement ist.
dadurch gekennzeichnet,
daß der magnetfeldabhängige Wandler (25;52) ein magnetooptisches Element enthält.
dadurch gekennzeichnet,
daß der dem Gleichstromanteil entsprechende Anteil des Hauptstromes (Ih) zum Ausgang (Am) übertragen wird, so daß dort ein Sekundärmischstrom zur Verfügung steht.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3918100A DE3918100A1 (de) | 1989-06-02 | 1989-06-02 | Stromwandleranordnung mit erhoehter genauigkeit |
DE3918100 | 1989-06-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0400343A1 true EP0400343A1 (de) | 1990-12-05 |
EP0400343B1 EP0400343B1 (de) | 1993-07-14 |
Family
ID=6381981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90108288A Expired - Lifetime EP0400343B1 (de) | 1989-06-02 | 1990-05-01 | Stromwandleranordnung mit erhöhter Genauigkeit |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0400343B1 (de) |
AT (1) | ATE91566T1 (de) |
DE (2) | DE3918100A1 (de) |
DK (1) | DK0400343T3 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10311441B4 (de) * | 2003-03-15 | 2005-03-10 | Emh Elek Zitaetszaehler Gmbh & | Elektronischer Elektrizitätszähler |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0267498A1 (de) * | 1986-11-11 | 1988-05-18 | Siemens Aktiengesellschaft | Flusskompensierter Stromwandler |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3705450A1 (de) * | 1987-02-20 | 1988-09-01 | Vacuumschmelze Gmbh | Stromwandler zur messung von rechteckstroemen nach dem kompensationsprinzip |
-
1989
- 1989-06-02 DE DE3918100A patent/DE3918100A1/de active Granted
-
1990
- 1990-05-01 DK DK90108288.3T patent/DK0400343T3/da active
- 1990-05-01 DE DE9090108288T patent/DE59001950D1/de not_active Expired - Fee Related
- 1990-05-01 EP EP90108288A patent/EP0400343B1/de not_active Expired - Lifetime
- 1990-05-01 AT AT90108288T patent/ATE91566T1/de not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0267498A1 (de) * | 1986-11-11 | 1988-05-18 | Siemens Aktiengesellschaft | Flusskompensierter Stromwandler |
Also Published As
Publication number | Publication date |
---|---|
ATE91566T1 (de) | 1993-07-15 |
DE59001950D1 (de) | 1993-08-19 |
EP0400343B1 (de) | 1993-07-14 |
DE3918100A1 (de) | 1990-12-06 |
DE3918100C2 (de) | 1992-07-16 |
DK0400343T3 (da) | 1993-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3133908C2 (de) | Kompensierter Meßstromwandler | |
DE69833953T2 (de) | Selbstgespeister stromfühler | |
DE69824662T2 (de) | Hochspannungstrennschaltung für einen Messkanal | |
DE4423429A1 (de) | Stromsensor nach dem Kompensationsprinzip | |
DE2325752C3 (de) | Einrichtung zur Umformung eines Wegs in eine elektrische Größe | |
DE69333695T2 (de) | Schaltung zur Leistungsberechnung | |
DE2130154B2 (de) | Einrichtung zum Nachbilden mindestens einer Gleichstromgröße | |
EP0400343B1 (de) | Stromwandleranordnung mit erhöhter Genauigkeit | |
EP0686850A1 (de) | Schaltungsanordnung zur Messung von Gleichströmen mit Potentialtrennung zwischen Stromkreis und Messkreis | |
DE19845778B4 (de) | Verfahren zur Abbildung von Gleichströmen und Gleichstromwandler zur Durchführung des Verfahrens | |
DE3403855C2 (de) | Meßspannungswandler hoher Genauigkeit | |
EP0029903B1 (de) | Messanordnung für elektrische Ströme | |
EP0053581B1 (de) | Fehlerkompensierter Spannungswandler für Hochspannung | |
DE2927348A1 (de) | Wechselstromzaehler | |
DE3822051C2 (de) | ||
EP0267498B1 (de) | Flusskompensierter Stromwandler | |
DE974154C (de) | Wandler fuer vorzugsweise kleine Gleichstromgroessen auf Magnetverstaerkergrundlage | |
DE739425C (de) | Anordnung zur Verbesserung des Spannungsfehlers und Fehlwinkels von Spannungswandlern | |
DE4019810A1 (de) | Verfahren zum nachweis eines wechselstromes oder gleichstromes | |
DE3443460C2 (de) | ||
DD148681A1 (de) | Schaltungsanordnung zur strommessung mittels eines magnetischen spannungsmessers | |
DE4115604C2 (de) | Schaltungsanordnung zur Reduzierung von Spannungsabfällen in Strompfaden von Zählerprüfeinrichtungen | |
DE4124473A1 (de) | Gesteuerte hilfsleistungsquelle fuer die zaehlerpruefung | |
DE3590658C1 (de) | Verfahren zur Reduzierung des Übertragungsfehlers von Stromwandlern, sowie Praezisionsstromwandler | |
DE1061433B (de) | Messwandler-Pruefeinrichtung nach dem Differenzverfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19910129 |
|
17Q | First examination report despatched |
Effective date: 19921104 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19930714 Ref country code: FR Effective date: 19930714 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19930714 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19930714 |
|
REF | Corresponds to: |
Ref document number: 91566 Country of ref document: AT Date of ref document: 19930715 Kind code of ref document: T |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19930712 |
|
REF | Corresponds to: |
Ref document number: 59001950 Country of ref document: DE Date of ref document: 19930819 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Effective date: 19940501 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19940502 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19940531 |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19941201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
EUG | Se: european patent has lapsed |
Ref document number: 90108288.3 Effective date: 19941210 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90108288.3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990406 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19990520 Year of fee payment: 10 Ref country code: AT Payment date: 19990520 Year of fee payment: 10 Ref country code: BE Payment date: 19990520 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000501 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000721 Year of fee payment: 11 |
|
BERE | Be: lapsed |
Owner name: DEUTSCHE ZAEHLER-GESELLSCHAFT NACHF A. STEPPER & Effective date: 20000531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000501 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020301 |