EP1411140B1 - Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs - Google Patents

Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs Download PDF

Info

Publication number
EP1411140B1
EP1411140B1 EP03018184A EP03018184A EP1411140B1 EP 1411140 B1 EP1411140 B1 EP 1411140B1 EP 03018184 A EP03018184 A EP 03018184A EP 03018184 A EP03018184 A EP 03018184A EP 1411140 B1 EP1411140 B1 EP 1411140B1
Authority
EP
European Patent Office
Prior art keywords
hot
process according
rolling
leaving
last
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03018184A
Other languages
English (en)
French (fr)
Other versions
EP1411140A1 (de
Inventor
Bernhard Dr.-Ing. Engl
Klaus-Dieter Horn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Steel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel AG filed Critical ThyssenKrupp Steel AG
Publication of EP1411140A1 publication Critical patent/EP1411140A1/de
Application granted granted Critical
Publication of EP1411140B1 publication Critical patent/EP1411140B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment

Definitions

  • the invention relates to a method for producing a cold-rolled steel strip or sheet.
  • such tape or sheet is used for the production of body parts required in vehicle construction.
  • a good formability is characterized by a high n-value characterizing the iron drawability and a likewise high r value characterizing the deep drawability.
  • a method for producing a hot-rolled steel strip having a high r-value in which a not more than 0.015 wt .-% C, 1.0 - 2.0 % By weight of Mn, 0.005 to 0.10% by weight of Al, 0.01 to 0.06% by weight of Nb, 0.01 to 0.1% by weight of Ti and the remainder containing iron and unavoidable impurities Steel in a reheating furnace to a temperature of not less than 1150 ° C is heated.
  • the thus heated steel is pre-rolled, wherein the rough rolling is carried out in a temperature range of 980 ° C to 1100 ° C with a reduction in thickness of not less than 20% per pass.
  • the pre-rolled steel is hot rolled in a temperature range of Ar 3 to 930 ° C while maintaining a total reduction of not less than 90% before being coiled at 600 ° C to 800 ° C.
  • the hot strip thus produced should have a high formability, the essential feature of the known from DE 37 04 828 C2 method is seen in that the developed IF steel has a high Mn content and is free of dissolved C and N and that the steel thus composed undergoes a large reduction within a certain temperature range, then cooled and then rewound within a certain temperature range.
  • a process for the production of fine formable metal sheet with a cold strip final thickness of at most 0.3 mm is known from DE 101 17 118 C1.
  • slabs or thin slabs are then reheated after cooling to a temperature ranging from 1080 ° C to 1150 ° C for a maximum of eight hours holding time.
  • the reheated slabs or slabs are then hot rolled into a hot strip at a number of passes in a hot rolling mill at a final rolling temperature above the Ar 3 temperature and coiled at temperatures ranging from 590 ° C to 660 ° C. After coiling, the hot strip obtained is cold rolled to cold strip and subjected to a continuous annealing.
  • JP 07-018381 A discloses a method for producing an excellent deep-drawable cold-rolled steel sheet in which a steel other than iron (in% by weight) is subjected to an ultra-low C content by Max. 0.015%, a Mn content of max. 0.40%, a P content of max. 0.020%, an Al content of max. 0.080%, an N content of max. 0.005%, a Ti content of 0.005-0.020% and an S content of max. 0.015%.
  • N, S, Mn and Ti must simultaneously satisfy the condition 3.42 N + S / 16 (Mn + 0.10) ⁇ Ti ⁇ 10 N + S / 8 (Mn + 0.10) to obtain the To allow formation of TiN precipitates, which decisively influence the thermoformability of the steel processed in the known manner.
  • the thus composed steel is continuously cast at a certain take-off speed and then hot rolled.
  • a degree of deformation of at least 40% and in the final stage of finish hot rolling a degree of deformation of at least 20% is to be achieved.
  • the hot rolling temperatures are in the known method in each case above the Ar 3 temperature in order to ensure the lowest possible property dispersion in the bands obtained after hot rolling. Hot rolling is followed by targeted cooling of the hot strip, at which cooling rates of at least 30 ° C./s must be achieved.
  • the object of the invention was therefore to provide a method by which can be produced at low production cost effort cold strips or sheets with widely dispersed composition that have a compared to conventionally manufactured products further improved formability.
  • the invention is based on the knowledge that a decisive improvement in the formability of steel strips and steel sheets of the type in question can be achieved not only by a suitable, the finished hot rolling upstream processing of each used precursor, but in particular by the inventive choice of hot rolling.
  • cold sheets produced according to the invention are distinguished by outstanding r values and, correspondingly, excellent deep drawability.
  • an embodiment of the invention provides that a soft steel alloy is processed, each containing (in wt .-%) 0.01 - 0.1% C, 0.1 - 0.5% Mn, up to 0.03% P, up to 0.03% S, 0.01-0.1% Al, less than 0.005% Ti, less than 0.005% Nb and up to 0.01% B, and the remainder iron and unavoidable impurities may contain.
  • an IF steel may typically contain (in% by weight) less than 0.01% C, less than 0.2% Mn, less than 0.02% S, less than 0.02% P less than 0.05% Al, less than 0.005% N, 0.02-0.1% Ti, up to 0.05% Nb, and less than 0.001% B.
  • the individual alloy components can be coordinated with one another within the ranges generally specified by the invention in such a way that an optimum work result is achieved.
  • the suitably alloyed molten steel is poured into a hot-rolling starting material, such as slabs or thin slabs. These are heated to a preheating temperature, which is preferably in the range of 1000 ° C to 1300 ° C. Subsequently, the starting material is fed into a hot rolling mill, where it is rolled into hot strip.
  • This hot rolling comprises a multi-stage finish rolling, which may be preceded by rough rolling if necessary.
  • the improvement sought by the invention is achieved in each case that in the last four stages of Fertigwarmwalzens the remaining, over these four stages to be handled Bacumformgrad as high as possible.
  • the invention requires that over the last four stands of the hot roll stand the Retroformgrad should be at least 80%. In the case of a classic rolling scale comprising seven stands, it is therefore necessary, via the stands 4, 5, 6 and 7, to set a total degree of deformation of at least 80%, preferably 85%, in order to achieve the desired increase in the r value.
  • the division of the individual thickness decreases on the individual last of the hot strip traversed rolling stands is not arbitrary, but follows a precisely graded plan.
  • the invention still stipulates that the overall degree of transformation to be handled over the last three rolling stands is still at least 65%, preferably 75%, which is at least 50% above the last two stands of the rolling scale 60% and the degree of deformation reached over the last frame of the squadron must be at least 25%, preferably at least 30% or even at least 35%.
  • the effect of the procedure according to the invention is all the more favorable, the higher the overall conversion remaining for the last four scaffolds.
  • the temperature at which the hot rolling is carried out in the last four continuous stands of the hot rolling stand is of importance. This should be chosen according to the invention so that the relevant passes of the hot rolling are carried out in deep austenite. Therefore, the invention contemplates rolling the last four passes at temperatures ranging from 950 ° C to 880 ° C in close proximity to the Ar 3 transformation temperature. In this case, roller temperatures which are particularly close to the Ar 3 temperature, which range from 930 ° C. down to the Ar 3 temperature, are advantageous. In this case, the respective hot rolling temperatures are within a range in which the steel being processed is still certainly austenitic, but at the same time is at a level which ensures that work is done in the deep austenite favorable for the effects of the invention.
  • An operating parameter also to be considered according to the invention which is of importance for the properties of the product obtained, is the tape end speed.
  • This is at least 10 m / s, for unalloyed very soft steel, but preferably at least 15 m / s, in order to avoid recrystallization in the finishing scale between the rolling passes.
  • the high rolling or rolling speed is required, so that there is no recrystallization in the finishing scale, especially in very rekristallisationsfreudigem steel after the rolling passes between the individual Walgerüsten. In this way, a high cumulative degree of hot deformation is achieved, whereby the Texture base for the very high r-values on the hot strip produced according to the invention is set.
  • the cold strip is to be recrystallized after cold rolling in a continuous furnace, it has proven to be advantageous in view of the desired high r-values of steel sheets or strips produced according to the invention if the coiling temperature is at least 700 ° C. If, on the other hand, a "pan-cake microstructure" favorable for certain deformation tasks is to be produced in the cold-rolled sheet by a recrystallizing annealing carried out in the bundle under the hood, it is favorable to choose a reel temperature which is as low as possible and which does not exceed 550 ° C. "Pan-cake texture" is characterized by a stretched, relatively coarse grain.
  • the fabric of this nature and the texture associated therewith are particularly favorable if high degrees of deformation must be achieved during the cold forming of the cold sheet into a component.
  • a high reel temperature causes coarse, a low coiler temperature on the other hand fine carbides and nitrides. In principle, a few coarse precipitates are more favorable for cold strip recrystallization than many fine ones, since they have a less disturbing effect on the recrystallization process.
  • hot rolling scale slabs were hot rolled to hot strip W consisting of a 0.025 wt .-% C, 0.15 wt .-% Mn, each less than 0.01 wt .-% P and S, 0.04 wt. % Al, 0.003 wt .-% N, balance iron and unavoidable impurities containing mild steel have been poured.
  • the slabs were thoroughly warmed to a preheat temperature of 1250 ° C before being finish hot rolled in hot roll 8 to hot strip W at a hot rolling end temperature of 900 ° C.
  • the resulting hot strip was then coiled at a reel temperature of 520 ° C and rolled at a cold rolling degree of 75% to cold strip.
  • the cold strip in the coil in the annealing furnace at 700 ° C was annealed recrystallizing.
  • the slabs were heated to a preheating temperature of 1100 ° C, hot rolled in the hot rolling stand 8 at a hot rolling end temperature of 900 ° C to hot strip W.
  • the hot strip W has been coiled at a temperature of 720 ° C., cold-rolled with a cold rolling degree of 75% and recrystallized at 800 ° C. in a continuously passed continuous furnace.
  • the forming degrees ⁇ h1 to ⁇ h7 to be achieved over the individual respective rolling stands 1, 2, 3, 4, 5, 6, 7 are each set such that the for the last four rolling stands 4 , 5,6,7 of the rolling scale remaining remainders were significantly higher than in conventional production.
  • three erfindunsupplementarye hot rolling variants Ea, Eb and Ec have been compared to a conventionally performed hot rolling K compared to setting the highest possible for the last four rolling stands 4,5,6,7 remaining forming effects according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen eines kaltgewalzten Stahlbands oder -blechs. Beispielsweise wird derartiges Band oder Blech für die Herstellung von im Fahrzeugbau benötigten Karosserieteilen verwendet.
  • An die Umformeigenschaften derartiger Stahlflachprodukte werden immer höhere Anforderungen gestellt, um auch komplexe Formgestaltungen bei vermindertem Arbeitsaufwand verwirklichen zu können. Eine gute Umformbarkeit ist dabei gekennzeichnet durch einen hohen, die Streckziehbarkeit charakterisierenden n-Wert und einen gleichfalls hohen, die Tiefziehbarkeit kennzeichnenden r-Wert.
  • Aus der Fachliteratur ("Herstellung von warmgewalzten Flacherzeugnissen", Verein deutscher Eisenhüttenleute, 1972, Seiten 271 - 303; "Herstellung von kaltgewalztem Band", Verein deutscher Eisenhüttenleute, 1970, Teil 2, Seiten 33 - 54; "Werkstoffkunde der gebräuchlichen Stähle", Verein deutscher Eisenhüttenleute, 1977, Teil 1, Seiten 237 - 258) ist es bekannt, dass bei konventioneller Herstellweise neben der Auswahl einer geeigneten Stahlzusammensetzung die Verformungseigenschaften entscheidend durch die Einstellung der Bedingungen beim Vorwalzen der Brammen beeinflusst werden können. In der Praxis zeigt sich jedoch, dass auch mit Stahlblechen, die unter Anwendung dieser Maßnahmen erzeugt worden sind, die gesteigerten Anforderungen nicht ohne weiteres erfüllt werden können.
  • Neben dem voranstehend erläuterten Stand der Technik ist aus der DE 37 04 828 C2 ein Verfahren zur Herstellung eines warmgewalzten Stahlbandes mit einem hohen r-Wert bekannt, bei dem ein nicht mehr als 0,015 Gew.-% C, 1,0 - 2,0 Gew.-% Mn, 0,005 - 0,10 Gew.-% Al, 0,01 - 0,06 Gew.-% Nb, 0,01 - 0,1 Gew.-% Ti und als Rest Eisen sowie unvermeidliche Verunreinigungen enthaltender Stahl in einem Nachwärmofen auf eine Temperatur von nicht weniger als 1150 °C erwärmt wird. Anschließend wird der so erwärmte Stahl vorgewalzt, wobei das Vorwalzen in einem Temperaturbereich von 980 °C bis 1100 °C bei einer Dickenreduktion von nicht weniger als 20 % pro Durchgang durchgeführt wird. Anschließend wird der vorgewalzte Stahl in einem Temperaturbereich von Ar3 bis 930°C bei Beibehaltung einer Gesamtreduktion von nicht weniger als 90 % warmendgewalzt, bevor er bei 600 °C bis 800 °C gehaspelt wird. Das derart erzeugte Warmband soll eine hohe Umformbarkeit aufweisen, wobei das wesentliche Merkmal des aus der DE 37 04 828 C2 bekannten Verfahrens darin gesehen wird, dass der erarbeitete IF-Stahl einen hohen Mn-Gehalt aufweist und frei von gelöstem C und N ist und dass der derart zusammengesetzte Stahl innerhalb eines bestimmten Temperaturbereichs einer großen Reduktion unterzogen, anschließend gekühlt und danach innerhalb eines bestimmten Temperaturbereichs wieder aufgewickelt wird.
  • Ein Verfahren zur Herstellung von gut umformfähigem Feinstblech mit einer Kaltband-Enddicke von höchstens 0,3 mm ist aus der DE 101 17 118 C1 bekannt. Bei diesem Verfahren wird ein Stahl der 0,0015 bis 0,008 Masse-% C, 0,15 - 0,25 Masse-% Mn, ≤ 0,02 Masse-% P, 0,005 - 0,03 Masse-% S, ≤ 0,02 Masse-% Si, 0,0080 - 0,06 Masse-% Al, 0,0010 - 0,020 Masse-% N, ≤ 0,05 Masse-% Ca, ≤ 0,5 Masse-% Ni, ≤ 0,05 Masse-% Cu, ≤ 0,02 Masse-% Sn, ≤ 0,01 Masse-% Mo, ≤ 0,0005 Masse-% Ti, ≤ 0,0005 Masse-% Mb, ≤ 0,002 Masse-% V, ≤ 0,007 Masse-% B und ≤ 0,05 Masse-% Co, sowie wahlweise weitere Elemente und als Rest Eisen und unvermeidbare Verunreinigungen enthält, zu Brammen oder Dünnbrammen vergossen. Diese Brammen oder Dünnbrammen werden anschließend nach einer Abkühlung auf eine Temperatur, die im Bereich von 1080 °C bis 1150 °C liegt einer maximal acht Stunden betragenden Haltezeit wiedererwärmt. Die wiedererwärmten Brammen oder Dünnbrammen werden dann mehreren Stichen in einer Warmwalzstraße bei einer oberhalb der Ar3-Temperatur liegenden Endwalztemperatur zu jeweils einem Warmband warmgewalzt und bei Temperaturen, die im Bereich von 590 °C bis 660 °C liegen, gehaspelt. Nach dem Haspeln wird das erhaltene Warmband zu Kaltband kaltgewalzt und einer im Durchlauf erfolgenden Glühung unterzogen.
  • Neben dem voranstehend erläuterten Stand der Technik ist aus der JP 07-018381 A ein Verfahren zur Herstellung eines hervorragend tiefziehbaren kaltgewalzten Stahlblechs bekannt, bei dem ein Stahl verarbeitet wird, der außer Eisen (in Gew.-%) einen ultra-niedrigen C-Gehalt von max. 0,015 %, einen Mn-Gehalt von max. 0,40 %, einen P-Gehalt von max. 0,020 %, einen Al-Gehalt von max. 0,080 %, einen N-Gehalt von max. 0,005 %, einen Ti-Gehalt von 0,005 - 0,020 % und einen S-Gehalt von max. 0,015 % aufweist. Dabei müssen die Gehalte an N, S, Mn und Ti gleichzeitig die Bedingung 3,42 N + S/16(Mn+0,10) < Ti < 10 N + S/8(Mn+0,10) erfüllen, um die Bildung von TiN-Ausscheidungen zu ermöglichen, die die Tiefziehfähigkeit des in der bekannten Weise verarbeiteten Stahls entscheidend beeinflussen.
  • Gemäß der JP 07-018381 A wird der derart zusammengesetzte Stahl mit einer bestimmten Abzugsgeschwindigkeit stranggegossen und anschließend warmgewalzt. In der vorletzten Stufe des Fertig-Warmwalzens soll dabei ein Verformungsgrad von mindestens 40 % und in der letzten Stufe des Fertig-Warmwalzens ein Verformungsgrad von mindestens 20 % erzielt werden. Die Warmwalztemperaturen liegen bei dem bekannten Verfahren jeweils oberhalb der Ar3-Temperatur, um eine möglichst geringe Eigenschaftsstreuung bei den nach dem Warmwalzen erhaltenen Bändern sicherzustellen. An das Warmwalzen schließt sich eine gezielte Kühlung des Warmbandes an, bei der Abkühlraten von mindestens 30 °C/s erzielt werden müssen.
  • Die mit dem aus der JP 07-018381 A bekannten Verfahren erzeugten Stahlbleche und -bänder weisen zwar r-Werte auf, die sie als für eine Tiefziehverarbeitung besonders geeignet ausweisen. Dazu ist allerdings nicht nur eine bestimmte Art und Weise des Stranggießens erforderlich, sondern es kann mit dem gewünschten Erfolg auch nur ein eng begrenztes Spektrum von Stahlsammensetzungen verarbeitet werden.
  • Die Aufgabe der Erfindung bestand daher darin, ein Verfahren zu schaffen, mit dem sich bei geringem fertigungstechnischen Aufwand Kaltbänder oder -bleche mit weit gestreuter Zusammensetzung erzeugen lassen, die eine gegenüber konventionell hergestellten Produkten weiter verbesserte Umformbarkeit besitzen.
  • Diese Aufgabe ist gemäß der Erfindung durch ein Verfahren zum Herstellen von kaltgewalztem Stahlband oder -blech gelöst worden, welches folgende Schritte umfasst:
    • Vergießen einer (in Ges.-%) ≤ 0,1 % C, ≤ 0,5 % Mn, < 0,03 % P, < 0,03 % S, ≤ 0,1 % Al, < 0,01 % N, < 0,1 % Ti, < 0,05 % Nb, ≤ 0,01 % B, Rest Eisen und übliche Verunreinigungen enthaltenden Stahlschmelze zu einem Vormaterial, wie Brammen oder Dünnbrammen,
    • Durchwärmen des Vormaterials auf eine mindestens 1000 °C betragende Vorwärmtemperatur,
    • Warmwalzen des Vormaterials in einer mindestens vier Walzgerüste umfassenden Fertigwarmwalzstaffel zu einem Warmband, wobei
    • der über die letzten vier vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh4 mindestens 80 %,
    • der über die letzten drei vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh3 mindestens 65 %,
    • der über die letzten beiden vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh2 mindestens 50 %,
    • der über das letzte vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh1 mindestens 25 %,
    • das Warmwalzen in den letzten vier vor dem Verlassen der Warmwalzstaffel passierten Walzgerüsten bei einer 880 °C bis 950 °C betragenden Walztemperatur erfolgt,
    • das Warmwalzen bei Warmwalzendtemperatur beendet wird, die ≥ der Ar3-Temperatur ist, und
    • die Bandendgeschwindigkeit des erhaltenen Warmbands beim Verlassen der Warmwalzstaffel mindestens 10 m/s beträgt,
    • Haspeln des Warmbandes,
    • Kaltwalzen des Warmbandes zu einem Kaltband,
    • Rekristallisationsglühen des Kaltbands.
  • Die Erfindung geht von der Erkenntnis aus, dass nicht nur durch eine geeignete, dem Fertigwarmwalzen vorgeschaltete Bearbeitung des jeweils eingesetzten Vorproduktes, sondern insbesondere durch die erfindungsgemäße Wahl der Warmwalzbedingungen eine entscheidende Verbesserung der Umformbarkeit von Stahlbändern und Stahlblechen der in Rede stehenden Art erreicht werden kann. So zeichnen sich erfindungsgemäß erzeugte Kaltbleche durch hervorragende r-Werte und eine dementsprechend ausgezeichnete Tiefziehbarkeit aus.
  • Dabei lässt sich das erfindungsgemäße Verfahren basierend auf konventionell zusammengesetzten weichen Kohlenstoffstählen oder IF-Stählen durchführen. Dementsprechend sieht eine Ausgestaltung der Erfindung vor, dass eine weiche Stahllegierung verarbeitet wird, die jeweils (in Gew.-%) 0,01 - 0,1 % C, 0,1 - 0,5 % Mn, bis zu 0,03 % P, bis zu 0,03 % S, 0,01 - 0,1 % Al, weniger als 0,005 % Ti, weniger als 0,005 % Nb und bis zu 0,01 % B sowie als Rest Eisen und unvermeidbare Verunreinigungen enthalten kann. Wird ein IF-Stahl verarbeitet, so kann dieser (in Gew.-%) typischerweise jeweils weniger als 0,01 % C, weniger als 0,2 % Mn, weniger als 0,02 % S, weniger als 0,02 % P, weniger als 0,05 % Al, weniger als 0,005 % N, 0,02 - 0,1 % Ti, bis zu 0,05 % Nb und weniger als 0,001 % B enthalten. Selbstverständlich lassen sich die einzelnen Legierungskomponenten dabei innerhalb der durch die Erfindung allgemein vorgegebenen Bereiche so aufeinander abstimmen, dass ein optimales Arbeitsergebnis erzielt wird. So kann es in einzelnen Fällen günstig sein, jeweils nur eine der in den abhängigen Ansprüchen angegebenen Modifikationen der Legierung aufzugreifen, um die durch das jeweilige Element beeinflusste Eigenschaft besonders hervorzuheben bzw. zu unterdrücken, während die anderen Legierungselemente nach wie vor in den weiter gefassten Bereichen variiert werden.
  • Die in geeigneter Weise legierte Stahlschmelze wird zu einem warmwalzbaren Vormaterial, wie Brammen oder Dünnbrammen, vergossen. Diese werden auf eine Vorwärmtemperatur erwärmt, die bevorzugt im Bereich von 1000 °C bis 1300 °C liegt. Anschließend wird das Vormaterial in eine Warmwalzstaffel geleitet, in der es zu Warmband gewalzt wird. Dieses Warmwalzen umfasst ein in mehreren Stufen durchgeführtes Fertigwalzen, dem erforderlichenfalls ein Vorwalzen vorgeschaltet sein kann.
  • Unabhängig davon, welche der im erfindungsgemäß vorgegebenen Rahmen möglichen Legierungen eingesetzt werden, wird die durch die Erfindung angestrebte Verbesserung jeweils dadurch erreicht, dass in den letzten vier Stufen des Fertigwarmwalzens der verbleibende, über diese vier Stufen zu bewältigende Gesamtumformgrad möglichst hoch ist. Unter dem "Gesamtumformgrad εh4" wird allgemein in diesem Zusammenhang das Verhältnis der Differenz aus der Warmbanddicke de4 beim Einlaufen in das viertletzte Gerüst und der Warmbanddicke de7 beim Verlassen des letzten Gerüstes zur Warmbanddicke de4 beim Einlaufen in das viertletzte Gerüst verstanden (εh4 = (de4-de7) / de4).
  • Die Erfindung schreibt vor, dass über die letzten vier Gerüste der Warmwalzstaffel der Gesamtumformgrad mindestens 80 % betragen soll. Bei einer klassischen, sieben Walzgerüste umfassenden Walzstaffel ist gemäß der Erfindung daher über die Gerüste 4, 5, 6 und 7 ein Gesamtumformgrad von mindestens 80 %, bevorzugt 85 % einzustellen, um die gewünschte Steigerung des r-Wertes zu erreichen.
  • Die Aufteilung der einzelnen Dickenabnahmen auf die einzelnen zuletzt vom Warmband durchlaufenen Walzgerüste ist jedoch nicht beliebig, sondern folgt einem exakt abgestuften Plan. So schreibt die Erfindung neben der über die letzten vier Gerüste zu erzielenden Gesamtumformung vor, dass der über die letzten drei Walzgerüste insgesamt zu bewältigende Gesamtumformgrad immer noch mindestens 65 %, bevorzugt 75 %, der über die letzten beiden Gerüste der Walzstaffel mindestens 50 %, bevorzugt 60 % und der über das letzte Gerüst der Staffel erreichte Umformgrad mindestens 25 %, bevorzugt mindestens 30 % oder sogar mindestens 35 %, betragen muss. Überraschend hat sich gezeigt, dass die Auswirkung der erfindungsgemäßen Vorgehensweise umso günstiger ist, je höher die für die letzten vier durchlaufenen Gerüste jeweils verbleibende Gesamtumformung ist.
  • Neben dem hohen über die einzelnen Warmwalzgerüste jeweils zu bewältigenden Gesamtumformgrad ist die Temperatur von Bedeutung, bei der das Warmwalzen in den letzten vier durchlaufenen Gerüsten der Warmwalzstaffel durchgeführt wird. Diese soll gemäß der Erfindung so gewählt werden, dass die betreffenden Stiche des Warmwalzens im tiefen Austenit durchgeführt werden. Daher sieht die Erfindung vor, die letzten vier Stiche bei Temperaturen zu walzen, die im Bereich von 950 °C bis 880 °C in enger Nachbarschaft zur Umwandlungstemperatur Ar3 angesiedelt sind. Vorteilhaft sind dabei besonders eng an der Ar3-Temperatur angesiedelte Walztemperaturen, die von 930 °C bis herab zur Ar3-Temperatur reichen. In diesem Fall liegen die jeweiligen Warmwalztemperaturen in einem Bereich, in dem der jeweils verarbeitete Stahl noch sicher austenitisch ist, der gleichzeitig aber auf einem Niveau liegt, welches gewährleistet, dass im für die Effekte der Erfindung günstigen tiefen Austenit gearbeitet wird.
  • Ein gemäß der Erfindung ebenfalls zu beachtender Betriebsparameter, der von Bedeutung für die Eigenschaften des erhaltenen Produktes ist, ist die Bandendgeschwindigkeit. Diese beträgt mindestens 10 m/s, bei unlegiertem sehr weichen Stahl, bevorzugt jedoch mindestens 15 m/s, um eine Rekristallisation in der Fertigstaffel zwischen den Walzstichen zu vermeiden. Die hohe Walz- bzw. Walzendgeschwindigkeit ist erforderlich, damit es besonders bei sehr rekristallisationsfreudigem Stahl nach den Walzstichen zwischen den einzelnen Walgerüsten zu keiner Rekristallisation in der Fertigstaffel kommt. Auf diese Weise wird ein hoher kumulativer Warmverformungsgrad erreicht, wodurch die Texturgrundlage für die sehr hohen r-Werte am erfindungsgemäß erzeugten Warmband eingestellt wird.
  • Soll das Kaltband nach dem Kaltwalzen in einem Durchlaufofen rekristallisierend geglüht werden, so hat es sich im Hinblick auf die angestrebten hohen r-Werte erfindungsgemäß erzeugter Stahlbleche oder -bänder als vorteilhaft erwiesen, wenn die Haspeltemperatur mindestens 700 °C beträgt. Soll dagegen ein für bestimmte Verformungsaufgaben günstiges "Pan-Cake-Gefüge" in dem kaltgewalzten Blech durch eine im Bund unter der Haube erfolgende rekristallisierende Glühung erzeugt werden, so ist es günstig, eine möglichst niedrige, maximal 550 °C betragende Haspeltemperatur zu wählen. "Pan-Cake-Gefüge" zeichnet sich durch ein gestrecktes, verhältnismäßig grobes Korn aus. Das derart beschaffene Gefüge und die damit verbundene Textur ist insbesondere dann günstig, wenn bei der Kaltverformung des Kaltbleches zu einem Bauteil hohe Umformgrade erreicht werden müssen. Eine hohe Haspeltemperatur bewirkt grobe, eine niedrige Haspeltemperatur dagegen feine Karbide und Nitride. Für die Kaltbandrekristallisation sind grundsätzlich wenige grobe Ausscheidungen günstiger als viele feine, da sie beim Rekristallisationsablauf weniger störend wirken. Zur Erzeugung eines Pan-Cake-Gefüges auf Kaltband über die Haubenglühung ist es allerdings erforderlich, dass die Nitridausscheidungen (AlN) am Warmband durch eine tiefe Haspeltemperatur unterdrückt werden, da die AlN-Ausscheidung bei der Kaltbandrekristallisationsglühung während der langsamen Aufheizphase als Störung zur Kornorientierung benötigt wird und sich auf diese Weise noch höhere r-Werte einstellen. Die Glühung des Stahlbands in einer Durchlaufglühe erweist sich dann als besonders wirtschaftlich, wenn eine solche Durchlaufglühe mit einer Schmelztauchveredelungsanlage, insbesondere einer Bandfeuerverzinkungsanlage, gekoppelt ist.
  • Zudem ist es möglich, das rekristallisationsgeglühte Band einer elektrolytischen Oberflächenveredelung zu unterziehen.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
  • In der beigefügten Figur sind schematisch eine sieben Walzgerüste 1,2,3,4,5,6,7 umfassende Warmwalzstaffel 8, ein in Förderrichtung F hinter der Warmwalzstaffel 8 angeordneter Rollgang 9 und eine am Ende des Rollgangs 9 angeordnete Haspeleinrichtung 10 dargestellt.
  • In der Warmwalzstaffel sind Brammen zu Warmband W warmgewalzt worden, die aus einem 0,025 Gew.-% C, 0,15 Gew.-% Mn, jeweils weniger als 0,01 Gew.-% P und S, 0,04 Gew.-% Al, 0,003 Gew.-% N, Rest Eisen und unvermeidbare Verunreinigungen enthaltenden Weichstahl abgegossen worden sind.
  • In einem ersten Versuch sind die Brammen auf eine Vorwärmtemperatur von 1250 °C durchgewärmt worden, bevor sie in der Warmwalzstaffel 8 zu Warmband W bei einer Warmwalzendtemperatur von 900 °C fertig warmgewalzt worden sind. Das erhaltene Warmband ist dann bei einer Haspeltemperatur von 520 °C gehaspelt und bei einem Kaltwalzgrad von 75 % zu Kaltband gewalzt worden. Nach dem Kaltwalzen ist das Kaltband im Bund im Haubenglühofen bei 700 °C rekristallisierend geglüht worden.
  • In einem zweiten Versuch sind die Brammen auf eine Vorwärmtemperatur von 1100 °C erwärmt, in der Warmwalzstaffel 8 bei einer Warmwalzendtemperatur von 900 °C zu Warmband W warmgewalzt worden. Das Warmband W ist bei einer 720 °C betragenden Temperatur gehaspelt, mit einem Kaltwalzgrad von 75 % kaltgewalzt und bei 800 °C in einem kontinuierlich durchlaufenen Durchlaufofen rekristallisierend geglüht worden.
  • Im Zuge des Warmwalzens in der Warmwalzstaffel 8 sind die über die einzelnen jeweils verbleibenden Walzgerüste 1,2,3,4,5,6,7 zu erzielenden Umformgrade εh1 bis εh7 jeweils so eingestellt worden, dass die für die letzten vier Walzgerüste 4,5,6,7 der Walzstaffel verbleibenden Restumformungen deutlich höher lagen als bei konventioneller Fertigung. Dabei sind zum Nachweis der sich bei erfindungsgemäßer Einstellung einer möglichst hohen für die letzten vier Walzgerüste 4,5,6,7 verbleibenden Restumformung einstellenden Effekte jeweils drei erfindungemäße Warmwalzvarianten Ea, Eb und Ec einem konventionell durchgeführten Warmwalzversuch K gegenüber gestellt worden. In der nachfolgenden Tabelle sind die betreffenden für die Umformung über die letzten vier Walzgerüste 4,5,6,7 jeweils verbleibenden Umformgrade εh4, εh5, εh6, εh7 für die erfindungsgemäß durchgeführten Versuche Ea,Eb,Ec und den konventionell durchgeführten Versuch K eingetragen.
    Gesamtumformgrad Restliche zu absolvierende Walzgerüste Versuch Ea Versuch Eb Versuch Ec Versuch K
    εh4 4,5,6,7 ca. 80 % ca. 85 % > 85 % ca. 75 %
    εh5 5,6,7 ca. 65 % ca. 75 % > 75 % ca. 55 %
    εh6 6,7 ca. 50 % ca. 60 % > 60 % ca. 35 %
    εh7 7 ca. 25 % ca. 30 % > 35 % ca. 15 %
  • In Diag. 1 sind die für die konventionell erzeugten Warmbänder ermittelten r-Werte r (r-Wert in Walzrichtung), r45° (r-Wert diagonal zur Walzrichtung), r90° (r-Wert quer zur Walzrichtung), rm (rm = (r+2r45+r90°)/4) den r, r45°, r90°, r-Werten gegenübergestellt, die bei den erfindungsgemäß erzeugten Kaltblechen festgestellt werden konnten. Es zeigt sich eine deutliche Überlegenheit der erfindungsgemäß erzeugten Bleche.
  • Ein weiterer Beleg für die im Hinblick auf die gewünscht gute Kaltverformbarkeit, insbesondere die Tiefziehbarkeit, überlegenen Eigenschaften erfindungsgemäß erzeugter Stahlbleche und -bänder liefert Diag. 2, in dem das Ergebnis der Texturanalyse der erfindungsgemäß erzeugten Bleche der Texturanalyse der konventionell hergestellten Bleche gegenübergestellt ist. Aufgetragen ist die Belegungsdichte entlang bestimmter "Fasern", auf denen die wichtigsten Kornorientierungen liegen. Insgesamt sind starke Belegungen auf der γ-Faser bei den Orientierungen <111>|| Blechnormale, besonders bei (111) [110], zu erkennen. Diese Texturkomponenten sind für hohe r-Werte erwünscht. Dementsprechend lassen sich die höheren r-Werte der erfindungsgemäß erzeugten Bleche gegenüber den konventionell erzeugten Blechen auf eine stärkere Belegung zurückführen. Die Texturergebnisse erklären damit die erzielten r-Werte. Darüber hinaus wurde aufgezeigt, dass die für einen kontigeglühten Al-beruhigten Tiefziehstahl sehr hohen r-Werte von ca. 2,0 am erfindungsgemäß erzeugten Kaltband mit einer Verschärfung der <111>-Glühstruktur im Zusammenhang stehen. Auch hier weisen die erfindungsgemäß hergestellten Bleche deutlich bessere Eigenschaften auf als die konventionell hergestellten Bleche.
  • Schließlich ist in Diag. 3 für die im Haubenglühofen und die im Durchlaufglühofen rekristallisierend geglühten, erfindungsgemäß erzeugten Bleche der rm-Wert über den im Zuge des Warmwalzens erreichten Gesamtumformgrad aufgetragen, um den Einfluss der Art der Rekristallisationsglühung und die Höhe der Umformung über den akkumulierten Austenitverformungsgrad des Warmwalzens auf den rm-Wert des erhaltenen Kaltbandes zu demonstrieren. Es zeigt sich, dass hohe Umformgrade zu einer deutlichen Steigerung des rm-Wertes führen. Gleichzeitig zeigt sich, dass die haubengeglühten Bleche aufgrund des sich bei dieser Art der Glühung einstellenden Pan-Cake-Gefüges gegenüber den im Durchlauf geglühten Blechen weiter gesteigerte r-Werte aufweisen.

Claims (25)

  1. Verfahren zum Herstellen eines kaltgewalzten Stahlbands oder -blechs, welches folgende Schritte umfasst:
    - Vergießen einer (in Gew.-%) C: ≤ 0,1 %, Mn: ≤ 0,5 %, P: < 0,03 %, S: < 0, 03 %, Al: ≤ 0,1 %, N: < 0,01 %, Ti: < 0,1 %, Nb: < 0,05 %, B: ≤ 0,01 %
    Rest Eisen und übliche Verunreinigungen
    enthaltenden Stahlschmelze zu einem Vormaterial, wie Brammen oder Dünnbrammen,
    - Durchwärmen des Vormaterials auf eine mindestens 1000 °C betragende Vorwärmtemperatur,
    - Warmwalzen des Vormaterials in einer mindestens vier Walzgerüste umfassenden Fertigwarmwalzstaffel zu einem Warmband, wobei
    - der über die letzten vier vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh4 mindestens 80 %,
    - der über die letzten drei vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh3 mindestens 65 %,
    - der über die letzten beiden vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh2 mindestens 50 %,
    - der über das letzte vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh1 mindestens 25 % beträgt,
    - das Warmwalzen in den letzten vier vor dem Verlassen der Warmwalzstaffel passierten Walzgerüsten bei einer 880 °C bis 950 °C betragenden Walztemperatur erfolgt,
    - das Warmwalzen bei Warmwalzendtemperatur beendet wird, die ≥ der Ar3-Temperatur ist, und
    - die Bandendgeschwindigkeit des erhaltenen Warmbands beim Verlassen der Warmwalzstaffel mindestens 10 m/s beträgt,
    - Haspeln des Warmbandes,
    - Kaltwalzen des Warmbandes zu einem Kaltband,
    - Rekristallisationsglühen des Kaltbands.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Stahlschmelze mindestens 0,01 Gew.-% C enthält.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Stahlschmelze weniger als 0,01 Gew.-% C enthält.
  4. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Stahlschmelze mindestens 0,1 Gew.-% Mn enthält.
  5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Stahlschmelze weniger als 0,2 Gew.-% Mn enthält.
  6. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Stahlschmelze weniger als 0,02 Gew.-% P und/oder weniger als 0,02 Gew.-% S enthält.
  7. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Stahlschmelze weniger als 0,05 Gew.-% Al enthält.
  8. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Stahlschmelze weniger als 0,005 Gew.-% N enthält.
  9. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Stahlschmelze weniger als 0,005 Gew.-% Ti enthält.
  10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Stahlschmelze mindestens 0,02 Gew.-% Ti enthält.
  11. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Stahlschmelze weniger als 0,005 Gew.-% Nb enthält.
  12. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Stahlschmelze weniger als 0,001 Gew.-% B enthält.
  13. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Warmwalzen in den letzten vier vor dem Verlassen der Warmwalzstaffel passierten Walzgerüsten bei einer Walztemperatur erfolgt, die mindestens gleich der Ar3-Temperatur und höchstens gleich 930 °C ist.
  14. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der über die letzten vier vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh4 mindestens 85 % beträgt.
  15. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der über die letzten drei vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh3 mindestens 75 % beträgt.
  16. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der über die letzten beiden vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh2 mindestens 60 % beträgt.
  17. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der über das letzte vor dem Verlassen der Warmwalzstaffel passierten Walzgerüste erzielte Gesamtumformgrad εh1 mindestens 35 % beträgt.
  18. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Bandendgeschwindigkeit des erhaltenen Warmbands beim Verlassen der Warmwalzstaffel mindestens 15 m/s beträgt.
  19. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Haspeltemperatur mindestens 700 °C beträgt.
  20. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Haspeltemperatur weniger als 550 °C beträgt.
  21. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass der über das Kaltwalzen erzielte Kaltwalzgrad mindestens 40 % beträgt.
  22. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Rekristallisationsglühung im Durchlauf erfolgt.
  23. Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass das rekristallisationsgeglühte Band anschließend schmelztauchveredelt wird.
  24. Verfahren nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass die Rekristallisationsglühung im Bund in einem Haubenofen erfolgt.
  25. Verfahren nach einem der Ansprüche 1 bis 22 oder 24, dadurch gekennzeichnet, dass nach der Rekristallisationsglühung eine elektrolytische Oberflächenveredelung erfolgt.
EP03018184A 2002-10-15 2003-08-09 Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs Expired - Lifetime EP1411140B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10247998 2002-10-15
DE10247998A DE10247998B4 (de) 2002-10-15 2002-10-15 Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs

Publications (2)

Publication Number Publication Date
EP1411140A1 EP1411140A1 (de) 2004-04-21
EP1411140B1 true EP1411140B1 (de) 2006-10-25

Family

ID=32038698

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03018184A Expired - Lifetime EP1411140B1 (de) 2002-10-15 2003-08-09 Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs

Country Status (6)

Country Link
EP (1) EP1411140B1 (de)
AT (1) ATE343657T1 (de)
DE (2) DE10247998B4 (de)
DK (1) DK1411140T3 (de)
ES (1) ES2275046T3 (de)
PL (1) PL361945A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831207A (zh) * 2015-04-16 2015-08-12 河北钢铁股份有限公司邯郸分公司 一种薄规格600MPa级热镀锌板生产方法
MX2019002942A (es) 2016-09-20 2019-06-12 Thyssenkrupp Steel Europe Ag Metodo para fabricar productos de acero planos y producto de acero plano.
CN111996463B (zh) * 2020-07-31 2021-12-14 马鞍山钢铁股份有限公司 一种低成本的低合金钢卷及其制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3772091A (en) * 1969-08-27 1973-11-13 Bethlehem Steel Corp Very thin steel sheet and method of producing same
US3849209A (en) * 1972-02-01 1974-11-19 Nippon Steel Corp Manufacturing method of high tension, high toughness steel
JPS62192539A (ja) * 1986-02-18 1987-08-24 Nippon Steel Corp 高f値熱延鋼板の製造方法
JP3273383B2 (ja) * 1993-06-30 2002-04-08 新日本製鐵株式会社 深絞り性の優れた冷延鋼板およびその製造方法
KR0179419B1 (ko) * 1993-07-28 1999-02-18 타나카 미노루 응력부식균열에 강한 캔용강판 및 그 제조방법
DE19725434C2 (de) * 1997-06-16 1999-08-19 Schloemann Siemag Ag Verfahren zum Walzen von Warmbreitband in einer CSP-Anlage
DE10117118C1 (de) * 2001-04-06 2002-07-11 Thyssenkrupp Stahl Ag Verfahren zur Herstellung von gut umformfähigem Feinstblech und Verwendung eines Stahls

Also Published As

Publication number Publication date
ATE343657T1 (de) 2006-11-15
DK1411140T3 (da) 2007-02-26
DE10247998B4 (de) 2004-07-15
EP1411140A1 (de) 2004-04-21
PL361945A1 (en) 2004-04-19
DE50305470D1 (de) 2006-12-07
DE10247998A1 (de) 2004-05-06
ES2275046T3 (es) 2007-06-01

Similar Documents

Publication Publication Date Title
EP3516084B1 (de) Verfahren zum herstellen von stahlflachprodukten und stahlflachprodukt
EP1309734B1 (de) Höherfester, kaltumformbarer stahl und stahlband oder -blech, verfahren zur herstellung von stahlband und verwendungen eines solchen stahls
EP1573075B1 (de) Verfahren zum herstellen eines stahlprodukts
EP2690183B1 (de) Warmgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
EP1918406B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Bor mikrolegierten Mehrphasenstahl
EP1918402B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein Komplexphasen-Gefüge bildenden Stahl
EP1918403B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem ein martensitisches Gefüge bildenden Stahl
EP2767601B1 (de) Kaltgewalztes Stahlflachprodukt für Tiefziehanwendungen und Verfahren zu seiner Herstellung
DE2324788A1 (de) Kohlenstoffarmer stahl und verfahren zu seiner herstellung
EP2840159B1 (de) Verfahren zum Herstellen eines Stahlbauteils
DE69002661T2 (de) Emaillierfähige Stahlbleche und Verfahren zu ihrer Herstellung.
EP1918405B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Silizium legierten Mehrphasenstahl
EP1319725B1 (de) Verfahren zum Herstellen von Warmband
EP1398390B1 (de) Ferritisch/martensitischer Stahl mit hoher Festigkeit und sehr feinem Gefüge
EP1399598B1 (de) Verfahren zum herstellen von hochfesten, aus einem warmband kaltverformten stahlprodukten mit guter dehnbarkeit
EP1453984B1 (de) Verfahren zum herstellen von warmband oder -blech aus einem mikrolegierten stahl
EP1918404B1 (de) Verfahren zum Herstellen von Stahl-Flachprodukten aus einem mit Aluminium legierten Mehrphasenstahl
EP1411140B1 (de) Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs
DE2109431A1 (de) Alterungsbestandiger niednggekohlter Stahl und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040611

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20050201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP STEEL AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50305470

Country of ref document: DE

Date of ref document: 20061207

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070125

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070326

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2275046

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070726

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070126

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20080901

Year of fee payment: 6

Ref country code: ES

Payment date: 20080828

Year of fee payment: 6

Ref country code: NL

Payment date: 20080828

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080829

Year of fee payment: 6

Ref country code: CZ

Payment date: 20080730

Year of fee payment: 6

Ref country code: FI

Payment date: 20080808

Year of fee payment: 6

Ref country code: FR

Payment date: 20080826

Year of fee payment: 6

Ref country code: IT

Payment date: 20080828

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080826

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20080829

Year of fee payment: 6

Ref country code: SE

Payment date: 20080826

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070809

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061025

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090821

Year of fee payment: 7

BERE Be: lapsed

Owner name: *THYSSENKRUPP STEEL A.G.

Effective date: 20090831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100301

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090809

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090809

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305470

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090810