EP0400031A1 - Kaltgewalztes blech oder band und verfahren zu seiner herstellung. - Google Patents

Kaltgewalztes blech oder band und verfahren zu seiner herstellung.

Info

Publication number
EP0400031A1
EP0400031A1 EP19890901844 EP89901844A EP0400031A1 EP 0400031 A1 EP0400031 A1 EP 0400031A1 EP 19890901844 EP19890901844 EP 19890901844 EP 89901844 A EP89901844 A EP 89901844A EP 0400031 A1 EP0400031 A1 EP 0400031A1
Authority
EP
European Patent Office
Prior art keywords
titanium
epsilon
strip
cold
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19890901844
Other languages
English (en)
French (fr)
Other versions
EP0400031B1 (de
EP0400031B2 (de
Inventor
Klaus Freier
Walter Zimnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter AG
Original Assignee
Preussag Stahl AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25864488&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0400031(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Preussag Stahl AG filed Critical Preussag Stahl AG
Priority to AT89901844T priority Critical patent/ATE97169T1/de
Publication of EP0400031A1 publication Critical patent/EP0400031A1/de
Publication of EP0400031B1 publication Critical patent/EP0400031B1/de
Application granted granted Critical
Publication of EP0400031B2 publication Critical patent/EP0400031B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing

Definitions

  • the invention relates to a method for producing a sheet or strip and a sheet or strip suitable for deep-drawing according to the preambles of claims 1 and 6.
  • Texture-free cold-rolled strip or sheet is used for deep-drawing rotationally symmetrical steel parts, so that quasi-isotropic forming is possible and the drawn part is free of lobes. This means that a z. B. cylindrical deep-drawn part has no wavy edge.
  • the value for the flat anisotropy is calculated from the anisotropy r for different expansion behavior of the material in the rolling direction as well as at 45 degrees and 90 degrees. Different r values can be set for different deep-drawing properties.
  • tip-free material can only be achieved by normalizing the cold-rolled strip - in a continuous annealing at about 1000 degrees Celsius, the sheet in the final state having an ASTM 8 grain size with a relative tip height of about 0.3 to 0. 4% and Delta r approx. ⁇ 0.1.
  • the final rolling temperatures should be approximately 750 degrees Celsius and the cold rolling degrees should either be below 25% or above 80% and are said to be unfavorable for the cornering
  • Recrystallization temperatures of over 600 degrees Celsius can be worked.
  • DE-OS 3234 574 discloses a generic cold-rolled steel sheet or steel strip suitable for deep drawing. Depending on the content of carbon, oxygen, sulfur and nitrogen, the titanium content should rise to values of up to 0.15%, the reel temperature should be over 700 degrees Celsius or at least 580 degrees Celsius with subsequent hot strip heating to over 700 degrees Celsius . We also recommend a cold rolling degree of 70 - 85% and a continuous annealing at 700 - 900 degrees Celsius with a maximum holding time of two minutes. No information is given on the formation of the material.
  • EP-A1-101 740 recommends a slab heating temperature of less than 1100 degrees Celsius, a final rolling temperature of less than Ar 3 , coiling temperatures of 320-600 degrees Celsius and cold rolling degrees of 50-95% and recrystallizing continuous annealing for a generic cold-rolled steel.
  • a steel with a maximum of 0.005% carbon, a maximum of 0.004% nitrogen and a maximum of 0.02% niobium should be used in combination with one or more of the elements aluminum, chromium, boron or tungsten. High average r values above 1.2 are achieved. There are no indications that the material is tricky after deep-drawing.
  • hot-rolled strip has good quasi-isotropic deformability, but has an inadequate surface quality and tolerances that are too large, and is also not produced in thicknesses below 1.2 mm.
  • the invention is therefore based on the object of proposing a sheet-free or at least low-corner deep-drawing suitable sheet made of steel strip and a corresponding manufacturing process in which continuous annealing at temperatures above A 1 is dispensed with, but can nevertheless be produced inexpensively.
  • the object is achieved by claims 1 and 6.
  • the values of the grain size of at best ASTM 8 corresponding to 490 ⁇ m 2 which are usually achieved in the state of the art for steel St 4 NZ or RSt 14 by normal annealing, can be undercut by recrystallizing annealing using the method according to the invention, wherein additional low yield strength values can be maintained by choosing appropriate ones Cold rolling degrees depending on the titanium content. This has the advantage that high investments in continuous annealing for normalizing treatment can be dispensed with.
  • any desired degree of cold rolling can be set for the production of tip-free material and / or likewise a yield strength between 175 and 450 N / mm 2 with tensile strengths of 310 to 520 N / mm 2 .
  • a particular advantage of the hot strip produced in this way is that there is in principle no restriction with regard to the subsequent cold rolling, provided that the degree of cold rolling is at least approx. 5%, i.e. remains above the known critical weak cold deformation, which leads to coarse grain during recrystallization annealing. So far, the production of almost strip-free cold strip was tied to certain cold rolling degrees, unless normal annealing was to be carried out.
  • the variation of the cold rolling degrees as a function of the amount of titanium alloyed is limited to cold rolling degrees of 45 to 85% with the simultaneous addition of niobium within the specified limits.
  • niobium does not hinder the early formation of titanium nitride, so that even with this steel alloy according to the invention, a pan-cake structure cannot arise during the recrystallizing annealing.
  • a serious technical and economic significance of the invention lies in the use of the thin sheet for rotationally symmetrical deep-drawn parts such as needle bearing cages, pulley halves etc.
  • the sheet according to the invention can be used in these cases without substantial reworking such as cutting off the tips.
  • the low-end point also prevents the formation of sectoral wall weaknesses during deep drawing, so that the drawn parts do not have any imbalance during rotation. Further advantages of low-lobe or lobe-free cold strip are known, so that a further description is unnecessary.
  • FIG. 1 shows three different wells, which are to define the terms used in the following, pointed (Fig. 1a), low-pointed (Fig. 1b) and free (Fig. 1c), since the measurement of the height of the corners with the conventional corner measuring devices, in particular of corner-poor and Tip-free wells with small height differences are problematic even with the smallest deep-drawing burrs on the edge of the well.
  • the cells showed a different deep-drawing result depending on the titanium content at different degrees of cold rolling:
  • Table 2 shows the grain size achieved according to the invention in ASTM units; The achievable grain refinement compared to steels without titanium addition according to the state of the art is considerable and extends up to ASTM 11.
  • the coarsest grain was obtained with a small addition of Ti and a low degree of cold rolling (ASTM 7).
  • ASTM 7 For steel A - D, the hot strip values for the grain size (ASTM 9-10) were compared in FIG. 12.
  • FIGS. 2a, 2b, 2c show corresponding results on cups made from 180 mm round blanks, which were deep-drawn using 100 mm stamps at a retention force of 50 kN.
  • Table 1 also lists the melt analyzes of the steel G with 0.01% titanium, H with 0.02% titanium and I with 0.03% titanium with 0.05% and 0.06% addition of niobium in the process , a comparative steel K with
  • Slabs 220 mm thick were cast in the strand from the melts G - I according to the invention and the comparative melt K. After heating in the pusher furnace to 1250 degrees Celsius, the slab was rolled out into hot strip of 4 mm thickness and coiled and cooled to room temperature. The final roll temperature was 880 degrees Celsius and the reel temperature was 510 degrees Celsius. After pickling, the strips were reduced by cold rolling in different stages from 10 to 80% to sheet thickness and reeled. After coiling, the tightly wound coil was heated to 700 degrees Celsius in the Ludwig annealing furnace and recrystallized annealing at throughput rates of 1.1 tons or 1.8 tons per hour, then cooled to 120 degrees Celsius in the annealing furnace. After tempering with a degree of deformation of 1.1%, the strip was made into sheet metal. Sheet rounds of 90 mm in diameter were deep-drawn into cups using drawing dies of 50 mm in diameter (FIGS. 13-16).
  • FIG. 16 clearly shows that deep-drawing without tipping was not possible with any of the tried and tested degrees of cold rolling.
  • the wells showed a slightly different deep-drawing result depending on the titanium content at different degrees of cold rolling:
  • Corner arm in the range of 60 to 70% cold rolling degrees.
  • yield strength and tensile strength values were found to be more than 50 N / mm 2 above the characteristic values of the only titanium-alloyed material.
  • the melts L and M according to the invention listed in Table 1 with phosphorus contents at the upper analysis limit were treated like steels A - F.
  • the reel temperature was 510 and 500 degrees Celsius, respectively.
  • the consistency of the results was checked over the entire strip length in order to confirm the effectiveness of the annealing.
  • the wells from the deep-drawing test are shown in FIGS. 17 and 18, respectively. They show that tip-free material was produced both at the beginning of the tape (position 0) and after every further quarter of the length of the tape up to the end of the tape (position 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Description

Kaltgewalztes Blech oder Band und Verfahren zu seiner Herstellung
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung eines Bleches oder Bandes sowie ein zum Tiefziehen geeignetes Blech oder Band gemäß den Oberbegriffen der Ansprüche 1 und 6.
Zum Tiefziehen von rotationssymmetrischen Stahlteilen wird möglichst texturfreies kaltgewalztes Band oder Blech eingesetzt, damit ein quasiisotropes Umformen möglich und das gezogene Teil zipfelfrei ist. Damit ist gemeint, daß ein z. B. zylindrisch tiefgezogenes Teil keinen welligen Rand aufweist.
Eine vollkommene Zipfelfreiheit ist nur von isotropem Material ohne Seigerungen, ohne nichtmetallische Einschlüsse, ohne perlschnurartige Zementitausscheidungen und bei pan-cake-freiem Gefüge zu erwarten. Daher wird in der folgenden Beschreibung nur der Begriff "zipfelarmes" auch für nach dem Stand der Technik "zipfelfreies" Band verwendet.
In "Blech, Rohre, Profile" 9/1977, S. 341 - 346 wird detailliert die Ursache für die Zipfelbildung beschrieben und ein Maß für die relative Zipfelhöhe Z sowie die ebene Anisotropie Delta r definiert. Ideal wären jeweils Ergebnisse mit dem Wert Null (zipfelfreies Material).
Der Wert für die ebene Anisotropie errechnet sich aus der Anisotropie r für unterschiedliches Ausdehnungsverhalten des Materials in Walzrichtung sowie unter 45 Grad und 90 Grad dazu. Für unterschiedliche Tiefzieheigenschaften sind verschiedene r-Werte einstellbar. Für die in der Veröffentlichung erwähnten Stähle läßt sich zipfelfreies Material nur durch Normalglühen des kaltgewalzten Bandes-in einer Durchlaufglühe bei etwa 1000 Grad Celsius erreichen, wobei das Blech im Endzustand eine Korngröße ASTM 8 bei einer relativen Zipfelhöhe von ca. 0,3 bis 0,4 % und Delta r ca. ± 0,1 erreichen.
Für nicht normalisierend geglühtes Band sei nur ein zipfelarmer Zustand durch Kompromisse in der Verfahrensführung bei der Blechherstellung zu erreichen. Dabei sollen die Walzendtemperaturen ca. 750 Grad Celsius und die Kaltwalzgrade entweder unter 25 % oder über 80 % liegen und mit als für die Zipfeligkeit ungünstig bezeichneten
Rekristallisationstemperaturen von über 600 Grad Celsius gearbeitet werden.
Beschrieben wird weiterhin, daß ein Normalisieren nicht im Bund, sondern nur in einer Durchlaufglühe erfolgen kann, weil bei den hohen Temperaturen die Bänder zusammenkleben würden.
Aus der DE-OS 3234 574 ist ein gattungsgemäßes zum Tiefziehen geeignetes kaltgewalztes Stahlblech oder Stahlband bekannt. Der Titangehalt soll, in Abhängigkeit der Gehalte an Kohlenstoff, Sauerstoff, Schwefel und Stickstoff, auf Werte bis 0,15 % steigen können, die Haspeltemperatur über 700 Grad Celsius oder mindestens jedoch 580 Grad Celsius mit anschließender Warmband-Erwärmung auf über 700 Grad Celsius betragen. Weiterhin wird ein Kaltwalzgrad von 70 - 85 % sowie ein Durchlaufglühen bei 700 - 900 Grad Celsius mit maximal zwei Minuten Haltezeit empfohlen. Hinweise zur Zipfelbildung des Materials werden nicht gegeben. Aus der EP-A1-101 740 wird für einen gattungsgemäßen kaltgewalzten Stahl eine Brammenerwärmungstemperatur kleiner als 1100 Grad Celsius, eine Walzendtemperatur von unter Ar3, Haspeltemperaturen von 320 - 600 Grad Celsius und Kaltwalzgrade von 50 - 95 % sowie rekristallisierendes Durchlaufglühen empfohlen. Dabei soll ein Stahl mit maximal 0,005 % Kohlenstoff, maximal 0,004 % Stickstoff und maximal 0,02 % Niob in Kombination mit einem oder mehreren der Elemente Aluminium, Chrom, Bor oder Wolfram Verwendung finden. Erzielt werden hohe mittlere r-Werte oberhalb 1,2. Hinweise auf die Zipfligkeit des Materials nach dem Tiefziehen sind nicht offenbart.
Ein weiteres Verfahren zur Herstellung tiefziehgeeigneter Stähle mit Brammenglühtemperatur kleiner 1100 Grad Celsius, Endwalztemperatur max. 780 Grad Celsius und Haspeltemperaturen von mindestens 450 Grad Celsius sowie Kaltbandglühen im Haubenoder Durchlaufglühofen sind in der EP-B1-120 976 offenbart. Das Verfahren soll r-Werte um 2 erzielen; Werte für die Zipfelbildung sind nicht offenbart.
Es ist allgemein bekannt, daß Warmband eine gute quasiisotrope Unforrribarkeit besitzt, jedoch eine nicht ausreichende Oberflächengüte und zu große Toleranzen aufweist und zudem nicht in Dicken unter 1,2 mm hergestellt wird.
Von daher liegt der Erfindung die Aufgabe zugrunde, ein zipfelfreies oder zumindest zipfelarmes tiefziehgeeignetes Blech aus Stahlband und ein entsprechendes Herstellverfahren vorzuschlagen, bei dem auf das Durchlaufglühen bei Temperaturen oberhalb A1 verzichtet, aber trotzdem kostengünstig produziert werden kann. Die Aufgabe wird erfindungsgemäß durch die Ansprüche 1 und 6 gelöst.
Vorteilhafte Weiterbildungen der Erfindung sind in den
Unteransprüchen erfaßt.
Überraschenderweise hat sich gezeigt, daß bei Anwendung der erfindungsgemäßen Brammen-, Glüh-, Walz- und Haspeltemperaturen für den genannten Stahl ein rekristallisierendes Glühen eines Bundes im Haubenofen ausreicht, um dem Stahlband oder demkonfektionierten Stahlblech hervorragende Tiefzieheigenschaften, insbesondere eine extreme Zipfelarmut, zu geben.
Die üblicherweise beim Stand der Technik für den Stahl St 4 NZ oder RSt 14 durch Normalglühen erreichten Werte der Korngröße von bestenfalls ASTM 8 entsprechend 490 μm2 können durch das erfindungsgemäße Verfahren durch rekristallisierendes Glühen unterschritten werden, wobei zusätzlich niedrige Streckgrenzenwerte beibehalten werden können durch Wahl entsprechender Kaltwalzgrade in Abhängigkeit vom Titangehalt. Dies ergibt den Vorteil, daß auf hohe Investitionen für eine Durchlaufglühe für eine Normalglühbehandlung verzichtet werden kann.
Durch Variation der Zulegierung von Titan in den angegebenen Grenzen läßt sich praktisch jeder gewünschte Kaltwalzgrad für die Erzeugung zipfelfreien Materials einstellen und/oder genauso ebenfalls eine Streckgrenze zwischen 175 und 450 N/mm2 bei Zugfestigkeiten von 310 bis 520 N/mm2.
Eine der Ursachen für die günstigen Eigenschaften des erzeugten Bleches ist in der frühzeitigen Bildung von Titannitrid zu sehen, so daß ein pan-cake-Gefüge während des rekristallisierenden Glühens durch die Aluminium-Nitrid-Ausscheidungen nicht entstehen kann. Durch die Wahl niedriger Haspel temper aturen um 520 Grad Celsius wurden überraschend Warmbandqualitäten erzielt, die nach dem Kaltwalzen ein zipfelfreies Material gewährleisteten und eine zusätzliche Kornverfeinerung ermöglichten.
Ein besonderer Vorteil des so hergestellten Warmbandes liegt darin, daß im Grundsatz keinerlei Restriktion hinsichtlich des anschließenden Kaltwalzens besteht, sofern der Kaltwalzgrad mindestens ca. 5 % beträgt, d.h. oberhalb der bekannten kritischen schwachen Kaltverformung bleibt, die beim Rekristallisationsglühen zu grobem Korn führt. Bisher war man bei der Erzeugung annähernd zipfelfreien Kaltbandes an bestimmte Kaltwalzgrade gebunden, sofern nicht normalgeglüht werden sollte.
Es wurde überraschend gefunden, daß zwar ein gewisser Titangehalt in der Stahllegierung unerlässlich ist, um das erfindungsgemäße Verfahren durchführen zu können und erfindungsgemäße Materialeingenschaften zu erzielen, aber diese Verfahrensparameter zumindest hinsichtlich des Kaltwalzgrades dann anzupassen sind, wenn der Stahllegierung das festigkeitssteigernde Element Niob hinzugefügt wird.
Die Variation der Kaltwalzgrade in Abhängigkeit von der Menge des zulegierten Titans ist bei gleichzeitiger Zulegierung von Niob in den angegebenen Grenzen auf Kaltwalzgrade von 45 bis 85 % beschränkt.
Die Zulegierung von Niob behindert nicht die frühzeitige Bildung von Titannitrid, so daß auch bei dieser erfindungsgemäßen Stahllegierung ein pan-cake-Gefüge während des rekristallisierenden Glühens nicht entstehen kann. Eine gravierende technische und wirtschaftliche Bedeutung der Erfindung liegt in der Verwendung des Feinbleches für rotationssymmetrisch tiefgezogene Teile wie Nadellagerkäfige, Riemenscheibenhälften usw. Das erfindungsgemäße Blech kann in diesen Fällen ohne wesentliche Nacharbeit wie Abschneiden der Zipfel eingesetzt werden. Die Zipfelarmut verhindert beim Tiefziehen auch das Entstehen sektoraler Wandschwächungen, so daß die gezogenen Teile bei Rotation keine Unwucht aufweisen. Weitere Vorteile zipfelarmen oder zipfelfreien Kaltbandes sind bekannt, so daß sich eine weitere Beschreibung erübrigt.
Einige Ausführungsbeispiele sollen das Ergebnis des erfindungsgemäßen Verfahrens verdeutlichen.
Aus den erfindungsgemäßen Schmelzen A - D sowie den Vergleichsschmelzen E - F (Tabelle 1) werden Brammen von 210 mm Dicke im Strang vergossen. Nach Erwärmung im Stoßofen auf 1250 Grad Celsius wurde die Bramme zu Warmband von 3 mm Dicke ausgewalzt, gehaspelt und auf Raumtemperatur abgekühlt. Die Walzendtemperaturen und Haspeltemperaturen zeigt Tabelle 2. Nach dem Beizen wurden Bänder durch Kaltwalzen in unterschiedlichen Stufen von 10 % bis zu 80 % auf Feinblechdicke reduziert und erneut gehaspelt. Das Bund wurde im Haubenglühofen der Bauart Fa. Ludwig auf 700 Grad Celsius erwärmt, mit einem Durchsatz von 1 , 1 t/h bis 1, 9 t/h rekristallisierend geglüht und anschließend im Ofen auf 120 Grad Celsius abgekühlt. Nach dem Dressieren mit Umformgraden von 1 - 1, 2 % wurde das Band zu Blechtafeln konfektioniert.
Blechronden von 90 bzw. 180 mm Durchmesser wurden mit Ziehstempeln von 50 bzw. 100 mm Durchmesser bei Haltekräften von 50 kN zu Näpfchen tiefgezogen. Figur 1 zeigt drei verschiedene Näpfchen, die die im folgenden verwendeten Begriffe zipfelig (Fig. 1a), zipfelarm (Fig. 1b) und zipfelfrei (Fig. 1c) definieren sollen, da die Messung der Zipfelhöhe mit den handelsüblichen Zipfelmeßgeräten, insbesondere von zipfelarmen und zipfelfreien Näpfchen mit geringen Höhendifferenzen bereits bei kleinsten Tiefziehgraten auf dem Näpfchenrand problematisch ist.
Diese Definition wurde für Figur 10 zur Darstellung der Zipfeligkeit von Näpfchen aus den verschiedenen Schmelzen übernommen. Bestätigt wurde die Erkenntnis, daß der bei 710 Grad Celsius gehaspelte Stahl E nur bei Kaltwalzgraden kleiner ca. 25 % zipfelfrei ist und im Bereich 30 - 50 % Kaltwalzgrad allenfalls als zipfelarm bezeichnet werden kann. Für den Vergleichsstahl F der gemäß Stand der Technik bei 500 Grad Celsius gehaspelt wurde, wurde Zipfeligkeit bei Kaltwalzgraden größer 30 % festgestellt. Die Fotos in den Figuren 8 und 9 belegen dies eindrucksvoll.
Bei Verwendung der erfindungsgemäß gewalzten und geglühten Stähle A - D zeigten die Näpfchen in Abhängigkeit vom Titangehalt bei verschiedenen Kaltwalzgraden ein unterschiedliches Tiefziehergebnis:
Stahl A mit 0,01 % Ti:
Die Näpfchen waren bei Kaltwalzgraden von Epsilon = 30 - 50 % absolut zipfelfrei, während Kaltwalzgrade von 20 % bzw. 60 % nur zipfelarmes Näpfchen-Ziehen ermöglichte.
Stahl B mit 0,02 % Ti:
Zipfelfrei bei Epsilon = 10 % sowie 50 - 80 % Zipfelarm bei Epsilon = 20 %; 40 %
Stähle C1/C2 mit 0,03 % Ti, wobei C1 mit 500 Grad Celsius und C2 mit 450 Grad Celsius gehaspelt wurde:
Zipfelfrei bei Epsilon = 10 - 20 % sowie 60 - 80 %
Zipfelarm bei Epsilon = 30 %; 50 %
Stahl D mit 0,04 % Ti:
Zipfelfrei bei Epsilon = 60 - 70 % bzw. 20 %
Zipfelarm bei Epsilon = 15 %, 25 % ; 55 %; 80 %
Aus dem Vergleich der Kurven für die Stähle A - D lassen sich Tendenzen ablesen, die für Zwischenwerte des Legierungselementes Titeln beispielsweise 0,025 % Ti - ausgehend von Stahl B - zipfelfreies Näpfchenziehen bei Kaltwalzgraden bis 15 % oder 20 % und bis 85 % erwarten lassen, also eine Kurvenverschiebung nach rechts; bei Werten zwischen 0,01 % und 0,02 % umgekehrt eine Verschiebung der "zipfelfreien" Kaltwalzgrade zu niedrigeren Umformverhältnissen nahelegen.
Die zu den Stählen gemäß Figur 10 und Tabelle 1 bzw. 2 korrespondierenden Fotos der Figuren 3 bis 7 von tiefgezogenen Näpfchen veranschaulichen das Ergebnis deutlich.
Überraschend zeigte sich, daß den "zipfelfreien" Umformgraden jeweils ein bestimmtes Zugfestigkeits- und Streckgrenzenniveau zugeordnet werden konnte (Figur 11 ) und die größte Zipfeligkeit gleichzeitig bei der niedrigsten Streckgrenze/Zugfestigkeit festzustellen war.
Beispiel: Stahl B a) Zipfelfreiheit beim Kaltwalzgrad 10 % - 15 % ≙ Streckgrenzenniveau Rp0,2= 400 - 350 N/mm2 Zugfestigkeitsniveau Rm = 450 - 400 N/mm2
b) Zipfeligkeit beim Kaltwalzgrad 30 % ≙ Rp0,2= 180 N/mm2 und Rm = 320 N/mm2
c) Zipfelfreiheit beim Kaltwalzgrad 50 - 80 % ≙ Rp0, 2= 250 - 280 N/mm2 und Rm = 360 - 370 N/mm2
Diese Erkenntnis ermöglicht eine bauteil- oder funktionsangepaßte Wahl der Festigkeit für ein und dasselbe Bauteil durch Änderung der Parameter Titangehalt und Kaltwalzgrad.
Tabelle 2 zeigt korrespondierend zu Figur 12 die erfindungsgemäß erzielte Korngröße in ASTM-Einheiten; die erzielbare Kornverfeinerung gegenüber Stählen ohne Titanzusatz nach dem Stand der Technik ist erheblich und reicht bis ASTM 11.
Das gröbste Korn wurde bei geringem Ti-Zusatz und geringem Kaltwalzgrad erzielt (ASTM 7). Vergleichsweise wurden bei den Stählen A - D die Warmband-Werte für die Korngröße (ASTM 9-10) in die Figur 12 aufgenommen.
Für einen Stahl C (Varianten C3 - C5) wurden Versuche mit variabler Haspeltemperatur Th und Glühdurchsatz Pg durchgeführt (Tabelle 3) . Während Schwankungen in der Durchsatzmenge des Haubenglühofens von 1,1 - 1,9 t/h sowohl die Korngröße als auch die ebene Anisotropie Delta r nicht negativ beeinflußten, hatte eine Erhöhung der Haspeltemperaturen auf 710 Grad Celsius bei annähernd gleichen Walzendtemperaturen eine Kornvergroberung und eine Verschlechterung der ebenen Anisotropie zur Folge. Die Figuren 2a, 2b, 2c zeigen entsprechende Ergebnisse an Näpfchen aus 180 mm-Ronden, die mit 100 mm-Stempeln bei 50 kN Rückhaltekraft tiefgezogen wurden.
In Tabelle 1 sind auch die Schmelzanalysen des erfindungsgemäß bei dem Verfahren einzusetzenden Stahles G mit 0,01 % Titan, H mit 0,02 % Titan und I mit 0,03 % Titan bei 0,05 % bzw. 0,06 % Niobzugabe aufgelistet, dazu wurde ein Vergleichsstahl K mit
0,05 % Niobzugabe, aber ohne Titangehalt aufgeführt.
Aus den erfindungsgemäßen Schmelzen G - I sowie der Vergleichsschmelze K wurden Brammen von 220 mm Dicke im Strang vergossen. Nach Erwärmung im Stoßofen auf 1250 Grad Celsius wurde die Bramme zu Warmband von 4 mm Dicke ausgewalzt und gehaspelt sowie auf Raumtemperatur abgekühlt. Die Walzendtemperatur betrug 880 Grad Celsius und die Haspeltemperatur 510 Grad Celsius. Nach dem Beizen wurden die Bänder durch Kaltwalzen in unterschiedlichen Stufen von 10 bis 80 % auf Feinblechdicke reduziert und erneut gehaspelt. Nach dem Haspeln wurde das festgewickelte Bund im Haubenglühofen der Bauart Fa. Ludwig auf 700 Grad Celsius erwärmt und bei Durchsatzraten von 1,1 Tonnen bzw. 1,8 Tonnen pro Stunde rekristallisierend geglüht, anschließend im Haubenglühofen auf 120 Grad Celsius abgekühlt. Nach dem Dressieren mit einem Umformgrad von 1,1 % wurde das Band zu Blechtafeln konfektioniert. Blechronden von 90 mm Durchmesser wurden mit Ziehstempeln von 50 mm Durchmesser zu Näpfchen tiefgezogen (Figuren 13 - 16).
Für den Vergleichsstahl K, der in der Legierung kein Titan enthält, ansonsten zu der gattungsgemäßen Stahlsorte gehört, zeigt Fig. 16 deutlich, daß bei keinem der erprobten Kaltwalzgrade zipfelfreies Tiefziehen möglich war. Bei Verwendung der erfindungsgemäß gewalzten und geglühten Stähle G bis I zeigten die Näpfchen in Abhängigkeit vom Titangehalt bei verschiedenen Kaltwalzgraden ein geringfügig unterschiedliches Tiefziehergebnis:
Stahl G mit 0,01 % Titan (Fig. 13):
Die Näpfchen waren bei Kaltwalzgraden von Epsilon = 45 bis 85 % in der Kategorie zipfelarm und bei etwa 60 bis 80 % Kaltwalzgraden sogar zipfelfrei.
Stahl H mit 0,02 % Titan (Fig. 14):
Zipfelarm im Bereich Epsilon = 55 bis 85 % fast zipfelfrei im
Bereich von 60 bis 75 %.
Stahl I mit 0,03 % Titan (Fig. 15):
Zipfelarm im Bereich von 60 bis 70 % Kaltwalzgraden.
Bei den erfindungsgemäß hergestellten Stählen konnten beispielsweise bei einem Titangehalt von 0,01 % am tiefziehfertigen Blech Streckgrenz- und Zugfestigkeitswerte festgestellt werden, die um mehr als 50 N/mm2 über den Kennwerten des nur titanlegierten Materials lagen.
Die in Tabelle 1 aufgeführten erfindungsgemäßen Schmelzen L bzw. M mit Phosphorgehalten an der oberen Analysengrenze wurden behandelt wie die Stähle A - F. Die Haspeltemperatur betrug 510 bzw. 500 Grad Celsius. Bei einem Kaltwalzgrad von 66 % wurde die Konstanz der Ergebnisse über die gesamte Bandlänge geprüft, um die Effektivität des Bundglühens zu bestätigen. Die Näpfchen aus dem Tiefziehversuchen sind in Fig. 17 bzw. 18 dargestellt. Sie zeigen, daß zipfelfreies Material sowohl am Bandanfang (Position 0) als auch nach jedem weiteren Viertel des Bandlänge bis zum Bandende (Position 1) erzeugt wurde.
Tabe l l e 2
Stahl Tw Th K Figur °C °C min / max
A 860 490 10 / 7 3
B 870 500 11 / 9 4
C1 870 500 11 / 9 5
C2 880 450 11 / 9 6
D 890 430 11 / 9 7
E 900 710 9 / 4 8
F 890 500 9 / 6 9
Tabe l l e 3
Stahl Tw Th Pg K Δ r Figur
°C °C t/h min /max
C3 880 520 1,1 9 - 10 -0,07/+0,06 2a
C4 915 540 1,9 9 - 10 -0,04/+0,08 2b
C5 870 710 1,9 8 - 9 +0,09/+0,17 2c
In Tabelle 2 und 3 bedeuten
Tw Walzendtemperatur
Th Haspeltemperatur
K Korngröße nach ASTM
Pg Glühdurchsatz
Δr ebene Anisotropie

Claims

Kaltgewalztes Blech oder Band und Verfahren zu seiner Herstellung
Patentansprüche
1. Verfahren zur Herstellung eines kaltgewalzten Bleches oder Bandes mit guter önformbarkeit aus Stahl mit folgender Zusammensetzung in Gewichtsprozenten:
max. 0,10 % Kohlenstoff max. 0,40 % Silizium 0 , 10 bis 1 ,0 % Mangan max. 0,08 % Phosphor max. 0,02 % Schwefel max. 0,009 % Stickstoff
0,015 bis 0,08 % Aluminium
0,01 bis 0,04 % Titan max. 0,15 % von einem oder mehreren der
Elementen aus der Gruppe Kupfer,
Vanadium, Nickel, Rest Eisen und unvermeidbare Verunreinigungen,
welches nach dem Warmwalzen und Kaltwalzen geglüht wird, dadurch gekennzeichnet, daß die Bramme auf oberhalb 1120 Grad Celsius erwärmt und zu Warmband bei einer Walzendtemperatur oberhalb des Ar3-Punktes ausgewalzt und bei 520 ± 100 Grad Celsius gehaspelt und nach dem Kaltwalzen rekristallisierend im Bund geglüht wird.
2. Verfahren zur Herstellung eines kaltgewalzten Bleches oder Bandes gemäß Anspruch 1, dadurch gekennzeichnet, daß es in Abhängigkeit vom Titangehalt mit nachstehenden Umformgraden (Epsilon) kaltgewalzt wird: ca. 0,01 % Titan: Epsilon 20 - 60 %, vorzugsweise 30 - 50 %
ca. 0,02 % Titan: Epsilon 5 - 20 %, vorzugsweise 10 - 15 % oder Epsilon 40 - 85 %, vorzugsweise 50 - 80 %
ca. 0,03 % Titan: Epsilon 5 - 25 %, vorzugsweise 10 - 20 % oder Epsilon 50 - 85 %. vorzugsweise 60 - 80 %
ca. 0,04 % Titan: Epsilon 15 - 25 %, vorzugsweise 20 % oder
Epsilon 55 - 80 %, vorzugsweise 60 - 70 %
und anschließend bei Temperaturen unterhalb A1 rekristallisierend geglüht und danach mit einem Umformgrad von ca. 1 % dressiert wird.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Stahl eingesetzt wird, der zusätzlich 0,01 - 0,06 % Niob enthält.
Verfahren zur Herstellung eines kaltgewalzten Bleches oder Bandes gemäß Anspruch 1, dadurch gekennzeichnet, daß es in Abhängigkeit vom Titangehalt mit nachstehenden Umformgraden (Epsilon) kaltgewalzt wird: ca. 0,01 % Titan: Epsilon 45 bis 85 % ca. 0,02 % Titan: Epsilon 55 bis 85 % ca. 0,03 % Titan: Epsilon 60 bis 70 %
und anschließend bei Temperaturen unterhalb A1 rekristallisierend geglüht und danach mit einem Umformgrad von ca. 1 % dressiert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Stahl nach dem Kaltwalzen im Festbund geglüht wird.
6. Zum Tiefziehen geeignetes Blech oder Band aus Stahl in der angegebenen Zusammensetzung und hergestellt nach einem der in den Ansprüchen 1 bis 5 angegebenen Verfahren, gekennzeichnet durch ein rekristallisiertes Gefüge mit einer Ferritkorngröße feiner als ASTM 7 für einen Titangehalt von 0,01 % und feiner als ASTM 9 für Titangehalte von 0,015 bis 0,04 %.
7. Zum Tiefziehen geeignetes Blech oder Band gemäß Anspruch 6, dadurch gekennzeichnet, daß der Titangehalt mindestens dem 3,5-fachen des Stickstoffgehaltes entspricht.
8. Verwendung eines gemäß einem der Verfahren nach Anspruch 1 bis 5 hergestellten Bleches oder Bandes für das zipfelarme Tiefziehen vorzugsweise von rotationssymmetrischen
Teilen.
9. Verwendung eines Stahles gemäß Anspruch 1 oder 3 für die Herstellung tiefgezogener, vorzugsweise rotationssymmetrischer Teile.
EP89901844A 1988-01-29 1989-01-27 Kaltgewalztes blech oder band und verfahren zu seiner herstellung Expired - Lifetime EP0400031B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89901844T ATE97169T1 (de) 1988-01-29 1989-01-27 Kaltgewalztes blech oder band und verfahren zu seiner herstellung.

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE3803064A DE3803064C2 (de) 1988-01-29 1988-01-29 Kaltgewalztes Blech oder Band und Verfahren zu seiner Herstellung
DE3803064 1988-01-29
DE3843732 1988-12-22
DE3843732A DE3843732C2 (de) 1988-01-29 1988-12-22 Kaltgewalztes Blech oder Band und Verfahren zu seiner Herstellung
PCT/DE1989/000057 WO1989007158A1 (fr) 1988-01-29 1989-01-27 Tole ou feuillard lamines a froid et procede pour leur fabrication

Publications (3)

Publication Number Publication Date
EP0400031A1 true EP0400031A1 (de) 1990-12-05
EP0400031B1 EP0400031B1 (de) 1993-11-10
EP0400031B2 EP0400031B2 (de) 2002-01-02

Family

ID=25864488

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89901844A Expired - Lifetime EP0400031B2 (de) 1988-01-29 1989-01-27 Kaltgewalztes blech oder band und verfahren zu seiner herstellung

Country Status (8)

Country Link
US (1) US5139580A (de)
EP (1) EP0400031B2 (de)
JP (1) JPH0814003B2 (de)
DD (1) DD285298B5 (de)
DE (3) DE3803064C2 (de)
ES (1) ES2018975A6 (de)
GR (1) GR1000537B (de)
WO (1) WO1989007158A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4015249A1 (de) * 1989-05-09 1991-02-28 Salzgitter Peine Stahlwerke Verfahren zur herstellung von feuerverzinktem kaltband
WO1990013672A1 (de) * 1989-05-09 1990-11-15 Stahlwerke Peine-Salzgitter Ag Verfahren zur herstellung von coilbreak-freiem warmband und alterungsbeständigem feuerverzinktem kaltband
US5686194A (en) * 1994-02-07 1997-11-11 Toyo Kohan Co., Ltd. Resin film laminated steel for can by dry forming
US5556485A (en) * 1994-11-07 1996-09-17 Bethlehem Steel Corporation Bake hardenable vanadium containing steel and method of making thereof
DE19543804B4 (de) * 1995-11-24 2004-02-05 Salzgitter Ag Verfahren zur Herstellung von feuerverzinktem Stahlband und damit hergestelltes feuerverzinktes Blech oder Band aus Stahl
DE19547181C1 (de) * 1995-12-16 1996-10-10 Krupp Ag Hoesch Krupp Verfahren zur Herstellung eines kaltgewalzten, höherfesten Bandstahles mit guter Umformbarkeit bei isotropen Eigenschaften
US5656102A (en) * 1996-02-27 1997-08-12 Bethlehem Steel Corporation Bake hardenable vanadium containing steel and method thereof
DE19622164C1 (de) * 1996-06-01 1997-05-07 Thyssen Stahl Ag Verfahren zur Erzeugung eines kaltgewalzten Stahlbleches oder -bandes mit guter Umformbarkeit
BE1011066A3 (fr) * 1997-03-27 1999-04-06 Cockerill Rech & Dev Acier au niobium et procede de fabrication de produits plats a partir de celui-ci.
DE19736509A1 (de) * 1997-08-22 1999-04-22 Krupp Ag Hoesch Krupp Verfahren zur Herstellung eines kaltgewalzten Ti-IF-Bandstahles mit hervorragender Umformbarkeit bei isotropen Eigenschaften
DE19834361A1 (de) * 1998-07-30 2000-02-03 Schaeffler Waelzlager Ohg Bauteil, insbesondere Wälzlager- und Motorenbauteil
DE19840788C2 (de) * 1998-09-08 2000-10-05 Thyssenkrupp Stahl Ag Verfahren zur Erzeugung von kaltgewalzten Bändern oder Blechen
EP1253209A3 (de) * 1998-12-30 2005-03-02 Hille & Müller GmbH Stahlband mit guten Umformeigenschaften sowie Verfahren zum Herstellen desselben
DE10020118B4 (de) * 2000-04-22 2009-11-12 Schaeffler Kg Wälzlagerbauteil
DE10055338C1 (de) * 2000-11-08 2002-03-07 Thyssenkrupp Stahl Ag Verfahren zum Herstellen eines bei niedrigen Verformungsgraden kaltverformten Kaltbandes
DE10102932C1 (de) 2001-01-23 2002-08-22 Salzgitter Ag Verfahren zur Herstellung eines kalt gewalzten Bandes oder Bleches aus Stahl und nach dem Verfahren herstellbares Band oder Blech
KR20060028909A (ko) * 2004-09-30 2006-04-04 주식회사 포스코 형상 동결성이 우수한 고강도 냉연강판 및 그 제조방법
DE102012211458B3 (de) * 2012-07-03 2013-11-21 Schaeffler Technologies AG & Co. KG Deckel mit Ölspeicherfunktionalität für ein Gehäuse eines elektrohydraulischen Ventiltriebes eines Verbrennungsmotors
WO2023135550A1 (en) 2022-01-13 2023-07-20 Tata Steel Limited Cold rolled low carbon microalloyed steel and method of manufacturing thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6901060A (de) * 1969-01-22 1970-07-24 Koninklijke Hoogovens En Staal
JPS5241209B1 (de) * 1970-12-19 1977-10-17
US3947293A (en) * 1972-01-31 1976-03-30 Nippon Steel Corporation Method for producing high-strength cold rolled steel sheet
US3814636A (en) * 1972-03-02 1974-06-04 Steel Corp Method for production of low carbon steel with high drawability and retarded aging characteristics
US3897280A (en) * 1972-12-23 1975-07-29 Nippon Steel Corp Method for manufacturing a steel sheet and product obtained thereby
JPS5333919A (en) * 1976-09-10 1978-03-30 Nippon Steel Corp Production of cold rolled aluminum killed steel sheet with excellent deep drawability
JPS582249B2 (ja) * 1977-05-07 1983-01-14 新日本製鐵株式会社 プレス成形用冷延鋼板の連続焼鈍方法
JPS5529128A (en) * 1978-08-23 1980-03-01 Mitsui Mining & Smelting Co Method of surface treating printed circuit copper foil
JPS57104627A (en) * 1980-12-19 1982-06-29 Nippon Kokan Kk <Nkk> Manufacture of cold rolled soft steel plate with superior press formability by continuous annealing
JPS57169022A (en) * 1981-04-11 1982-10-18 Sumitomo Metal Ind Ltd Production of cold rolled mild steel plate by continuous annealing
JPS5867827A (ja) * 1981-09-18 1983-04-22 Nippon Steel Corp 深紋り用冷延鋼板の製造方法
JPS6045689B2 (ja) * 1982-02-19 1985-10-11 川崎製鉄株式会社 プレス成形性にすぐれた冷延鋼板の製造方法
JPS5967321A (ja) * 1982-10-08 1984-04-17 Kawasaki Steel Corp プレス成形用冷延鋼板の製造方法
JPS5967322A (ja) * 1982-10-08 1984-04-17 Kawasaki Steel Corp 深絞り用冷延鋼板の製造方法
JPS5989727A (ja) * 1982-11-12 1984-05-24 Kawasaki Steel Corp プレス成形性の優れた超深絞り用冷延鋼板の製造方法
CA1259827A (en) * 1984-07-17 1989-09-26 Mitsumasa Kurosawa Cold-rolled steel sheets and a method of manufacturing the same
JPS62287018A (ja) * 1986-06-06 1987-12-12 Nippon Steel Corp 深絞り性の優れた高強度冷延鋼板の製造方法
US4889566A (en) * 1987-06-18 1989-12-26 Kawasaki Steel Corporation Method for producing cold rolled steel sheets having improved spot weldability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8907158A1 *

Also Published As

Publication number Publication date
DD285298B5 (de) 1999-01-28
DE3843732C2 (de) 2001-05-10
DE3803064C1 (en) 1989-04-06
EP0400031B1 (de) 1993-11-10
JPH0814003B2 (ja) 1996-02-14
EP0400031B2 (de) 2002-01-02
DD285298A5 (de) 1990-12-12
ES2018975A6 (es) 1991-05-16
DE3843732A1 (de) 1990-07-05
JPH03503185A (ja) 1991-07-18
GR1000537B (el) 1992-08-25
US5139580A (en) 1992-08-18
DE3803064C2 (de) 1995-04-20
DE58906176D1 (de) 1993-12-16
WO1989007158A1 (fr) 1989-08-10

Similar Documents

Publication Publication Date Title
EP0400031B2 (de) Kaltgewalztes blech oder band und verfahren zu seiner herstellung
DE19610675C1 (de) Mehrphasenstahl und Verfahren zu seiner Herstellung
WO2001009396A1 (de) Höherfestes stahlband oder -blech und verfahren zu seiner herstellung
DE2607646A1 (de) Kaltverformtes und gegluehtes, niedriglegiertes stahlband- und -blechmaterial und verfahren zu seiner herstellung
DE3126386C3 (de)
EP2767601B1 (de) Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung
DE3045761C2 (de) Verfahren zur Herstellung eines hochfesten kaltgewalzten Stahlbands mit ausgezeichneter Preßformbarkeit
DE3046941A1 (de) &#34;verfahren zur herstellung eines zweiphasen-stahlblechs&#34;
DE1558720B1 (de) Verfahren zur herstellung eines kalt gewalzten stahlbleches mit ausgezeichneter tiefziehfaehigkeit und duktilitaet
DE2942338C2 (de)
WO2001088216A1 (de) Galvannealed-feinblech und verfahren zum herstellen von derartigem feinblech
DE3024303C2 (de)
DE3221840C2 (de)
DE3440752C2 (de)
DE2211324A1 (de) Niedrig legierter Stahl
EP3719147A1 (de) Warmgewalztes stahlflachprodukt und verfahren zu seiner herstellung
DE2107640A1 (de) Kontinuierliches Glühverfahren für Stahl mit niedriger Streckgrenze, verzögerten Alterungseigenschaften und guter Ziehbarkeit
DE2316324C2 (de) Verfahren zum Herstellen von alterungsbeständigem Stahlblech
DE3007560A1 (de) Verfahren zum herstellen von warmgewalztem blech mit niedriger streckspannung, hoher zugfestigkeit und ausgezeichnetem formaenderungsvermoegen
DE2263431A1 (de) Kaltgewalztes stahlblech fuer pressverformung
DE2636553B2 (de) Alterungsbeständiger Tiefziehstahl mit sehr niedriger Streckgrenzenfestigkeit und Verfahren zu seiner Herstellung
EP1411140B1 (de) Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs
DE1583429B1 (de) Verfahren zur Herstellung eines kaltgewalzten Stahlbleches mit guter Formstabilitaet
DE2364602A1 (de) Verfahren zum herstellen von kaltverformtem tiefziehblech und -band
DE2511805B2 (de) Herstellung hochfester, kaltgewalzter Tiefziehstähle durch die Anwendung eines kontinuierlichen Wärmebehandlungsverfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PREUSSAG STAHL AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 19921119

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 97169

Country of ref document: AT

Date of ref document: 19931115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58906176

Country of ref document: DE

Date of ref document: 19931216

EPTA Lu: last paid annual fee
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940217

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: KRUPP HOESCH STAHL AG

Effective date: 19940806

Opponent name: THYSSEN STAHL AG

Effective date: 19940805

NLR1 Nl: opposition has been filed with the epo

Opponent name: KRUPP HOESCH STHAL AG

Opponent name: THYSSEN STAHL AG

EAL Se: european patent in force in sweden

Ref document number: 89901844.4

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SALZGITTER AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SALZGITTER AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010124

Year of fee payment: 13

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

27A Patent maintained in amended form

Effective date: 20020102

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020131

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition
GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060112

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20060113

Year of fee payment: 18

Ref country code: NL

Payment date: 20060113

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060118

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060120

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060207

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070128

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070127

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070127

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070127

BERE Be: lapsed

Owner name: *SALZGITTER A.G.

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070626

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080111

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080127

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070127