EP0390827B1 - Verfahren zur herstellung durchkontaktierter leiterplatten - Google Patents
Verfahren zur herstellung durchkontaktierter leiterplatten Download PDFInfo
- Publication number
- EP0390827B1 EP0390827B1 EP89900227A EP89900227A EP0390827B1 EP 0390827 B1 EP0390827 B1 EP 0390827B1 EP 89900227 A EP89900227 A EP 89900227A EP 89900227 A EP89900227 A EP 89900227A EP 0390827 B1 EP0390827 B1 EP 0390827B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- process according
- treatment
- nitrogen
- anyone
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000008569 process Effects 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- -1 nitrogenous organic compounds Chemical class 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 10
- 238000004070 electrodeposition Methods 0.000 claims abstract 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 6
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 4
- JWUXJYZVKZKLTJ-UHFFFAOYSA-N Triacetonamine Chemical compound CC1(C)CC(=O)CC(C)(C)N1 JWUXJYZVKZKLTJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- REEBJQTUIJTGAL-UHFFFAOYSA-N 3-pyridin-1-ium-1-ylpropane-1-sulfonate Chemical compound [O-]S(=O)(=O)CCC[N+]1=CC=CC=C1 REEBJQTUIJTGAL-UHFFFAOYSA-N 0.000 claims description 3
- 238000007747 plating Methods 0.000 claims description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 229960005070 ascorbic acid Drugs 0.000 claims description 2
- 235000010323 ascorbic acid Nutrition 0.000 claims description 2
- 239000011668 ascorbic acid Substances 0.000 claims description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 claims description 2
- 125000000623 heterocyclic group Chemical group 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 claims description 2
- 229920000768 polyamine Polymers 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 150000003839 salts Chemical class 0.000 claims description 2
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 claims description 2
- 238000002203 pretreatment Methods 0.000 claims 5
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical compound B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims 1
- 229910010277 boron hydride Inorganic materials 0.000 claims 1
- 150000002739 metals Chemical group 0.000 abstract description 3
- 238000001465 metallisation Methods 0.000 description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000002604 ultrasonography Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- ZXNWYMNKYXUZGM-UHFFFAOYSA-N 2,2,6,6-tetramethylpiperidin-1-ium-4-one;chloride Chemical compound Cl.CC1(C)CC(=O)CC(C)(C)N1 ZXNWYMNKYXUZGM-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- UGWKCNDTYUOTQZ-UHFFFAOYSA-N copper;sulfuric acid Chemical compound [Cu].OS(O)(=O)=O UGWKCNDTYUOTQZ-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/423—Plated through-holes or plated via connections characterised by electroplating method
- H05K3/424—Plated through-holes or plated via connections characterised by electroplating method by direct electroplating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/02—Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
- H05K2203/0285—Using ultrasound, e.g. for cleaning, soldering or wet treatment
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/07—Treatments involving liquids, e.g. plating, rinsing
- H05K2203/0703—Plating
- H05K2203/0716—Metallic plating catalysts, e.g. for direct electroplating of through holes; Sensitising or activating metallic plating catalysts
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/12—Using specific substances
- H05K2203/122—Organic non-polymeric compounds, e.g. oil, wax or thiol
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/40—Forming printed elements for providing electric connections to or between printed circuits
- H05K3/42—Plated through-holes or plated via connections
- H05K3/425—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
- H05K3/427—Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/49155—Manufacturing circuit on or in base
- Y10T29/49165—Manufacturing circuit on or in base by forming conductive walled aperture in base
Definitions
- the present invention relates to a method for producing plated-through circuit boards by direct galvanic metal deposition on catalytically activated surfaces of the base material using known galvanic baths, the catalytically activated surfaces being treated prior to the galvanic metal deposition.
- GB-A-2 123 036 describes a method for galvanic metal deposition on non-metallic surfaces, in which the electroplating bath contains a component C which is intended to ensure improved galvanic metal deposition.
- This component is dyes, surface-active substances (wetting agents), chelates, gloss and leveling additives.
- the invention has for its object to develop a method for the production of plated-through circuit boards by direct galvanic metal deposition on catalytically activated surfaces of the base material, which leads quickly and inexpensively to products that are comparable in quality with the previously known products and in which the metallization baths can be used for a sufficiently long time.
- Suitable nitrogen-containing organic compounds can be, for example, aliphatic, aromatic, heterocyclic or cycloaliphatic mono-, di- or polyamines which are optionally substituted by hydroxyl, carboxyl or sulfo groups and mono- or polynuclear N-containing heterocyclic compounds which are optionally ethoxylated, propoxylated and / or in quaternized form or in the form of an acid addition salt.
- the effectiveness of the compounds mentioned can be increased by the additional use of reducing agents, e.g. Borohydride, ascorbic acid, oxalic acid, hypophosphite and others can be increased even further.
- reducing agents e.g. Borohydride, ascorbic acid, oxalic acid, hypophosphite and others can be increased even further.
- the reducing agents can optionally also be used separately as a preliminary stage before the pretreatment.
- base materials can be used to carry out the process according to the invention. These include in particular glass fiber reinforced epoxy resin, polyimide and other solid polymers. In principle, all base materials that can be covered with a metal layer by being catalytically activated are suitable.
- the catalytic activation of the surfaces also takes place in a manner known per se.
- the activation takes place by means of precious metal-containing, colloidal, ionogenic or non-ionic catalysts, in particular the known catalysts based on palladium and tin.
- precious metal-containing, colloidal, ionogenic or non-ionic catalysts in particular the known catalysts based on palladium and tin.
- other catalysts for example those which do not contain noble metals, or vapor-deposited, catalytically active layers are also suitable.
- the subsequent galvanic metal deposition is also carried out using known galvanic baths.
- all metals or alloys that can be deposited by electroplating can be deposited.
- copper electrolytes are preferably used.
- Sulfuric acid copper baths with a content of 50 to 300 g / l of free sulfuric acid and a metal content of 5 to 50 g / l are particularly preferred.
- fluoroboric, hydrochloric, thiosulfate or pyrophosphate or cyanide electrolytes as well as electrolytes based on sulfamines and organic sulfonic acids have been found to be suitable.
- Electrolytes are operated under the usual conditions, namely in the temperature range between 20 and 70 ° C with current densities between 0.1 and 20 A / dm2. Surprisingly, the time of the galvanic deposition can be reduced considerably, namely to 2 to 5 minutes in particularly favorable cases. The result is uniform, closed and, moreover, firmly adhering metal layers which have no defects either in the so-called transmitted light test.
- the plated-through circuits produced according to the invention can be processed further in a known manner.
- a further build-up of metallic layers can be carried out galvanically, so that copper layers of 25 to 40 ⁇ m thickness are formed, which are subsequently covered with further metallic layers which act as etching resists.
- a direct assembly of the circuit board is achieved.
- the pretreatment according to the invention is carried out in particular with the aid of aqueous solutions or solutions in organic solvents of the nitrogen-containing organic compounds and optionally the reducing agent. These solutions mostly have concentrations of 1 to 250 g / l. Usually, only a few preliminary tests are sufficient to determine the optimal conditions for the catalytically activated base material. The additional process step of pretreatment requires only little effort, which is cost-related to the improved result achieved - also in comparison to the method of chemical metal deposition that has been tried and tested in practice.
- a double-sided copper-clad substrate made of glass fiber reinforced epoxy resin is drilled in the usual way, mechanically cleaned and degreased chemically in a commercially available cleaner (Blasolit® MSH).
- the substrate is then etched with an aqueous solution of hydrogen peroxide and sulfuric acid. It is then picked up in an approximately 10% hydrochloric acid solution and then activated with a commercially available catalyst system based on colloidal palladium (catalyst solution K 125 from the applicant). It is rinsed with water and then immersed in an aqueous solution containing 10 g / l of polvinylpyrrolidone (K 30) for 2 minutes.
- the temperature was 20 to 25 ° C and the current density 2 to 4 A / dm2. After just 15 minutes, all holes were completely, evenly and firmly metallized.
- the activated printed circuit board was pretreated with an aqueous solution of 20 g / l of a polymeric, polyquaternary ammonium chloride (Mirapol WT from Miranol Chemical Company). After the pretreatment, the base material was immersed in a 20% H2SO4 solution for 3 minutes and treated anodically with a voltage of approx. 5 V. Then it was rinsed and galvanically copper-plated. After only 3 minutes, all holes were completely, evenly and firmly metallized.
- aqueous solution 20 g / l of a polymeric, polyquaternary ammonium chloride (Mirapol WT from Miranol Chemical Company).
- Example 2 was repeated, but ultrasound was used during the conditioning and the galvanic copper plating. After just 2.5 minutes, all holes were completely, evenly and firmly metallized.
- pretreatment was carried out with 1% solutions of nitrogen-free compounds such as, for example, hydroquinone or ethoxylated alkylphenols (Triton® BG 10, Rohm & Haas). After every 8 minutes, all holes were completely, evenly and firmly metallized.
- nitrogen-free compounds such as, for example, hydroquinone or ethoxylated alkylphenols (Triton® BG 10, Rohm & Haas).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
- Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
Description
- Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung durchkontaktierter Leiterplatten durch direkte galvanische Metallabscheidung auf katalytisch aktivierten Oberflächen des Basismaterials unter Verwendung bekannter galvanischer Bäder, wobei die katalytisch aktivierten Oberflächen vor der galvanischen Metallabscheidung verbehandelt werden.
- In der Praxis werden bisher durchkontaktierte Leiterplatten nicht durch direkte galvanische Metallabscheidung, sondern durch chemische Metallabscheidung auf katalytisch aktivierten Oberflächen des Basismaterials hergestellt. Diese chemisch niedergeschlagenen Metallschichten werden gegebenenfalls später durch galvanische Metallabscheidung verstärkt. Diese Technologie hat sich durchaus bewährt und führt zu qualitativ hochwertigen Leiterplatten. Dennoch weist diese Technologie einige Nachteile auf, die bisher jedoch in Ermangelung von praktikablen Alternativen in Kauf genommen werden müssen. Es ist vor allem die außenstromlose und somit rein chemische Metallablagerung in Reduktionsbädern, die sehr aufwendig ist und eine genaue Badanalytik und Badführung notwendig macht. Diese chemischen Metallisierungsbäder enthalten auch mit Abstand die teuersten Chemikalien. Dennoch sind die derartig abgeschiedenen Schichten physikalisch und mechanisch von geringerer Qualität als galvanisch abgeschiedene Metallschichten. Ein weiterer Nachteil der bisher angewendeten Technologie ist die Unsicherheit bei der Stabilisierung der Systeme und damit auch der Gewißheit, daß die Abscheidungsgeschwindigkeit und Schichtdicke in den Bohrlochwandungen ausreichend reproduzierbar ist. Diese Bäder enthalten obendrein als Reduktionsmittel meistens Formaldehyd, der inzwischen als gesundheitlich bedenklich anzusehen ist. Diese chemischen Metallisierungsbäder enthalten weiterhin größere Mengen von Komplexbildnern, die biologisch schwer abbaubar sind und deshalb eine erhebliche Belastung der Abwässer darstellen.
- Es ist deshalb schon seit langem versucht worden, auf diese chemische Metallisierung zu verzichten und statt dessen eine direkte galvanische Metallabscheidung durchzuführen. Ein derartiges Verfahren ist beispielsweise in der US-PS 3,099,608 beschrieben worden sowie in der DE-OS 33 04 004. Diese Verfahren haben jedoch keinen Eingang in die Praxis gefunden. Eine Nacharbeitung dieser Verfahren durch die Anmelderin hat ergeben, daß nur mit frisch zubereiteten galvanischen Metallisierungsbädern einigermaßen brauchbare Ergebnisse erzielt werden können. Schon sehr rasch nach Inbetriebnahme eines derartigen galvanischen Metallisierungsbades sinkt die Qualität der erhaltenen Metallablagerungen derartig, daß nur noch unbrauchbare Ergebnisse erzielt werden. Weiterhin wurde die Beobachtung aus der US-PS 3,099,608 bestätigt, daß relativ lange Zeiten für die Metallablagerung notwendig sind, nämlich mindestens 20 Minuten. Vor allem treten aber sehr rasch in zunehmenden Maße Fehlstellen bei der Metallisierung auf und werden Metallschichten auf der Lochwandung erhalten, die ungenügend daran haften.
- GB-A-2 123 036 beschreibt ein Verfahren zur galvanischen Metallabscheidung auf nicht-metallischen Oberflächen, bei dem das Galvanisierungsbad eine Komponente C enthält, die eine verbesserte galvanische Metallabscheidung gewährleisten soll. Dabei handelt es sich bei dieser Komponente um Farbstoffe, oberflächenaktive Stoffe (Benetzer), Chelate, Glanz- und Nivellierungszusätze.
- Die Erfindung hat sich die Aufgabe gestellt, ein Verfahren zur Herstellung durchkontaktierter Leiterplatten durch direkte galvanische Metallabscheidung auf katalytisch aktivierten Oberflächen des Basismaterials zu entwickeln, welches rasch und preiswert zu Produkten führt, die qualitativ mit den bisher bekannten Produkten vergleichbar sind und bei denen die Metallisierungsbäder über eine ausreichend lange Zeit verwendet werden können.
- Diese Aufgabe kann überraschend einfach dadurch gelöst werden, daß die Vorbehandlung mit einer Lösung erfolgt, die eine oder mehrere stickstoffhaltige organische Verbindungen enthält wobei die Oberflächen während oder nach der Vorbehandlung mit der stickstoffhaltigen organischen Verbindung enthaltenden Lösung, aber vor der galvanischen Metallabscheidung, kurzfristig als Anode oder Kathode geschaltet werden. Als stickstoffhaltige organische Verbindungen können beispielsweise gegebenenfalls durch Hydroxyl-, Carboxyl- oder Sulfogruppen substituierte aliphatische, aromatische, heterocyclische oder cycloaliphatische Mono-, Di- oder Polyamine sowie ein- oder mehrkernige N-haltige heterocyclische Verbindungen verwendet werden, die gegebenenfalls in ethoxilierter, propoxilierter und/oder quaternisierter Form oder in Form eines Säureadditionssalzes vorliegen.
- Besonders gute Ergebnisse wurden bisher gefunden mit Polyvinylpyrrolidonen, 2,2,6,6-Tetramethyl-4-piperidon, Pyridiniumpropylsulfobetain und/oder polymeren, polyquaternären Ammoniumchloriden.
- Die Wirksamkeit der genannten Verbindungen kann durch die zusätzliche Verwendung von Reduktionsmitteln, wie z.B. Borhydrid, Ascorbinsäure, Oxalsäure, Hypophosphit u.a., noch weiter gesteigert werden. Die Reduktionsmittel können gegebenenfalls auch separat als Vorstufe vor der Vorbehandlung eingesetzt werden.
- Es gibt bisher noch keine Erklärung für die Wirkung der stickstoffhaltigen organischen Verbindungen und der kurzfristigen Schaltung als Anode oder Kathode.
- Ganz offensichtlich werden aber durch diese Maßnahmen die katalytisch aktivierten Oberflächen in einer Weise verändert, daß sie in der Lage sind, wesentlich rascher, reproduzierbarer und haltbarer eine direkte galvanische Metallabscheidung zu gewährleisten. Weiterhin haben diese Maßnahmen die Folge, daß die anschließend eingesetzten galvanischen Metallbäder über einen langen Zeitraum ohne Beeinträchtigung der Qualität eingesetzt werden können.
- Schließlich wurde festgestellt, daß eine weitere Optimierung der Verfahrensbedingungen erreicht werden kann, wenn während der Vorbehandlung mit der stickstoffhaltigen organischen Verbindung enthaltenden Lösung und/oder während der galvanischen Metallabscheidung Ultraschall zur Einwirkung kommt. Die Wirkung von Ultraschall beruht wahrscheinlich auf einer verbesserten Hydrodynamik an der Oberfläche, jedoch gibt es bisher keinen exakten Beweis für diese Annahme.
- Zur Durchführung des erfindungsgemäßen Verfahrens kann man von den üblichen Basismaterialien ausgehen. Hierzu gehören insbesondere glasfaserverstärktes Epoxidharz, Polyimid und andere feste Polymere. Prinzipiell sind alle Basismaterialien geeignet, die mit einer Metallschicht überziehbar sind, indem sie katalytisch aktiviert werden.
- Auch die katalytische Aktivierung der Oberflächen erfolgt in an sich bekannter Weise. Insbesondere erfolgt die Aktivierung mittels edelmetallhaltiger, kolloidaler, ionogener oder nicht ionogener Katalysatoren, insbesondere die bekannten Katalysatoren auf Basis von Palladium und Zinn. Prinzipiell sind aber auch andere, beispielsweise nicht edelmetallhaltige Katalysatoren geeignet oder aufgedampfte, katalytisch wirkende Schichten.
- Auch die anschließende galvanische Metallabscheidung erfolgt mittels bekannter galvanischer Bäder. Es können prinzipiell alle Metalle bzw. Legierungen abgeschieden werden, die auf galvanischem Wege abzuscheiden sind. Bevorzugt werden jedoch Kupferelektrolyte verwendet. Besonders bevorzugt sind schwefelsaure Kupferbäder mit einem Gehalt von 50 bis 300 g/l freier Schwefelsäure und einem Metallgehalt von 5 bis 50 g/l. Aber auch fluorborsaure, salzsaure, thiosulfat- oder pyrophosphathaltige oder cyanidische Elektrolyte sowie Elektrolyte auf Basis von Sulfaminen und organischen Sulfonsäuren haben sich als geeignet erwiesen.
- Elektrolyte werden unter den üblichen Bedingungen, nämlich im Temperaturbereich zwischen 20 und 70°C mit Stromdichten zwischen 0,1 und 20 A/dm² betrieben. Überraschenderweise kann die Zeit der galvanischen Abscheidung erheblich verkürzt werden, nämlich in besonders günstigen Fällen auf 2 bis 5 Minuten. Man erhält gleichmäßige, geschlossene und darüber hinaus fest haftende Metallschichten, die auch im sogenannten Durchlichttest keinerlei Fehlstellen aufweisen.
- Die erfindungsgemäß hergestellten durchkontaktierten Schaltungen können in bekannter Weise weiterverarbeitet werden. So kann beispielsweise ein weiterer Aufbau von metallischen Schichten auf galvanischem Wege erfolgen, so daß Kupferschichten von 25 bis 40 µm Dicke entstehen, die anschließend mit weiteren metallischen Schichten belegt werden, die als Ätzresiste wirken. Es ist mit Hilfe des erfindungsgemäßen Verfahrens auch möglich, die durchkontaktierten Leiterplatten zunächst negativ mit einem Sieb- oder Photodruck zu belegen, um nach dem Belichten und Entwickeln das Leiterbild zu erzeugen. Es erfolgt dann erst anschließend der Leiterbildaufbau. Schließlich ist es möglich, das Leiterbild nach der katalytischen Aktivierung des gebohrten Basismaterials selektiv mittels Sieb- oder Photodruck herzustellen, um anschließend selektiv auf den freiliegenden, bereits aktivierten Flächen galvanisch zu metallisieren. Hierbei wird ein direkter Aufbau der Leiterplatte erreicht.
- Die erfindungsgemäße Vorbehandlung erfolgt insbesondere mit Hilfe von wässrigen Lösungen oder Lösungen in organischen Lösungsmitteln der stickstoffhaltigen organischen Verbindungen und gegebenenfalls des Reduktionsmittels. Diese Lösungen weisen meistens Konzentrationen von 1 bis 250 g/l auf. Es genügen meistens wenige Vorversuche, um die für das jeweils katalytisch aktivierte Basismaterial optimalen Bedingungen zu ermitteln. Der zusätzliche Verfahrensschritt der Vorbehandlung erfordert nur einen geringen Aufwand, der kostenmäßig in keiner Relation zu dem erzielten verbesserten Ergebnis steht - auch im Vergleich zu der bisher in der Praxis bewährten Methode der chemischen Metallabscheidung.
- In den nachfolgenden Beispielen und Vergleichsbeispielen ist das erfindungsgemäße Verfahren näher erläutert:
- Ein doppelseitig kupferkaschiertes Substrat aus glasfaserverstärktem Epoxidharz wird in üblicher Weise gebohrt, mechanisch gereinigt und chemisch in einem handelsüblichen Reiniger (Blasolit® MSH) entfettet. Anschließend wird das Substrat mit einer wässrigen Lösung von Wasserstoffperoxid und Schwefelsäure angeätzt. Danach wird in einer etwa 10%-igen Salzsäurelösung dekapiert und anschließend mit einem handelsüblichen Katalysatorsystem auf Basis von kolloidalem Palladium (Katalysatorlösung K 125 der Anmelderin) aktiviert. Es wird mit Wasser gespült und danach 2 Minuten lang in eine wässrige Lösung getaucht, die 10 g/l Polvinylpyrrolidon (K 30) enthält. Anschließend wurde mit 20%-iger Schwefelsäure dekapiert und mit einem handelsüblichen galvanischen Kupferelektrolytbad verkupfert. Als Elektrolyt wurde das Handelsprodukt der Anmelderin CUPRO-STAR® LP-1 verwendet. Dieser Elektrolyt hatte folgende Zusammensetzung:
Kupfer: 18 bis 22 g/l Schwefelsäure: 180 bis 250 g/l Natriumchlorid: 60 bis 100 mg/l Zusatzmittel auf Basis eines Polyethers 4 ml/l - Die Temperatur betrug 20 bis 25°C und die Stromdichte 2 bis 4 A/dm². Bereits nach 15 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.
- Unter den gleichen Bedingungen wie im Vergleichsbeispiel 1 wurde ohne die Vorbehandlung mit Polyvinylpyrrolidon direkt nach der Aktivierung galvanisch verkupfert. Nach 20 Minuten war nur ein Teil der Bohrungen metallisiert. Alle Bohrungen wiesen nicht metallisierte Stellen auf. Die Qualität der Ergebnisse sank sehr rasch mit zunehmendem Alter des Metallisierungsbades.
- Unter den gleichen Bedingungen wie im Vergleichsbeispiel 1 wurde konditioniert, jedoch während der Vorbehandlung wurde das Substrat als Anode geschaltet, so daß während 3 Minuten eine Spannung von ca. 10 V vorhanden war.
- Anschließend wurde wie im Vergleichsbeispiel 1 galvanisch verkupfert. Bereits nach 4,5 Minuten waren alle Bohrungen vollständig und gleichmäßig haftfest mit Kupfer überzogen.
- In analoger Weise wie im Vergleichsbeispiel 1 beschrieben wurde die aktivierte Leiterplatte mit einer wässrigen Lösung von 20 g/l eines polymeren, polyquaternären Ammoniumchlorids vorbehandelt (Mirapol WT der Firma Miranol Chemical Company). Nach der Vorbehandlung wurde das Basismaterial 3 Minuten lang in eine 20%-ige H₂SO₄-Lösung eingetaucht und anodisch mit einer Spannung von ca. 5 V behandelt. Danach wurde gespült und galvanisch verkupfert. Bereits nach 3 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.
- In analoger Weise wie in Beispiel 1 beschrieben wurde mit 1%-igen Lösungen von 2,2,6,6-Tetramethyl-4-piperidon, Hydrochlorid oder Pyridiniumpropylsulfobetain konditioniert. Nach jeweils ca. 4 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.
- Das Beispiel 2 wurde wiederholt, jedoch wurde während der Konditionierung und der galvanischen Verkupferung Ultraschall angewendet. Bereits nach 2,5 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.
- Weitere Versuche haben ergeben, daß die so erhaltenen Kupferschichten von ca. 25 bis 40 µm Dicke ohne weiteres galvanisch mit weiteren metallischen Schichten belegt und somit weiterbehandelt werden konnten wie die bisher erhaltenen Produkte, bei denen die erste Kupferschicht chemisch niedergeschlagen worden war. Die physikalischen Eigenschaften der erfindungsgemäß hergestellten Kupferschichten waren jedoch deutlich besser als die von Schichten, die auf chemischem Weg aufgebaut waren.
- In analoger Weise wie in Beispiel 1 beschrieben wurde mit 1%-igen Lösungen von stickstofffreien Verbindungen wie zum Beispiel Hydrochinon oder ethoxilierten Alkylphenolen (Triton® BG 10, Rohm & Haas) vorbehandelt. Nach jeweils 8 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.
Claims (7)
- Verfahren zur Herstellung durchkontaktierter Leiterplatten durch direkte galvanische Metallabscheidung auf katalytisch aktivierten Oberflächen des Basismaterials unter Verwendung bekannter galvanischer Bäder, wobei die katalytisch activierten Oberflächen vor der galvanischen Mettallabscheidung Vorbehandelt werden, dadurch gekennzeichnet, daß die Vorbehandlung mit einer Lösung erfolgt, die eine oder mehrere stickstoffhaltige organische Verbindungen enthält, wobei die Oberflächen während oder nach der Vorbehandlung mit der stickstoffhaltigen organischen Verbindung enthaltenden Lösung, aber vor der galvanischen Metallabscheidung, kurzfristig als Anode oder Kathode geschaltet werden.
- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als stickstoffhaltige organische Verbindung ein gegebenenfalls durch Hydroxyl-, Carboxyl- oder Sulfogruppen substituiertes aliphatisches, aromatisches, heterocyclisches oder cycloaliphatisches Mono-, Di- oder Polyamin sowie ein- oder mehrkernige N-haltige heterocyclische Verbindungen verwendet werden, gegebenenfalls in ethoxilierter, propoxilierter und/oder quaternisierter Form oder in Form eines Säureadditionssalzes.
- Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß als stickstoffhaltige organische Verbindung ein Polyvinylpyrrolidon, 2,2,6,6-Tetramethyl-4-piperidon, Pyridiniumpropylsulfobetain und/oder ein polymeres, polyquaternäres Ammoniumchlorid verwendet wird.
- Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Vorbehandlung in Gegenwart von Reduktionsmitteln durchgeführt wird.
- Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß vor der Vorbehandlung Reduktionsmittel eingesetzt werden.
- Verfahren gemäß einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß als Reduktionsmittel Borhydrid, Ascorbinsäure, Oxalsäure und/oder Hypophosphit eingesetzt werden.
- Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man während der Vorbehandlung und/oder während der galvanischen Metallabscheidung Ultraschall einwirken läßt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT89900227T ATE103460T1 (de) | 1987-12-08 | 1989-06-22 | Verfahren zur herstellung durchkontaktierter leiterplatten. |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3741459 | 1987-12-08 | ||
DE3741459A DE3741459C1 (de) | 1987-12-08 | 1987-12-08 | Verfahren zur Herstellung durchkontaktierter Leiterplatten |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0390827A1 EP0390827A1 (de) | 1990-10-10 |
EP0390827B1 true EP0390827B1 (de) | 1994-03-23 |
Family
ID=6342061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89900227A Expired - Lifetime EP0390827B1 (de) | 1987-12-08 | 1989-06-22 | Verfahren zur herstellung durchkontaktierter leiterplatten |
Country Status (5)
Country | Link |
---|---|
US (1) | US5145572A (de) |
EP (1) | EP0390827B1 (de) |
JP (1) | JPH0793498B2 (de) |
DE (2) | DE3741459C1 (de) |
WO (1) | WO1989005568A1 (de) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3928435A1 (de) * | 1989-08-24 | 1991-02-28 | Schering Ag | Verfahren zur direkten metallisierung eines nicht leitenden substrats |
DE3928832C2 (de) * | 1989-08-31 | 1995-04-20 | Blasberg Oberflaechentech | Verfahren zur Herstellung von durchkontaktierten Leiterplatten und Leiterplatten-Halbzeug |
DE3939676C2 (de) * | 1989-11-28 | 1994-01-27 | Schering Ag | Metallisierung von Nichtleitern |
DE4106333C1 (de) * | 1991-02-28 | 1992-07-16 | Schering Ag Berlin Und Bergkamen, 1000 Berlin, De | |
DE4112462A1 (de) * | 1991-04-12 | 1992-10-15 | Schering Ag | Waessriges konditionierungsmittel fuer die behandlung von nichtleitern |
DE4206680C1 (de) * | 1992-02-28 | 1994-01-27 | Schering Ag | Verfahren zur Metallisierung von Nichtleiteroberflächen und die Verwendung von Hydroxymethansulfinsäure im Verfahren |
US5421989A (en) * | 1993-08-31 | 1995-06-06 | Atotech Deutschland Gmbh | Process for the metallization of nonconductive substrates with elimination of electroless metallization |
DE4412463C3 (de) * | 1994-04-08 | 2000-02-10 | Atotech Deutschland Gmbh | Verfahren zur Herstellung einer Palladium-Kolloid-Lösung und ihre Verwendung |
DE69732521T2 (de) * | 1996-01-29 | 2006-01-12 | Electrochemicals Inc., Maple Plain | Ultraschallverwendung zum mischen von behandlungszusammensetzungen für durchgehenden löcher |
TWI233763B (en) * | 1999-12-17 | 2005-06-01 | Matsushita Electric Ind Co Ltd | Method of manufacturing a circuit board |
US6921551B2 (en) | 2000-08-10 | 2005-07-26 | Asm Nutool, Inc. | Plating method and apparatus for controlling deposition on predetermined portions of a workpiece |
US7384533B2 (en) * | 2001-07-24 | 2008-06-10 | 3M Innovative Properties Company | Electrolytic processes with reduced cell voltage and gas formation |
DE10220684B4 (de) * | 2002-05-10 | 2011-12-08 | Enthone Inc. | Verwendung eines Verfahrens zur Herstellung leitender Polymere mit hoher Metallisierungsfähigkeit zur Durchmetallisierung von kaschierten Basismaterialien zur Leiterplattenherstellung |
US8500985B2 (en) * | 2006-07-21 | 2013-08-06 | Novellus Systems, Inc. | Photoresist-free metal deposition |
SG10201402353PA (en) * | 2009-06-08 | 2014-10-30 | Basf Se | Use of ionic fluids for pretreating plastic surfaces for metallization |
US20130084395A1 (en) * | 2011-09-29 | 2013-04-04 | Roshan V. Chapaneri | Treatment of Plastic Surfaces After Etching in Nitric Acid Containing Media |
KR20210094558A (ko) | 2018-11-07 | 2021-07-29 | 코벤트야 인크. | 새틴 구리조 및 새틴 구리층 침착 방법 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3099608A (en) * | 1959-12-30 | 1963-07-30 | Ibm | Method of electroplating on a dielectric base |
US3194681A (en) * | 1960-12-22 | 1965-07-13 | Ncr Co | Process for plating through holes in a dielectric material |
DE3323476A1 (de) * | 1982-07-01 | 1984-01-05 | Kollmorgen Technologies Corp., 75201 Dallas, Tex. | Verbessertes verfahren zur galvanischen metallabscheidung auf nichtmetallischen oberflaechen |
DE3304004A1 (de) * | 1983-02-03 | 1984-08-09 | Lieber, Hans-Wilhelm, Prof. Dr.-Ing., 1000 Berlin | Verfahren zur herstellung von durchkontaktierten schaltungen |
US4683036A (en) * | 1983-06-10 | 1987-07-28 | Kollmorgen Technologies Corporation | Method for electroplating non-metallic surfaces |
US4622108A (en) * | 1986-05-05 | 1986-11-11 | Olin Hunt Specialty Products, Inc. | Process for preparing the through hole walls of a printed wiring board for electroplating |
IL82764A0 (en) * | 1986-06-06 | 1987-12-20 | Advanced Plating Technology Ap | Selective plating process for the electrolytic coating of circuit boards |
US4891069A (en) * | 1986-06-06 | 1990-01-02 | Techno Instruments Investments 1983 Ltd. | Composition for the electrolytic coating of circuit boards without an electroless metal coating |
US4749449A (en) * | 1987-06-05 | 1988-06-07 | E. I. Du Pont De Nemours And Company | Metallization utilizing a catalyst which is removed or deactivated from undesired surface areas |
US4895739A (en) * | 1988-02-08 | 1990-01-23 | Shipley Company Inc. | Pretreatment for electroplating process |
-
1987
- 1987-12-08 DE DE3741459A patent/DE3741459C1/de not_active Expired
-
1988
- 1988-12-07 WO PCT/EP1988/001112 patent/WO1989005568A1/de active IP Right Grant
- 1988-12-07 JP JP1500326A patent/JPH0793498B2/ja not_active Expired - Lifetime
- 1988-12-07 DE DE89900227T patent/DE3888696D1/de not_active Expired - Fee Related
-
1989
- 1989-06-22 EP EP89900227A patent/EP0390827B1/de not_active Expired - Lifetime
-
1991
- 1991-12-09 US US07/803,899 patent/US5145572A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO1989005568A1 (fr) | 1989-06-15 |
EP0390827A1 (de) | 1990-10-10 |
US5145572A (en) | 1992-09-08 |
DE3741459C1 (de) | 1989-04-13 |
JPH0793498B2 (ja) | 1995-10-09 |
DE3888696D1 (de) | 1994-04-28 |
JPH03504061A (ja) | 1991-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0390827B1 (de) | Verfahren zur herstellung durchkontaktierter leiterplatten | |
EP0489759B1 (de) | Verfahren zur herstellung einer durchkontaktierten leiterplatte | |
DE3889155T2 (de) | Elektroplattierverfahren und hergestellter Gegenstand. | |
DE69020796T2 (de) | Direkt-Elektroplattieren von Durchgangslöchern. | |
DE3323476C2 (de) | ||
DE69027040T2 (de) | Verfahren zum unmittelbaren elektroplattieren eines dielektrischen substrates | |
DE2623716A1 (de) | Verfahren zur chemischen metallabscheidung auf polymeren substraten und dabei verwendete loesung | |
DE69206496T2 (de) | Elektroplattierungsverfahren und Zusammenstellung. | |
EP0815292B1 (de) | Verfahren zum selektiven oder partiellen elektrolytischen metallisieren von oberflächen von substraten aus nichtleitenden materialien | |
EP0997061B1 (de) | Verfahren zum metallisieren eines elektrisch nichtleitende oberflächenbereiche aufweisenden substrats | |
DD283580A5 (de) | Verfahren zur herstellung von durchkontaktierten ein- oder mehrlagigen leiterplatten und durchkontaktieren ein-oder mehrlagige leiterplatte | |
DE69316750T2 (de) | Verfahren zur herstellung einer leiterplatte. | |
DE2137179A1 (de) | Verfahren zum stromlosen Metalhsie ren einer Oberflache | |
EP0417750B1 (de) | Verfahren zur direkten Metallisierung von Leiterplatten | |
DE3304004A1 (de) | Verfahren zur herstellung von durchkontaktierten schaltungen | |
EP0414097A2 (de) | Verfahren zur direkten Metallisierung eines nicht leitenden Substrats | |
EP0619386B1 (de) | Elektrolytische Abscheidung von Palladium oder Palladiumlegierungen | |
EP0579701B1 (de) | Verfahren zur metallisierung von nichtleitern, insbesondere leiterplatten, unter verwendung von stickstoffhaltigen quartärsalzen in dem verfahren | |
DE19502988B4 (de) | Verfahren zur galvanischen Beschichtung von Polymeroberflächen | |
DE3931003A1 (de) | Verfahren zur direkten metallisierung von leiterplatten | |
EP0530564A1 (de) | Verfahren zur Herstellung von Leiterplatten | |
DE3504455A1 (de) | Verfahren zur behandlung eines elektrisch nicht leitenden substrats vor der stromlosen metallisierung | |
DE3137587A1 (de) | Verfahren zur vorbehandlung von formteilen aus polyamiden fuer das aufbringen haftfester, chemisch abgeschiedener metallbeschichtungen | |
DE69015164T2 (de) | Stromlose Abscheidung von Nickel auf Oberflächen wie Kupfer oder geschmolzenem Wolfram. | |
DE4211152C1 (de) | Verfahren zur Metallisierung von Nichtleitern und Anwendung des Verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19900421 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19920911 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE FR GB IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19940323 Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19940323 |
|
REF | Corresponds to: |
Ref document number: 103460 Country of ref document: AT Date of ref document: 19940415 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 3888696 Country of ref document: DE Date of ref document: 19940428 |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19941207 Ref country code: GB Effective date: 19941207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19941231 Ref country code: BE Effective date: 19941231 Ref country code: LI Effective date: 19941231 Ref country code: CH Effective date: 19941231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: BLASBERG-OBERFLACHENTECHNIK G.M.B.H. Effective date: 19941231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19950701 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19941207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19950831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19950701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |