EP0390827B1 - Verfahren zur herstellung durchkontaktierter leiterplatten - Google Patents

Verfahren zur herstellung durchkontaktierter leiterplatten Download PDF

Info

Publication number
EP0390827B1
EP0390827B1 EP89900227A EP89900227A EP0390827B1 EP 0390827 B1 EP0390827 B1 EP 0390827B1 EP 89900227 A EP89900227 A EP 89900227A EP 89900227 A EP89900227 A EP 89900227A EP 0390827 B1 EP0390827 B1 EP 0390827B1
Authority
EP
European Patent Office
Prior art keywords
process according
treatment
nitrogen
anyone
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89900227A
Other languages
English (en)
French (fr)
Other versions
EP0390827A1 (de
Inventor
Jürgen Hupe
Herbert Iwan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blasberg-Oberflachentechnik GmbH
Original Assignee
Blasberg-Oberflachentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blasberg-Oberflachentechnik GmbH filed Critical Blasberg-Oberflachentechnik GmbH
Priority to AT89900227T priority Critical patent/ATE103460T1/de
Publication of EP0390827A1 publication Critical patent/EP0390827A1/de
Application granted granted Critical
Publication of EP0390827B1 publication Critical patent/EP0390827B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • H05K3/424Plated through-holes or plated via connections characterised by electroplating method by direct electroplating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0285Using ultrasound, e.g. for cleaning, soldering or wet treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0716Metallic plating catalysts, e.g. for direct electroplating of through holes; Sensitising or activating metallic plating catalysts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax or thiol
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Definitions

  • the present invention relates to a method for producing plated-through circuit boards by direct galvanic metal deposition on catalytically activated surfaces of the base material using known galvanic baths, the catalytically activated surfaces being treated prior to the galvanic metal deposition.
  • GB-A-2 123 036 describes a method for galvanic metal deposition on non-metallic surfaces, in which the electroplating bath contains a component C which is intended to ensure improved galvanic metal deposition.
  • This component is dyes, surface-active substances (wetting agents), chelates, gloss and leveling additives.
  • the invention has for its object to develop a method for the production of plated-through circuit boards by direct galvanic metal deposition on catalytically activated surfaces of the base material, which leads quickly and inexpensively to products that are comparable in quality with the previously known products and in which the metallization baths can be used for a sufficiently long time.
  • Suitable nitrogen-containing organic compounds can be, for example, aliphatic, aromatic, heterocyclic or cycloaliphatic mono-, di- or polyamines which are optionally substituted by hydroxyl, carboxyl or sulfo groups and mono- or polynuclear N-containing heterocyclic compounds which are optionally ethoxylated, propoxylated and / or in quaternized form or in the form of an acid addition salt.
  • the effectiveness of the compounds mentioned can be increased by the additional use of reducing agents, e.g. Borohydride, ascorbic acid, oxalic acid, hypophosphite and others can be increased even further.
  • reducing agents e.g. Borohydride, ascorbic acid, oxalic acid, hypophosphite and others can be increased even further.
  • the reducing agents can optionally also be used separately as a preliminary stage before the pretreatment.
  • base materials can be used to carry out the process according to the invention. These include in particular glass fiber reinforced epoxy resin, polyimide and other solid polymers. In principle, all base materials that can be covered with a metal layer by being catalytically activated are suitable.
  • the catalytic activation of the surfaces also takes place in a manner known per se.
  • the activation takes place by means of precious metal-containing, colloidal, ionogenic or non-ionic catalysts, in particular the known catalysts based on palladium and tin.
  • precious metal-containing, colloidal, ionogenic or non-ionic catalysts in particular the known catalysts based on palladium and tin.
  • other catalysts for example those which do not contain noble metals, or vapor-deposited, catalytically active layers are also suitable.
  • the subsequent galvanic metal deposition is also carried out using known galvanic baths.
  • all metals or alloys that can be deposited by electroplating can be deposited.
  • copper electrolytes are preferably used.
  • Sulfuric acid copper baths with a content of 50 to 300 g / l of free sulfuric acid and a metal content of 5 to 50 g / l are particularly preferred.
  • fluoroboric, hydrochloric, thiosulfate or pyrophosphate or cyanide electrolytes as well as electrolytes based on sulfamines and organic sulfonic acids have been found to be suitable.
  • Electrolytes are operated under the usual conditions, namely in the temperature range between 20 and 70 ° C with current densities between 0.1 and 20 A / dm2. Surprisingly, the time of the galvanic deposition can be reduced considerably, namely to 2 to 5 minutes in particularly favorable cases. The result is uniform, closed and, moreover, firmly adhering metal layers which have no defects either in the so-called transmitted light test.
  • the plated-through circuits produced according to the invention can be processed further in a known manner.
  • a further build-up of metallic layers can be carried out galvanically, so that copper layers of 25 to 40 ⁇ m thickness are formed, which are subsequently covered with further metallic layers which act as etching resists.
  • a direct assembly of the circuit board is achieved.
  • the pretreatment according to the invention is carried out in particular with the aid of aqueous solutions or solutions in organic solvents of the nitrogen-containing organic compounds and optionally the reducing agent. These solutions mostly have concentrations of 1 to 250 g / l. Usually, only a few preliminary tests are sufficient to determine the optimal conditions for the catalytically activated base material. The additional process step of pretreatment requires only little effort, which is cost-related to the improved result achieved - also in comparison to the method of chemical metal deposition that has been tried and tested in practice.
  • a double-sided copper-clad substrate made of glass fiber reinforced epoxy resin is drilled in the usual way, mechanically cleaned and degreased chemically in a commercially available cleaner (Blasolit® MSH).
  • the substrate is then etched with an aqueous solution of hydrogen peroxide and sulfuric acid. It is then picked up in an approximately 10% hydrochloric acid solution and then activated with a commercially available catalyst system based on colloidal palladium (catalyst solution K 125 from the applicant). It is rinsed with water and then immersed in an aqueous solution containing 10 g / l of polvinylpyrrolidone (K 30) for 2 minutes.
  • the temperature was 20 to 25 ° C and the current density 2 to 4 A / dm2. After just 15 minutes, all holes were completely, evenly and firmly metallized.
  • the activated printed circuit board was pretreated with an aqueous solution of 20 g / l of a polymeric, polyquaternary ammonium chloride (Mirapol WT from Miranol Chemical Company). After the pretreatment, the base material was immersed in a 20% H2SO4 solution for 3 minutes and treated anodically with a voltage of approx. 5 V. Then it was rinsed and galvanically copper-plated. After only 3 minutes, all holes were completely, evenly and firmly metallized.
  • aqueous solution 20 g / l of a polymeric, polyquaternary ammonium chloride (Mirapol WT from Miranol Chemical Company).
  • Example 2 was repeated, but ultrasound was used during the conditioning and the galvanic copper plating. After just 2.5 minutes, all holes were completely, evenly and firmly metallized.
  • pretreatment was carried out with 1% solutions of nitrogen-free compounds such as, for example, hydroquinone or ethoxylated alkylphenols (Triton® BG 10, Rohm & Haas). After every 8 minutes, all holes were completely, evenly and firmly metallized.
  • nitrogen-free compounds such as, for example, hydroquinone or ethoxylated alkylphenols (Triton® BG 10, Rohm & Haas).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Description

  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung durchkontaktierter Leiterplatten durch direkte galvanische Metallabscheidung auf katalytisch aktivierten Oberflächen des Basismaterials unter Verwendung bekannter galvanischer Bäder, wobei die katalytisch aktivierten Oberflächen vor der galvanischen Metallabscheidung verbehandelt werden.
  • In der Praxis werden bisher durchkontaktierte Leiterplatten nicht durch direkte galvanische Metallabscheidung, sondern durch chemische Metallabscheidung auf katalytisch aktivierten Oberflächen des Basismaterials hergestellt. Diese chemisch niedergeschlagenen Metallschichten werden gegebenenfalls später durch galvanische Metallabscheidung verstärkt. Diese Technologie hat sich durchaus bewährt und führt zu qualitativ hochwertigen Leiterplatten. Dennoch weist diese Technologie einige Nachteile auf, die bisher jedoch in Ermangelung von praktikablen Alternativen in Kauf genommen werden müssen. Es ist vor allem die außenstromlose und somit rein chemische Metallablagerung in Reduktionsbädern, die sehr aufwendig ist und eine genaue Badanalytik und Badführung notwendig macht. Diese chemischen Metallisierungsbäder enthalten auch mit Abstand die teuersten Chemikalien. Dennoch sind die derartig abgeschiedenen Schichten physikalisch und mechanisch von geringerer Qualität als galvanisch abgeschiedene Metallschichten. Ein weiterer Nachteil der bisher angewendeten Technologie ist die Unsicherheit bei der Stabilisierung der Systeme und damit auch der Gewißheit, daß die Abscheidungsgeschwindigkeit und Schichtdicke in den Bohrlochwandungen ausreichend reproduzierbar ist. Diese Bäder enthalten obendrein als Reduktionsmittel meistens Formaldehyd, der inzwischen als gesundheitlich bedenklich anzusehen ist. Diese chemischen Metallisierungsbäder enthalten weiterhin größere Mengen von Komplexbildnern, die biologisch schwer abbaubar sind und deshalb eine erhebliche Belastung der Abwässer darstellen.
  • Es ist deshalb schon seit langem versucht worden, auf diese chemische Metallisierung zu verzichten und statt dessen eine direkte galvanische Metallabscheidung durchzuführen. Ein derartiges Verfahren ist beispielsweise in der US-PS 3,099,608 beschrieben worden sowie in der DE-OS 33 04 004. Diese Verfahren haben jedoch keinen Eingang in die Praxis gefunden. Eine Nacharbeitung dieser Verfahren durch die Anmelderin hat ergeben, daß nur mit frisch zubereiteten galvanischen Metallisierungsbädern einigermaßen brauchbare Ergebnisse erzielt werden können. Schon sehr rasch nach Inbetriebnahme eines derartigen galvanischen Metallisierungsbades sinkt die Qualität der erhaltenen Metallablagerungen derartig, daß nur noch unbrauchbare Ergebnisse erzielt werden. Weiterhin wurde die Beobachtung aus der US-PS 3,099,608 bestätigt, daß relativ lange Zeiten für die Metallablagerung notwendig sind, nämlich mindestens 20 Minuten. Vor allem treten aber sehr rasch in zunehmenden Maße Fehlstellen bei der Metallisierung auf und werden Metallschichten auf der Lochwandung erhalten, die ungenügend daran haften.
  • GB-A-2 123 036 beschreibt ein Verfahren zur galvanischen Metallabscheidung auf nicht-metallischen Oberflächen, bei dem das Galvanisierungsbad eine Komponente C enthält, die eine verbesserte galvanische Metallabscheidung gewährleisten soll. Dabei handelt es sich bei dieser Komponente um Farbstoffe, oberflächenaktive Stoffe (Benetzer), Chelate, Glanz- und Nivellierungszusätze.
  • Die Erfindung hat sich die Aufgabe gestellt, ein Verfahren zur Herstellung durchkontaktierter Leiterplatten durch direkte galvanische Metallabscheidung auf katalytisch aktivierten Oberflächen des Basismaterials zu entwickeln, welches rasch und preiswert zu Produkten führt, die qualitativ mit den bisher bekannten Produkten vergleichbar sind und bei denen die Metallisierungsbäder über eine ausreichend lange Zeit verwendet werden können.
  • Diese Aufgabe kann überraschend einfach dadurch gelöst werden, daß die Vorbehandlung mit einer Lösung erfolgt, die eine oder mehrere stickstoffhaltige organische Verbindungen enthält wobei die Oberflächen während oder nach der Vorbehandlung mit der stickstoffhaltigen organischen Verbindung enthaltenden Lösung, aber vor der galvanischen Metallabscheidung, kurzfristig als Anode oder Kathode geschaltet werden. Als stickstoffhaltige organische Verbindungen können beispielsweise gegebenenfalls durch Hydroxyl-, Carboxyl- oder Sulfogruppen substituierte aliphatische, aromatische, heterocyclische oder cycloaliphatische Mono-, Di- oder Polyamine sowie ein- oder mehrkernige N-haltige heterocyclische Verbindungen verwendet werden, die gegebenenfalls in ethoxilierter, propoxilierter und/oder quaternisierter Form oder in Form eines Säureadditionssalzes vorliegen.
  • Besonders gute Ergebnisse wurden bisher gefunden mit Polyvinylpyrrolidonen, 2,2,6,6-Tetramethyl-4-piperidon, Pyridiniumpropylsulfobetain und/oder polymeren, polyquaternären Ammoniumchloriden.
  • Die Wirksamkeit der genannten Verbindungen kann durch die zusätzliche Verwendung von Reduktionsmitteln, wie z.B. Borhydrid, Ascorbinsäure, Oxalsäure, Hypophosphit u.a., noch weiter gesteigert werden. Die Reduktionsmittel können gegebenenfalls auch separat als Vorstufe vor der Vorbehandlung eingesetzt werden.
  • Es gibt bisher noch keine Erklärung für die Wirkung der stickstoffhaltigen organischen Verbindungen und der kurzfristigen Schaltung als Anode oder Kathode.
  • Ganz offensichtlich werden aber durch diese Maßnahmen die katalytisch aktivierten Oberflächen in einer Weise verändert, daß sie in der Lage sind, wesentlich rascher, reproduzierbarer und haltbarer eine direkte galvanische Metallabscheidung zu gewährleisten. Weiterhin haben diese Maßnahmen die Folge, daß die anschließend eingesetzten galvanischen Metallbäder über einen langen Zeitraum ohne Beeinträchtigung der Qualität eingesetzt werden können.
  • Schließlich wurde festgestellt, daß eine weitere Optimierung der Verfahrensbedingungen erreicht werden kann, wenn während der Vorbehandlung mit der stickstoffhaltigen organischen Verbindung enthaltenden Lösung und/oder während der galvanischen Metallabscheidung Ultraschall zur Einwirkung kommt. Die Wirkung von Ultraschall beruht wahrscheinlich auf einer verbesserten Hydrodynamik an der Oberfläche, jedoch gibt es bisher keinen exakten Beweis für diese Annahme.
  • Zur Durchführung des erfindungsgemäßen Verfahrens kann man von den üblichen Basismaterialien ausgehen. Hierzu gehören insbesondere glasfaserverstärktes Epoxidharz, Polyimid und andere feste Polymere. Prinzipiell sind alle Basismaterialien geeignet, die mit einer Metallschicht überziehbar sind, indem sie katalytisch aktiviert werden.
  • Auch die katalytische Aktivierung der Oberflächen erfolgt in an sich bekannter Weise. Insbesondere erfolgt die Aktivierung mittels edelmetallhaltiger, kolloidaler, ionogener oder nicht ionogener Katalysatoren, insbesondere die bekannten Katalysatoren auf Basis von Palladium und Zinn. Prinzipiell sind aber auch andere, beispielsweise nicht edelmetallhaltige Katalysatoren geeignet oder aufgedampfte, katalytisch wirkende Schichten.
  • Auch die anschließende galvanische Metallabscheidung erfolgt mittels bekannter galvanischer Bäder. Es können prinzipiell alle Metalle bzw. Legierungen abgeschieden werden, die auf galvanischem Wege abzuscheiden sind. Bevorzugt werden jedoch Kupferelektrolyte verwendet. Besonders bevorzugt sind schwefelsaure Kupferbäder mit einem Gehalt von 50 bis 300 g/l freier Schwefelsäure und einem Metallgehalt von 5 bis 50 g/l. Aber auch fluorborsaure, salzsaure, thiosulfat- oder pyrophosphathaltige oder cyanidische Elektrolyte sowie Elektrolyte auf Basis von Sulfaminen und organischen Sulfonsäuren haben sich als geeignet erwiesen.
  • Elektrolyte werden unter den üblichen Bedingungen, nämlich im Temperaturbereich zwischen 20 und 70°C mit Stromdichten zwischen 0,1 und 20 A/dm² betrieben. Überraschenderweise kann die Zeit der galvanischen Abscheidung erheblich verkürzt werden, nämlich in besonders günstigen Fällen auf 2 bis 5 Minuten. Man erhält gleichmäßige, geschlossene und darüber hinaus fest haftende Metallschichten, die auch im sogenannten Durchlichttest keinerlei Fehlstellen aufweisen.
  • Die erfindungsgemäß hergestellten durchkontaktierten Schaltungen können in bekannter Weise weiterverarbeitet werden. So kann beispielsweise ein weiterer Aufbau von metallischen Schichten auf galvanischem Wege erfolgen, so daß Kupferschichten von 25 bis 40 µm Dicke entstehen, die anschließend mit weiteren metallischen Schichten belegt werden, die als Ätzresiste wirken. Es ist mit Hilfe des erfindungsgemäßen Verfahrens auch möglich, die durchkontaktierten Leiterplatten zunächst negativ mit einem Sieb- oder Photodruck zu belegen, um nach dem Belichten und Entwickeln das Leiterbild zu erzeugen. Es erfolgt dann erst anschließend der Leiterbildaufbau. Schließlich ist es möglich, das Leiterbild nach der katalytischen Aktivierung des gebohrten Basismaterials selektiv mittels Sieb- oder Photodruck herzustellen, um anschließend selektiv auf den freiliegenden, bereits aktivierten Flächen galvanisch zu metallisieren. Hierbei wird ein direkter Aufbau der Leiterplatte erreicht.
  • Die erfindungsgemäße Vorbehandlung erfolgt insbesondere mit Hilfe von wässrigen Lösungen oder Lösungen in organischen Lösungsmitteln der stickstoffhaltigen organischen Verbindungen und gegebenenfalls des Reduktionsmittels. Diese Lösungen weisen meistens Konzentrationen von 1 bis 250 g/l auf. Es genügen meistens wenige Vorversuche, um die für das jeweils katalytisch aktivierte Basismaterial optimalen Bedingungen zu ermitteln. Der zusätzliche Verfahrensschritt der Vorbehandlung erfordert nur einen geringen Aufwand, der kostenmäßig in keiner Relation zu dem erzielten verbesserten Ergebnis steht - auch im Vergleich zu der bisher in der Praxis bewährten Methode der chemischen Metallabscheidung.
  • In den nachfolgenden Beispielen und Vergleichsbeispielen ist das erfindungsgemäße Verfahren näher erläutert:
  • Vergleichsbeispiel 1
  • Ein doppelseitig kupferkaschiertes Substrat aus glasfaserverstärktem Epoxidharz wird in üblicher Weise gebohrt, mechanisch gereinigt und chemisch in einem handelsüblichen Reiniger (Blasolit® MSH) entfettet. Anschließend wird das Substrat mit einer wässrigen Lösung von Wasserstoffperoxid und Schwefelsäure angeätzt. Danach wird in einer etwa 10%-igen Salzsäurelösung dekapiert und anschließend mit einem handelsüblichen Katalysatorsystem auf Basis von kolloidalem Palladium (Katalysatorlösung K 125 der Anmelderin) aktiviert. Es wird mit Wasser gespült und danach 2 Minuten lang in eine wässrige Lösung getaucht, die 10 g/l Polvinylpyrrolidon (K 30) enthält. Anschließend wurde mit 20%-iger Schwefelsäure dekapiert und mit einem handelsüblichen galvanischen Kupferelektrolytbad verkupfert. Als Elektrolyt wurde das Handelsprodukt der Anmelderin CUPRO-STAR® LP-1 verwendet. Dieser Elektrolyt hatte folgende Zusammensetzung:
    Kupfer: 18 bis 22 g/l
    Schwefelsäure: 180 bis 250 g/l
    Natriumchlorid: 60 bis 100 mg/l
    Zusatzmittel auf Basis eines Polyethers 4 ml/l
  • Die Temperatur betrug 20 bis 25°C und die Stromdichte 2 bis 4 A/dm². Bereits nach 15 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.
  • Vergleichsbeispiel 2
  • Unter den gleichen Bedingungen wie im Vergleichsbeispiel 1 wurde ohne die Vorbehandlung mit Polyvinylpyrrolidon direkt nach der Aktivierung galvanisch verkupfert. Nach 20 Minuten war nur ein Teil der Bohrungen metallisiert. Alle Bohrungen wiesen nicht metallisierte Stellen auf. Die Qualität der Ergebnisse sank sehr rasch mit zunehmendem Alter des Metallisierungsbades.
  • Beispiel 1
  • Unter den gleichen Bedingungen wie im Vergleichsbeispiel 1 wurde konditioniert, jedoch während der Vorbehandlung wurde das Substrat als Anode geschaltet, so daß während 3 Minuten eine Spannung von ca. 10 V vorhanden war.
  • Anschließend wurde wie im Vergleichsbeispiel 1 galvanisch verkupfert. Bereits nach 4,5 Minuten waren alle Bohrungen vollständig und gleichmäßig haftfest mit Kupfer überzogen.
  • Beispiel 2
  • In analoger Weise wie im Vergleichsbeispiel 1 beschrieben wurde die aktivierte Leiterplatte mit einer wässrigen Lösung von 20 g/l eines polymeren, polyquaternären Ammoniumchlorids vorbehandelt (Mirapol WT der Firma Miranol Chemical Company). Nach der Vorbehandlung wurde das Basismaterial 3 Minuten lang in eine 20%-ige H₂SO₄-Lösung eingetaucht und anodisch mit einer Spannung von ca. 5 V behandelt. Danach wurde gespült und galvanisch verkupfert. Bereits nach 3 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.
  • Beispiel 3
  • In analoger Weise wie in Beispiel 1 beschrieben wurde mit 1%-igen Lösungen von 2,2,6,6-Tetramethyl-4-piperidon, Hydrochlorid oder Pyridiniumpropylsulfobetain konditioniert. Nach jeweils ca. 4 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.
  • Beispiel 4
  • Das Beispiel 2 wurde wiederholt, jedoch wurde während der Konditionierung und der galvanischen Verkupferung Ultraschall angewendet. Bereits nach 2,5 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.
  • Weitere Versuche haben ergeben, daß die so erhaltenen Kupferschichten von ca. 25 bis 40 µm Dicke ohne weiteres galvanisch mit weiteren metallischen Schichten belegt und somit weiterbehandelt werden konnten wie die bisher erhaltenen Produkte, bei denen die erste Kupferschicht chemisch niedergeschlagen worden war. Die physikalischen Eigenschaften der erfindungsgemäß hergestellten Kupferschichten waren jedoch deutlich besser als die von Schichten, die auf chemischem Weg aufgebaut waren.
  • Vergleichsbeispiel 3
  • In analoger Weise wie in Beispiel 1 beschrieben wurde mit 1%-igen Lösungen von stickstofffreien Verbindungen wie zum Beispiel Hydrochinon oder ethoxilierten Alkylphenolen (Triton® BG 10, Rohm & Haas) vorbehandelt. Nach jeweils 8 Minuten waren alle Bohrungen vollständig, gleichmäßig und haftfest metallisiert.

Claims (7)

  1. Verfahren zur Herstellung durchkontaktierter Leiterplatten durch direkte galvanische Metallabscheidung auf katalytisch aktivierten Oberflächen des Basismaterials unter Verwendung bekannter galvanischer Bäder, wobei die katalytisch activierten Oberflächen vor der galvanischen Mettallabscheidung Vorbehandelt werden, dadurch gekennzeichnet, daß die Vorbehandlung mit einer Lösung erfolgt, die eine oder mehrere stickstoffhaltige organische Verbindungen enthält, wobei die Oberflächen während oder nach der Vorbehandlung mit der stickstoffhaltigen organischen Verbindung enthaltenden Lösung, aber vor der galvanischen Metallabscheidung, kurzfristig als Anode oder Kathode geschaltet werden.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als stickstoffhaltige organische Verbindung ein gegebenenfalls durch Hydroxyl-, Carboxyl- oder Sulfogruppen substituiertes aliphatisches, aromatisches, heterocyclisches oder cycloaliphatisches Mono-, Di- oder Polyamin sowie ein- oder mehrkernige N-haltige heterocyclische Verbindungen verwendet werden, gegebenenfalls in ethoxilierter, propoxilierter und/oder quaternisierter Form oder in Form eines Säureadditionssalzes.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß als stickstoffhaltige organische Verbindung ein Polyvinylpyrrolidon, 2,2,6,6-Tetramethyl-4-piperidon, Pyridiniumpropylsulfobetain und/oder ein polymeres, polyquaternäres Ammoniumchlorid verwendet wird.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Vorbehandlung in Gegenwart von Reduktionsmitteln durchgeführt wird.
  5. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß vor der Vorbehandlung Reduktionsmittel eingesetzt werden.
  6. Verfahren gemäß einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß als Reduktionsmittel Borhydrid, Ascorbinsäure, Oxalsäure und/oder Hypophosphit eingesetzt werden.
  7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man während der Vorbehandlung und/oder während der galvanischen Metallabscheidung Ultraschall einwirken läßt.
EP89900227A 1987-12-08 1989-06-22 Verfahren zur herstellung durchkontaktierter leiterplatten Expired - Lifetime EP0390827B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89900227T ATE103460T1 (de) 1987-12-08 1989-06-22 Verfahren zur herstellung durchkontaktierter leiterplatten.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3741459 1987-12-08
DE3741459A DE3741459C1 (de) 1987-12-08 1987-12-08 Verfahren zur Herstellung durchkontaktierter Leiterplatten

Publications (2)

Publication Number Publication Date
EP0390827A1 EP0390827A1 (de) 1990-10-10
EP0390827B1 true EP0390827B1 (de) 1994-03-23

Family

ID=6342061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89900227A Expired - Lifetime EP0390827B1 (de) 1987-12-08 1989-06-22 Verfahren zur herstellung durchkontaktierter leiterplatten

Country Status (5)

Country Link
US (1) US5145572A (de)
EP (1) EP0390827B1 (de)
JP (1) JPH0793498B2 (de)
DE (2) DE3741459C1 (de)
WO (1) WO1989005568A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3928435A1 (de) * 1989-08-24 1991-02-28 Schering Ag Verfahren zur direkten metallisierung eines nicht leitenden substrats
DE3928832C2 (de) * 1989-08-31 1995-04-20 Blasberg Oberflaechentech Verfahren zur Herstellung von durchkontaktierten Leiterplatten und Leiterplatten-Halbzeug
DE3939676C2 (de) * 1989-11-28 1994-01-27 Schering Ag Metallisierung von Nichtleitern
DE4106333C1 (de) * 1991-02-28 1992-07-16 Schering Ag Berlin Und Bergkamen, 1000 Berlin, De
DE4112462A1 (de) * 1991-04-12 1992-10-15 Schering Ag Waessriges konditionierungsmittel fuer die behandlung von nichtleitern
DE4206680C1 (de) * 1992-02-28 1994-01-27 Schering Ag Verfahren zur Metallisierung von Nichtleiteroberflächen und die Verwendung von Hydroxymethansulfinsäure im Verfahren
US5421989A (en) * 1993-08-31 1995-06-06 Atotech Deutschland Gmbh Process for the metallization of nonconductive substrates with elimination of electroless metallization
DE4412463C3 (de) * 1994-04-08 2000-02-10 Atotech Deutschland Gmbh Verfahren zur Herstellung einer Palladium-Kolloid-Lösung und ihre Verwendung
DE69732521T2 (de) * 1996-01-29 2006-01-12 Electrochemicals Inc., Maple Plain Ultraschallverwendung zum mischen von behandlungszusammensetzungen für durchgehenden löcher
TWI233763B (en) * 1999-12-17 2005-06-01 Matsushita Electric Ind Co Ltd Method of manufacturing a circuit board
US6921551B2 (en) 2000-08-10 2005-07-26 Asm Nutool, Inc. Plating method and apparatus for controlling deposition on predetermined portions of a workpiece
US7384533B2 (en) * 2001-07-24 2008-06-10 3M Innovative Properties Company Electrolytic processes with reduced cell voltage and gas formation
DE10220684B4 (de) * 2002-05-10 2011-12-08 Enthone Inc. Verwendung eines Verfahrens zur Herstellung leitender Polymere mit hoher Metallisierungsfähigkeit zur Durchmetallisierung von kaschierten Basismaterialien zur Leiterplattenherstellung
US8500985B2 (en) * 2006-07-21 2013-08-06 Novellus Systems, Inc. Photoresist-free metal deposition
SG10201402353PA (en) * 2009-06-08 2014-10-30 Basf Se Use of ionic fluids for pretreating plastic surfaces for metallization
US20130084395A1 (en) * 2011-09-29 2013-04-04 Roshan V. Chapaneri Treatment of Plastic Surfaces After Etching in Nitric Acid Containing Media
KR20210094558A (ko) 2018-11-07 2021-07-29 코벤트야 인크. 새틴 구리조 및 새틴 구리층 침착 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099608A (en) * 1959-12-30 1963-07-30 Ibm Method of electroplating on a dielectric base
US3194681A (en) * 1960-12-22 1965-07-13 Ncr Co Process for plating through holes in a dielectric material
DE3323476A1 (de) * 1982-07-01 1984-01-05 Kollmorgen Technologies Corp., 75201 Dallas, Tex. Verbessertes verfahren zur galvanischen metallabscheidung auf nichtmetallischen oberflaechen
DE3304004A1 (de) * 1983-02-03 1984-08-09 Lieber, Hans-Wilhelm, Prof. Dr.-Ing., 1000 Berlin Verfahren zur herstellung von durchkontaktierten schaltungen
US4683036A (en) * 1983-06-10 1987-07-28 Kollmorgen Technologies Corporation Method for electroplating non-metallic surfaces
US4622108A (en) * 1986-05-05 1986-11-11 Olin Hunt Specialty Products, Inc. Process for preparing the through hole walls of a printed wiring board for electroplating
IL82764A0 (en) * 1986-06-06 1987-12-20 Advanced Plating Technology Ap Selective plating process for the electrolytic coating of circuit boards
US4891069A (en) * 1986-06-06 1990-01-02 Techno Instruments Investments 1983 Ltd. Composition for the electrolytic coating of circuit boards without an electroless metal coating
US4749449A (en) * 1987-06-05 1988-06-07 E. I. Du Pont De Nemours And Company Metallization utilizing a catalyst which is removed or deactivated from undesired surface areas
US4895739A (en) * 1988-02-08 1990-01-23 Shipley Company Inc. Pretreatment for electroplating process

Also Published As

Publication number Publication date
WO1989005568A1 (fr) 1989-06-15
EP0390827A1 (de) 1990-10-10
US5145572A (en) 1992-09-08
DE3741459C1 (de) 1989-04-13
JPH0793498B2 (ja) 1995-10-09
DE3888696D1 (de) 1994-04-28
JPH03504061A (ja) 1991-09-05

Similar Documents

Publication Publication Date Title
EP0390827B1 (de) Verfahren zur herstellung durchkontaktierter leiterplatten
EP0489759B1 (de) Verfahren zur herstellung einer durchkontaktierten leiterplatte
DE3889155T2 (de) Elektroplattierverfahren und hergestellter Gegenstand.
DE69020796T2 (de) Direkt-Elektroplattieren von Durchgangslöchern.
DE3323476C2 (de)
DE69027040T2 (de) Verfahren zum unmittelbaren elektroplattieren eines dielektrischen substrates
DE2623716A1 (de) Verfahren zur chemischen metallabscheidung auf polymeren substraten und dabei verwendete loesung
DE69206496T2 (de) Elektroplattierungsverfahren und Zusammenstellung.
EP0815292B1 (de) Verfahren zum selektiven oder partiellen elektrolytischen metallisieren von oberflächen von substraten aus nichtleitenden materialien
EP0997061B1 (de) Verfahren zum metallisieren eines elektrisch nichtleitende oberflächenbereiche aufweisenden substrats
DD283580A5 (de) Verfahren zur herstellung von durchkontaktierten ein- oder mehrlagigen leiterplatten und durchkontaktieren ein-oder mehrlagige leiterplatte
DE69316750T2 (de) Verfahren zur herstellung einer leiterplatte.
DE2137179A1 (de) Verfahren zum stromlosen Metalhsie ren einer Oberflache
EP0417750B1 (de) Verfahren zur direkten Metallisierung von Leiterplatten
DE3304004A1 (de) Verfahren zur herstellung von durchkontaktierten schaltungen
EP0414097A2 (de) Verfahren zur direkten Metallisierung eines nicht leitenden Substrats
EP0619386B1 (de) Elektrolytische Abscheidung von Palladium oder Palladiumlegierungen
EP0579701B1 (de) Verfahren zur metallisierung von nichtleitern, insbesondere leiterplatten, unter verwendung von stickstoffhaltigen quartärsalzen in dem verfahren
DE19502988B4 (de) Verfahren zur galvanischen Beschichtung von Polymeroberflächen
DE3931003A1 (de) Verfahren zur direkten metallisierung von leiterplatten
EP0530564A1 (de) Verfahren zur Herstellung von Leiterplatten
DE3504455A1 (de) Verfahren zur behandlung eines elektrisch nicht leitenden substrats vor der stromlosen metallisierung
DE3137587A1 (de) Verfahren zur vorbehandlung von formteilen aus polyamiden fuer das aufbringen haftfester, chemisch abgeschiedener metallbeschichtungen
DE69015164T2 (de) Stromlose Abscheidung von Nickel auf Oberflächen wie Kupfer oder geschmolzenem Wolfram.
DE4211152C1 (de) Verfahren zur Metallisierung von Nichtleitern und Anwendung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19920911

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940323

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940323

REF Corresponds to:

Ref document number: 103460

Country of ref document: AT

Date of ref document: 19940415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3888696

Country of ref document: DE

Date of ref document: 19940428

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19941207

Ref country code: GB

Effective date: 19941207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19941231

Ref country code: BE

Effective date: 19941231

Ref country code: LI

Effective date: 19941231

Ref country code: CH

Effective date: 19941231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: BLASBERG-OBERFLACHENTECHNIK G.M.B.H.

Effective date: 19941231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19950701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST