EP0267498B1 - Flusskompensierter Stromwandler - Google Patents

Flusskompensierter Stromwandler Download PDF

Info

Publication number
EP0267498B1
EP0267498B1 EP87115924A EP87115924A EP0267498B1 EP 0267498 B1 EP0267498 B1 EP 0267498B1 EP 87115924 A EP87115924 A EP 87115924A EP 87115924 A EP87115924 A EP 87115924A EP 0267498 B1 EP0267498 B1 EP 0267498B1
Authority
EP
European Patent Office
Prior art keywords
winding
external
amplifier
current transformer
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87115924A
Other languages
English (en)
French (fr)
Other versions
EP0267498A1 (de
Inventor
Gerhard Dipl.-Phys. Fuchs
Manfred Dipl.-Ing. Schwendtner
Gunther Dipl.-Phys. Vieweg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT87115924T priority Critical patent/ATE85153T1/de
Publication of EP0267498A1 publication Critical patent/EP0267498A1/de
Application granted granted Critical
Publication of EP0267498B1 publication Critical patent/EP0267498B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/42Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils
    • H01F27/422Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers
    • H01F27/427Circuits specially adapted for the purpose of modifying, or compensating for, electric characteristics of transformers, reactors, or choke coils for instrument transformers for current transformers

Definitions

  • the invention relates to a flux-compensated current transformer with a primary winding, a secondary winding and a detector winding for the magnetic flux.
  • an external magnetic alternating field causes a measurement error that significantly affects the accuracy of the measurement.
  • External fields can be generated, for example, by adjacent live cables. When used in billing counters, it can also be expected that an attempt will be made to consciously influence the measurement result by external magnetic fields.
  • the object of the invention is therefore to provide a simplified solution for reducing the influence of external magnetic fields on flux-compensated current transformers.
  • an external field detector winding is arranged spatially parallel to the windings, that it is penetrated at least approximately by the same external field as the windings and that the signal present at the external field detector winding influences the measurement signal of the current transformer in such a way that the influence of an external field is compensated.
  • This external field compensation which is easy to carry out, eliminates influences of external magnetic fields on the measurement result.
  • the current transformer 1 has a primary winding 1a, a secondary winding 1c and a detector winding 1b in a known manner. Furthermore, an external field detector winding 2 is provided, which is arranged spatially parallel to the windings 1a to 1c, so that it is penetrated by the same external field as possible as these windings.
  • the detector winding 1b and the external field detector winding 2 are connected in series and connected to the inverting input of an amplifier 3.
  • the series connection of the secondary winding 1c and a load resistor 4 is connected to the output of the amplifier 3, a voltage drop proportional to the input current being generated at the load resistor 4.
  • this circuit has the function of a flow-compensated current transformer known, for example, from the technical measurement atm, 1978, issue 11, pages 407 to 411.
  • the flux passing through the current transformer is detected by the detector winding 1b and the output signal produced at this winding is fed to the secondary winding 1c with the amplifier 3.
  • the current through the secondary winding 1c is set in such a way that the flux caused by the primary winding 1a is just being compensated for, that is to say the converter becomes free of flux.
  • the current flowing through the secondary winding 1c then represents an image of the primary current I 1, the non-linearities of the current transformer core not falsifying the measurement result because of the flux compensation.
  • the external field detector winding 2 which detects such external fields and eliminates their effect on the measurement result by appropriate connection to the signal detected by the detector winding 1b.
  • a field, caused by the primary current to be measured in winding 1a, does not penetrate the winding 2 arranged outside the core and therefore does not induce any voltage dependent on the primary current I 1.
  • the voltage generated in the converter core by the external field and the voltage generated in the external field detector winding must be opposite in the same way.
  • N 1b , N2 the number of turns of the detector winding 1b or the external field detector winding 2 and A 1b , A2 the respective coil surfaces.
  • the external field detector winding 2 is connected to the detector winding 1b via an amplifier 5.
  • This arrangement has the advantage that the external field detector winding 2 must have fewer turns in accordance with the amplification of the amplifier 5. This is particularly advantageous if the external field detector winding 2 is designed as a printed circuit.
  • the same effect can also be achieved if the amplifier 3 is used as a summing amplifier.
  • the detector winding 1b is connected via a resistor 7 and the external field detector winding 2 is connected to the inverting input of the amplifier 3 via an amplifier 5 and a resistor 6.
  • the detector winding 1b is connected to the inverting input of the amplifier 3 and the output of the amplifier 5 to the non-inverting input of the amplifier 3.
  • the polarity of the external field detector winding 2 must of course be reversed.
  • the measurement error caused by the influence of external fields is eliminated in that the signals of the detector winding 1b are reduced by the signal component generated by the influence of the external field.
  • a largely independent external field measurement voltage is obtained at the resistor 4.
  • the one generated by external field effects Flow in the iron of the current transformer is not compensated, however, which can lead to temperature-dependent size and angle errors of the measured value due to hysteresis losses if the external field is extremely high.
  • the current transformer remains free of flux even when exposed to external fields, and the above-mentioned problem is thus avoided.
  • FIG. 5 shows an embodiment of the invention in which the signals of the detector winding 1b are fed to the inverting input of an amplifier 3.
  • the output signal of the amplifier 3 is fed via the secondary winding 1c and a resistor 4 to a first inverting input of a summing amplifier 11.
  • the output signals of the external field detector winding 2 are supplied to the second inverting input of the summing amplifier 11 via an inverting amplifier 5 and a resistor 10.
  • the signals of the detector winding 1b are fed to the secondary coil 1c via the amplifier 3.
  • This circuit measure completely compensates for the flux in the iron of the current transformer 1.
  • This flux is composed of a portion generated by the primary winding 1a and a portion generated by the influence of an external field. A voltage proportional to the primary current and the influence of external fields is thus present at the resistor 4 connected downstream of the secondary coil 1c.
  • a voltage generated by the external field in the external field detector winding 2 and amplified via the amplifier 5 is present at the resistor 10.
  • a current converter 1, 1 ', 1' ' is assigned to each phase.
  • This circuit measure regulates the flow in the iron of each current transformer 1, 1 ', 1' 'to zero.
  • the secondary coils 1c, 1c ', 1c' ' are each followed by a resistor 4,4', 4 '', to which a voltage proportional to the primary current of each phase and the external field effect is applied.
  • each current transformer 1, 1 ', 1' ' can be compensated for by the voltages of only one external field detector winding 2 via an amplifier 5 and a resistor 10, 10', 10 '' per phase of a first inverting one Input of a summing amplifier 11, 11 ', 11' 'are fed to each phase.
  • the resistor 4,4 ', 4' 'of each phase is connected to a second inverting input of the summing amplifier 11, 11', 11 '' of each phase.
  • the alignment of this arrangement is very simple both for single-wire networks and for three-phase networks.
  • the gain of the amplifier 5 is changed under the influence of an external field without primary current until no voltage is present at the output of the summing amplifier 11.
  • the external field detector winding 2 controls a winding 8 wound on the core of the current transformer 1 via an amplifier 5.
  • the turn ratios of the external field detector winding 2 and the winding 8 and the amplification factor of the amplifier 5 it is achieved that the external field detected with the external field detector winding 2 is compensated in the current transformer 1.
  • FIG. 8 shows an example of the arrangement of the external field detector winding 2.
  • an E-shaped core 9 is used, on the inner leg of which the primary winding 1a, the detector winding 1b and the secondary winding 1c are wound.
  • the external field detector winding 2 is applied to the two outer legs of the core 9.
  • the external field detector winding can also be etched into the circuit board in the region of the current transformer.
  • the circuit board is designed, for example, in the region of the current transformer 1 with a conductor with helical windings as an external field detector winding 2. Since only a few turns are possible here, amplification with an amplifier 5 according to the exemplary embodiments according to FIGS. 2 to 7 is necessary.

Description

  • Die Erfindung betrifft einen flußkompensierten Stromwandler mit einer Primärwicklung, einer Sekundärwicklung und einer Detektorwicklung für den magnetischen Fluß.
  • Bei Stromwandlern wird durch ein äußeres magnetisches Wechselfeld (Fremdfeld) ein Meßfehler hervorgerufen, der die Genauigkeit der Messung erheblich beeinträchtigt. Fremdfelder können beispielsweise durch benachbarte stromführende Leitungen erzeugt werden. Bei Anwendung in Verrechnungszählern ist auch damit zu rechnen, daß der Versuch unternommen wird, das Meßergebnis durch äußere magnetische Felder bewußt zu beeinflussen.
  • Dieses Problem wurde bisher meist mit magnetischen Abschirmungen gelöst. Derartige Abschirmungen sind jedoch, wenn sie ausreichend wirksam sein sollen, relativ teuer und bedingen oftmals einen nicht unerheblichen zusätzlichen Montageaufwand.
  • Aufgabe der Erfindung ist es daher, eine vereinfachte Lösung zur Verminderung des Einflusses magnetischer Fremdfelder auf flußkompensierte Stromwandler anzugeben.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß räumlich parallel zu den Wicklungen eine Fremdfelddetektorwicklung angeordnet ist, daß sie zumindest näherungsweise von demselben Fremdfeld durchsetzt wird wie die Wicklungen und daß das an der Fremdfelddetektorwicklung anstehende Signal das Meßsignal des Stromwandlers so beeinflußt, daß der Einfluß eines Fremdfeldes kompensiert wird. Durch diese einfach durchzuführende Fremdfeldkompensation werden Einflüsse magnetischer Fremdfelder auf das Meßergebnis beseitigt.
  • Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Figuren 1 bis 9 näher erläutert.
  • FIG 1 zeigt ein erstes Ausführungsbeispiel der Erfindung. Der Stromwandler 1 weist in bekannter Weise eine Primärwicklung 1a, eine Sekundärwicklung 1c und eine Detektorwicklung 1b auf. Ferner ist eine Fremdfelddetektorwicklung 2 vorgesehen, die räumlich parallel zu den Wicklungen 1a bis 1c angeordnet ist, so daß sie möglichst von demselben Fremdfeld durchsetzt wird wie diese Wicklungen. Die Detektorwicklung 1b und die Fremdfelddetektorwicklung 2 sind in Reihe geschaltet und an den invertierenden Eingang eines Verstärkers 3 angeschlossen. An den Ausgang des Verstärkers 3 ist die Reihenschaltung der Sekundärwicklung 1c und eines Lastwiderstands 4 angeschlossen, wobei am Lastwiderstand 4 ein dem Eingangsstrom proportionaler Spannungsabfall erzeugt wird.
  • Wenn man die Fremdfelddetektorwicklung 2 zunächst außer Betracht läßt, so weist diese Schaltung die beispielsweise aus der Literaturstelle "Technisches Messen atm", 1978, Heft 11, Seiten 407 bis 411 bekannte Funktion eines flußkompensierten Stromwandlers auf. Der den Stromwandler durchsetzende Fluß wird von der Detektorwicklung 1b erfaßt und das an dieser Wicklung entstehende Ausgangssignal mit dem Verstärker 3 verstärkt der Sekundärwicklung 1c zugeführt. Im Idealfall, d.h. wenn die Verstärkung des Verstärkers 3 gegen unendlich geht, wird der Strom durch die Sekundärwicklung 1c so eingestellt, daß der durch die Primärwicklung 1a verursachte Fluß gerade kompensiert wird, d.h. der Wandler flußfrei wird. Der durch die Sekundärwicklung 1c fließende Strom stellt dann ein Abbild des Primärstroms I₁ dar, wobei wegen der Flußkompensation Nichtlinearitäten des Stromwandlerkerns das Meßergebnis nicht verfälschen.
  • Allerdings gehen Fremdfelder, d.h. äußere magnetische Wechselfelder, die den Stromwandler durchsetzen, ohne entsprechende Kompensationsmaßnahmen voll mit in das Meßergebnis ein.
  • Um dies zu verhindern, ist die Fremdfelddetektorwicklung 2 vorgesehen, die solche Fremdfelder erfaßt und durch entsprechende Aufschaltung auf das von der Detektorwicklung 1b erfaßte Signal deren Wirkung auf das Meßergebnis eliminiert. Ein Feld, hervorgerufen durch den zu messenden Primärstrom in Wicklung 1a, durchsetzt nicht die außerhalb des Kernes angeordnete Wicklung 2 und induziert deshalb auch keine vom Primärstrom I₁ abhängige Spannung.
  • Die im Wandlerkern durch das Fremdfeld erzeugte Spannung und die in der Fremdfelddetektorwicklung erzeugte Spannung müssen entgegengesetzt gleich sein. Die an einer Wicklung erzeugte Spannung U ist proportional der Windungszahl N der Wicklung und deren Fläche A. Für die Spannung U gilt:

    U = - dB dt . N . A
    Figure imgb0001


    Im Falle der Kompensation gilt:

    U 1b = U₂
    Figure imgb0002


    wobei U1b die in der Detektorwicklung 1b induzierte Spannung und U₂ die in der Fremdfelddetektorwicklung 2 erzeugte Spannung ist.
  • Da die Induktion beim Übergang von einem Medium (Eisenkern des Stromwandlers) zum anderen (Luft zwischen Fremdfelddetektorwicklung 2 und Wandlerkern) konstant ist, folgt:

    N 1b . A 1b = N₂ . A₂
    Figure imgb0003


  • Dabei sind N1b,
       N₂ die Windungszahlen der Detektorwicklung 1b bzw. der Fremdfelddetektorwicklung 2 und A1b,
       A₂ die jeweiligen Spulenflächen.
  • FIG 2 zeigt ein weiteres Ausführungsbeispiel der Erfindung, bei dem die Fremdfelddetektorwicklung 2 über einen Verstärker 5 mit der Detektorwicklung 1b verbunden ist. Diese Anordnung hat den Vorteil, daß die Fremdfelddetektorwicklung 2 entsprechend der Verstärkung des Verstärkers 5 weniger Windungen haben muß. Dies ist insbesondere dann von Vorteil, wenn die Fremdfelddetektorwicklung 2 als gedruckte Schaltung ausgeführt ist.
  • Anstatt die von der Detektorwicklung 1b und von der Fremdfelddetektorwicklung 2 nach Verstärkung durch den Verstärker 5 gelieferten Spannungen durch Reihenschaltung zu addieren, kann man denselben Effekt auch erreichen, wenn man den Verstärker 3 als Summierverstärker verwendet. Dies kann z.B. gemäß einem Ausführungsbeispiel nach FIG 3 dadurch erfolgen, daß man die Detektorwicklung 1b über einen Widerstand 7 und die Fremdfelddetektorwicklung 2 über einen Verstärker 5 und einen Widerstand 6 mit dem invertierenden Eingang des Verstärkers 3 verbindet.
  • In einer alternativen Ausführungsform gemäß FIG 4 wird die Detektorwicklung 1b mit dem invertierenden Eingang des Verstärkers 3 und der Ausgang des Verstärkers 5 mit dem nichtinvertierenden Eingang des Verstärkers 3 verbunden. Hierbei muß die Polung der Fremdfelddetektorwicklung 2 selbstverständlich umgekehrt werden.
  • Bei den bisherigen Ausführungen der Erfindung wird der durch Fremdfeldeinwirkung verursachte Meßfehler dadurch aufgehoben, daß die Signale der Detektorwicklung 1b um den durch die Fremdfeldeinwirkung erzeugten Signalanteil vermindert werden. Am Widerstand 4 wird dadurch eine weitgehend fremdfeldunabhängige Meßspannung erhalten. Der durch Fremdfeldeinwirkung erzeugte Fluß im Eisen des Stromwandlers wird jedoch nicht kompensiert, was bei extrem hoher Fremdfeldeinwirkung durch Hysteresisverluste zu temperaturabhängigen Größen- und Winkelfehlern des Meßwertes führen kann.
  • In weiteren vorteilhaften Ausführungsformen gemäß den FIG 5 und 7 bleibt auch bei Fremdfeldeinwirkung der Stromwandler flußfrei und damit wird das vorstehend genannte Problem vermieden.
  • FIG 5 zeigt ein Ausführungsbeispiel der Erfindung, bei dem die Signale der Detektorwicklung 1b dem invertierenden Eingang eines Verstärkers 3 zugeführt werden. Das Ausgangssignal des Verstärkers 3 wird über die Sekundärwicklung 1c und einen Widerstand 4 einem ersten invertierenden Eingang eines Summierverstärkers 11 zugeführt. Die Ausgangssignale der Fremdfelddetektorwicklung 2 werden über einen invertierenden Verstärker 5 und einen Widerstand 10 dem zweiten invertierenden Eingang des Summierverstärkers 11 zugeführt.
  • Die Signale der Detektorwicklung 1b werden über den Verstärker 3 der Sekundärspule 1c zugeführt. Durch diese Schaltungsmaßnahme wird der Fluß im Eisen des Stromwandlers 1 vollständig kompensiert. Dieser Fluß setzt sich aus einem durch die Primärwicklung 1a erzeugten Anteil und aus einem durch Fremdfeldeinwirkung erzeugten Anteil zusammen. Damit liegt an dem der Sekundärspule 1c nachgeschalteten Widerstand 4 eine Spannung proportional zum Primärstrom und zur Fremdfeldeinwirkung an.
  • Am Widerstand 10 liegt eine durch das Fremdfeld in der Fremdfelddetektorwicklung 2 erzeugte und über den Verstärker 5 verstärkte Spannung an.
  • Am Summierpunkt des Summierverstärkers 11 werden die von der Sekundärwicklung 1c und vom Verstärker 5 abgegebenen Spannungen addiert und dem Eingang des Summierverstärkers 11 zugeführt.
  • Am Ausgang des Summierverstärkers 11 wird ein zum Primärstrom proportionales und um die Fremdfeldeinwirkung vermindertes Signal erhalten.
  • In einem Drehstromnetz nach FIG 6 ist jeder Phase ein Stromwandler 1,1',1'' zugeordnet. Dabei werden die Signale der Detektorwicklungen 1b,1b',1b'' über die Verstärker 3,3',3'' den Sekundärspulen 1c,1c',1c'' zugeführt. Durch diese Schaltungsmaßnahme wird der Fluß im Eisen jedes Stromwandlers 1,1',1'' zu Null geregelt. Den Sekundärspulen 1c,1c',1c'' ist jeweils ein Widerstand 4,4',4'' nachgeschaltet, an denen eine Spannung proportional zum Primärstrom jeder Phase und zur Fremdfeldeinwirkung anliegt.
  • Im Drehstromnetz können die durch Fremdfeldeinwirkung in jedem Stromwandler 1,1',1'' erzeugten Spannungen dadurch kompensiert werden, daß die Spannungen nur einer Fremdfelddetektorwicklung 2 über einen Verstärker 5 und einen Widerstand 10,10',10'' je Phase einem ersten invertierenden Eingang eines Summierverstärkers 11,11',11'' jeder Phase zugeführt werden. Der Widerstand 4,4',4'' jeder Phase ist mit einem zweiten invertierenden Eingang des Summierverstärkers 11,11',11'' jeder Phase verbunden. Im Summierpunkt der Summierverstärker 11,11',11'' wird die Ausgangsspannung der Sekundärwicklung 1c,1c',1c'' jeder Phase um die Spannung am Ausgang des Verstärkers 5 vermindert, so daß am Ausgang jedes Summierverstärkers 11,11',11'' ein dem Primärstrom jeder Phase proportionales Ausgangssignal erhalten wird.
  • Der Abgleich dieser Anordnung ist sowohl für Einleiternetze als auch für Drehstromnetze sehr einfach. Die Verstärkung des Verstärkers 5 wird bei Einwirkung eines Fremdfeldes ohne Primärstrom solange verändert, bis am Ausgang der Summierverstärker 11 keine Spannung anliegt.
  • Gemäß einem weiteren Ausführungsbeispiel nach FIG 7 steuert die Fremdfelddetektorwicklung 2 über einen Verstärker 5 eine auf den Kern des Stromwandlers 1 gewickelte Wicklung 8 an. Durch entsprechende Dimensionierung der Windungsverhältnisse der Fremdfelddetektorwicklung 2 und der Wicklung 8 sowie des Verstärkungsfaktors des Verstärkers 5 wird erreicht, daß das mit der Fremdfelddetektorwicklung 2 erfaßte Fremdfeld im Stromwandler 1 kompensiert wird.
  • FIG 8 zeigt ein Beispiel für die Anordnung der Fremdfelddetektorwicklung 2. Im Ausführungsbeispiel wird ein E-förmiger Kern 9 verwendet, auf dessen Innenschenkel die Primärwicklung 1a, die Detektorwicklung 1b und die Sekundärwicklung 1c aufgewickelt sind. Auf die beiden Außenschenkel des Kerns 9 ist die Fremdfelddetektorwicklung 2 aufgebracht.
  • Wenn der Stromwandler auf einer Leiterplatte angeordnet wird, so kann die Fremdfelddetektorwicklung auch in die Leiterplatte im Bereich des Stromwandlers eingeätzt werden. Bei einem in FIG 9 dargestellten Ausführungsbeispiel ist die Leiterplatte beispielsweise im Bereich des Stromwandlers 1 mit einem Leiter mit schneckenförmigen Windungen als Fremdfelddetektorwicklung 2 ausgeführt. Da hierbei nur wenige Windungen möglich sind, ist eine Verstärkung mit einem Verstärker 5 gemäß den Ausführungsbeispielen nach den FIG 2 bis 7 notwendig.

Claims (12)

  1. Flußkompensierter Stromwandler mit einer Primärwicklung (1a), einer Sekundärwicklung (1c) und einer Detektorwicklung (1b) für den magnetischen Fluß, dadurch gekennzeichnet, daß räumlich parallel zu den Wicklungen (1a - 1c) eine Fremdfelddetektorwicklung (2) angeordnet ist, daß sie zumindest näherungsweise demselben Fremdfeld ausgesetzt ist wie die Wicklungen (1a - 1c) und daß das an der Fremdfelddetektorwicklung (2) anstehende Signal das Meßsignal des Stromwandlers (1) so beeinflußt, daß der Einfluß eines Fremdfeldes kompensiert wird.
  2. Flußkompensierter Stromwandler nach Anspruch 1, wobei ein von der Detektorwicklung (1b) angesteuerter Verstärker (3) ausgangsseitig in Reihe zur Sekundärwicklung (1c) geschaltet ist,
    dadurch gekennzeichnet,
    daß die Fremdfelddetektorwicklung (2) in Reihe zur Detektorwicklung (1b) geschaltet ist.
  3. Flußkompensierter Stromwandler nach Anspruch 2,
    dadurch gekennzeichnet,
    daß von der Fremdfelddetektorwicklung (2) ein Verstärker (5) angesteuert wird, der ausgangsseitig in Reihe zur Detektorwicklung (1b) geschaltet ist.
  4. Flußkompensierter Stromwandler nach Anspruch 2,
    dadurch gekennzeichnet,
    daß die von der Detektorwicklung (1b) und von der Fremdfelddetektorwicklung (2) abgegebenen Signale dem als Summierverstärker geschalteten Verstärker (3) zugeführt werden.
  5. Flußkompensierter Stromwandler nach Anspruch 4 für Drehstrom,
    dadurch gekennzeichnet,
    daß je Phase ein Summierverstärker (3) vorgesehen ist, dem die Signale der Detektorwicklung (1b) jeder Phase und einer allen Phasen gemeinsamen Fremdfelddetektorwicklung (2) zugeführt sind.
  6. Flußkompensierter Stromwandler nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die von der Fremdfelddetektorwicklung (2) und der Sekundärwicklung (1c) abgegebenen Signale dem Eingang eines Verstärkers (11) so zugeführt werden, daß am Ausgang des Verstärkers (11) ein fremdfeldkompensiertes und dem Primärstrom proportionales Signal erhalten wird.
  7. Flußkompensierter Stromwandler nach Anspruch 1, wobei ein von der Detektorwicklung 1b angesteuerter Verstärker (3) ausgangsseitig in Reihe zur Sekundärwicklung (1c) geschaltet ist,
    dadurch gekennzeichnet,
    daß die Sekundärwicklung (1c) mit einem ersten Eingang eines Summierverstärkers (11) verbunden ist,
    daß das Signal der Fremdfelddetektorwicklung (2) über einen weiteren Verstärker (5) einem zweiten Eingang des Summierverstärkers (11) so zugeführt wird, daß am Ausgang des Summierverstärkers (11) ein fremdfeldkompensiertes und dem Primärstrom proportionales Signal erhalten wird.
  8. Flußkompensierter Stromwandler nach Anspruch 7,
    dadurch gekennzeichnet,
    daß für Drehstrom je Phase ein Summierverstärker (11) vorgesehen ist, mit dessen erstem Eingang jeweils die Sekundärwicklung (1c) dieser Phase verbunden ist und daß eine allen Phasen gemeinsame Fremdfelddetektorwicklung (2) mit nachgeschaltetem Verstärker (5) vorgesehen ist, wobei der Verstärker (5) ausgangsseitig mit den zweiten Eingängen der Summierverstärker (11) aller Phasen verbunden ist.
  9. Flußkompensierter Stromwandler nach Anspruch 1,
    dadurch gekennzeichnet,
    daß das von der Fremdfelddetektorwicklung (2) abgegebene Signal über einen Verstärker (5) eine Kompensationswicklung (8) des Stromwandlers (1) so ansteuert, daß das Fremdfeld im Stromwandler (1) magnetisch kompensiert wird.
  10. Flußkompensierter Stromwandler nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    daß die Fremdfelddetektorwicklung (2) räumlich den gesamten Stromwandler (1) umfaßt.
  11. Flußkompensierter Stromwandler nach Anspruch 10, wobei der Stromwandler (1) auf einer Leiterplatte montiert ist,
    dadurch gekennzeichnet,
    daß die Fremdfelddetektorwicklung (2) als gedruckte Schaltung auf der Leiterplatte ausgeführt ist.
  12. Flußkompensierter Stromwandler nach eine m der Ansprüche 1 bis 9 mit einem mehrschenkligen Magnetkern (8),
    dadurch gekennzeichnet,
    daß die Fremdfelddetektorwicklung (2) auf mindestens einem Schenkel des Magnetkerns (9) angebracht ist.
EP87115924A 1986-11-11 1987-10-29 Flusskompensierter Stromwandler Expired - Lifetime EP0267498B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87115924T ATE85153T1 (de) 1986-11-11 1987-10-29 Flusskompensierter stromwandler.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3638388 1986-11-11
DE3638388 1986-11-11
DE3718756 1987-06-04
DE3718756 1987-06-04

Publications (2)

Publication Number Publication Date
EP0267498A1 EP0267498A1 (de) 1988-05-18
EP0267498B1 true EP0267498B1 (de) 1993-01-27

Family

ID=25849234

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87115924A Expired - Lifetime EP0267498B1 (de) 1986-11-11 1987-10-29 Flusskompensierter Stromwandler

Country Status (2)

Country Link
EP (1) EP0267498B1 (de)
DE (1) DE3783869D1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8910570D0 (en) * 1989-05-08 1989-06-21 Wellcome Found Acellular vaccine
DE3918100A1 (de) * 1989-06-02 1990-12-06 Stepper & Co Stromwandleranordnung mit erhoehter genauigkeit
GB9918539D0 (en) * 1999-08-06 1999-10-06 Sentec Ltd Planar current transformer

Also Published As

Publication number Publication date
EP0267498A1 (de) 1988-05-18
DE3783869D1 (de) 1993-03-11

Similar Documents

Publication Publication Date Title
DE3133908C2 (de) Kompensierter Meßstromwandler
DE69626431T2 (de) Lineare 2-Weg-Isolationsschaltung
WO2000060366A1 (de) Strommessaufnehmer
EP0691544A2 (de) Stromsensor nach dem Kompensationsprinzip
EP0294590B1 (de) Stromsensor nach dem Kompensationsprinzip
DE102013106099A1 (de) Stromsensoranordnung
DE19542899B4 (de) Wechselstromsensor auf der Basis einer Parallelplattengeometrie und mit einem Shunt zur Selbstspeisung
DE4400418A1 (de) Luftgekoppelter Stromtransformator
EP0267498B1 (de) Flusskompensierter Stromwandler
EP0238524B2 (de) Stromwandleranordnung für einen statischen elektrizitätszähler
DE2812303C2 (de) Stromwandleranordnung mit elektronischer Fehlerkompensation
EP0565946B1 (de) Direktabbildender Stromsensor
DE4202296B4 (de) Magnetisch kompensierter Stromwandler
DE2625354A1 (de) Uebertrager fuer gleich- und wechselstromsignale mit einem ferromagnetischen kern
DE10011047B4 (de) Direktabbildender Stromsensor
EP0686850A1 (de) Schaltungsanordnung zur Messung von Gleichströmen mit Potentialtrennung zwischen Stromkreis und Messkreis
DE19618114A1 (de) Stromkompensierter Stromsensor
DE2927348A1 (de) Wechselstromzaehler
DE2933129C2 (de) Vorrichtung zum Messen von Magnetfeldern
EP4143587B1 (de) Strommessvorrichtung mit hallsensoren
EP0400343B1 (de) Stromwandleranordnung mit erhöhter Genauigkeit
DD157981A3 (de) Messanordnung fuer elektrische stroeme
DD148681A1 (de) Schaltungsanordnung zur strommessung mittels eines magnetischen spannungsmessers
DE102022111747A1 (de) Differenzstromsensor für hohe Ströme
DE4124473A1 (de) Gesteuerte hilfsleistungsquelle fuer die zaehlerpruefung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19880711

17Q First examination report despatched

Effective date: 19910429

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 85153

Country of ref document: AT

Date of ref document: 19930215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3783869

Country of ref document: DE

Date of ref document: 19930311

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930422

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930913

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930929

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931018

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931022

Year of fee payment: 7

Ref country code: BE

Payment date: 19931022

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940118

Year of fee payment: 7

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941029

Ref country code: AT

Effective date: 19941029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941031

Ref country code: CH

Effective date: 19941031

Ref country code: BE

Effective date: 19941031

EAL Se: european patent in force in sweden

Ref document number: 87115924.0

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19941031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

EUG Se: european patent has lapsed

Ref document number: 87115924.0

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051029