EP0379224A2 - Direktgekühlte supraleitende Cavity - Google Patents

Direktgekühlte supraleitende Cavity Download PDF

Info

Publication number
EP0379224A2
EP0379224A2 EP90101117A EP90101117A EP0379224A2 EP 0379224 A2 EP0379224 A2 EP 0379224A2 EP 90101117 A EP90101117 A EP 90101117A EP 90101117 A EP90101117 A EP 90101117A EP 0379224 A2 EP0379224 A2 EP 0379224A2
Authority
EP
European Patent Office
Prior art keywords
niobium
outer shell
copper
shell
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90101117A
Other languages
English (en)
French (fr)
Other versions
EP0379224A3 (de
Inventor
Erwin Dipl.-Ing.; Stoop
Günter Dipl.-Ing.; Broden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dornier GmbH
Original Assignee
Dornier GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dornier GmbH filed Critical Dornier GmbH
Publication of EP0379224A2 publication Critical patent/EP0379224A2/de
Publication of EP0379224A3 publication Critical patent/EP0379224A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • H05H7/20Cavities; Resonators with superconductive walls

Definitions

  • the invention relates to a superconducting cavity comprising a thin-walled inner shell and an outer support and cooling shell.
  • Superconducting accelerators are used in high-energy physics, which are cooled to 2 - 4 ° K with liquid helium. Pure niobium is used as the superconducting material. Niobium is very expensive, is a poor heat conductor and has low strength.
  • the first design a large amount of helium is required in addition to the expensive niobium cavity.
  • the amount of helium could be reduced considerably with the second design, but the costs of the niobium cavity increase due to the applied silver layer.
  • the cavity is cheaper, but the quality of the sputter layer still has to be optimized and the amount of helium required is again large.
  • the fourth and fifth design already saves large amounts of helium, and the use of thin niobium sheets means that the cost factor for niobium is low, but the thick-walled copper shell makes it difficult or impossible to adjust the frequency of the cavity.
  • the object of the invention is to demonstrate a superconducting davity which, when using the smallest possible amounts of niobium and helium, enables good frequency tuning, with sufficient cooling and strength being ensured.
  • An outer shell which completely encloses the inner shell, is applied to an inner shell in the predetermined shape of the cavity.
  • the inner shell is made of a superconducting material such as niobium or it is made of a normally conductive material which is provided with a superconducting coating.
  • a corrugated outer shell is attached to the inner shell.
  • the wave shape of the outer shell has several advantages. A coolant can be introduced between the individual shafts of the shell.
  • the more stable outer shell also serves to support the thinner inner shell, and the waveform according to the invention makes it possible, despite the stability of the outer shell, to frequency tune the total cavity by applying axial compressive or tensile forces.
  • corrugated rings can also be provided, which are attached next to one another on the inner shell.
  • the coolant for example helium
  • devices for supplying and discharging the coolant are provided on the rings or on the shell and the connection between the inner and outer shell is helium-tight.
  • Niobium is mainly used as the material for the outer shell or the outer rings. Instead of niobium, for example, stainless steel or copper can also be used. Copper has sufficient strength and excellent thermal conductivity.
  • the fastening technology used to connect the inner shell and outer shell or outer ring depends on the material used.
  • the construction of a thin inner shell and of pressed sheets or of geometrically simple rings for the outer shell means that the composite cavity according to the invention can be produced cost-effectively.
  • the cavity is insensitive to pressure fluctuations in the supply of coolant; the frequency values once set are not influenced, for example, by pressure fluctuations in a helium supply.
  • the axial pressures or tensile pressures to be undertaken to tune, i.e. to fine-tune the frequency of the cavity, show an almost linear dependence of the length on the compressive force.
  • the connection strength achieved between the inner and outer shell exceeds the strength of the copper. A separation of niobium and copper is not possible without destroying the cavity.
  • FIG. 1 shows the vertical section through two cavity half-shells 2 and 4.
  • the two half-shells 2 and 4 are connected to one another.
  • Each half-shell 2 and 4 which form the inner shells, have two further half-shells 6 and 8 on the outside, which are curved in a wave shape.
  • the shells 6 and 8 are firmly connected to the inner shells 2 and 4.
  • the outer shells are also connected via an intermediate ring 10.
  • the inner shells are at the point with the smallest diameter with the next Cavity connected in an appropriate form.
  • the outer shells are in turn connected to the next outer shell via intermediate rings 14.
  • the circular circumferential seam 16 shows the connection point between two half-shells at their largest diameter.
  • FIG. 2 shows the different connection options between the inner shell and outer shell, both of which can also each consist of different materials.
  • a copper outer shell is connected to a niobium inner shell via a soldering surface.
  • the outer shell is made of stainless steel and the inner shell of niobium.
  • a copper ring is soldered between the two shells.
  • FIG. 2c between a copper outer shell and a niobium inner shell, there is provided a copper ring which is provided with a recess and which electrons with the copper outer shell ring soldered, which in turn is electron beam welded to the niobium inner shell.
  • a copper outer shell is soldered to a copper inner shell.
  • FIG. 2e shows an outer copper shell and an inner copper shell, which are electron beam welded together.
  • the same is shown in Figure 2f for the material niobium.
  • a stainless steel ring with a recess is welded to a stainless steel outer shell.
  • a copper ring is soldered onto this stainless steel ring and a niobium ring is also soldered onto this copper ring, which in turn is then electron beam welded to the niobium inner shell.
  • FIG. 2h shows an outer niobium shell and an inner niobium shell, which is connected via an intermediate soldered copper ring.
  • the outer shell is replaced by a ring 20 which is bent out in a wave shape and is connected to the inner shell 22. All material combinations and connection techniques of Figures 2a to 2h are possible.
  • For the supply of the coolant holes are provided in the outer crests of the outer shell, which are connected via pipes to a coolant source.
  • the invention reduces the need for expensive materials for both manufacturing and operating the cavity. Nevertheless, good and sufficient cooling is achieved and sufficient stability of the inner shell is guaranteed.
  • the frequency of the cavity can be reduced in a simple manner by the construction according to the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)

Abstract

Die Erfindung betrifft eine supraleitende Cavity, bei der eine dünnwandige Innenschale von einer wellenförmigen Aussenschale oder von Ringen umgeben ist, wobei die Innenschale (2, 4) gestützt wird und durch die Wellenform ausreichende Flexibilität zum frequenzmässigen Nachtunen der Cavity gegeben sind. In die Wellentäler zwischen Innenschale und Aussenschale ist über Zuleitungen zugeführtes Kühlmittel vorgesehen.

Description

  • Die Erfindung betrifft eine supraleitende Cavity aus einer dünnwandigen Innenschale und einer aussenliegenden Stütz- und Kühlschale.
  • In der Hochenergiephysik werden supraleitende Beschleuniger eingesetzt, die mit flüssigem Helium auf 2 - 4° K gekühlt werden. Als supraleitender Werkstoff wird hierbei reines Niob verwendet. Niob ist sehr teuer, ein schlechter Wärme­leiter und hat eine niedrige Festigkeit.
  • Als "Cavities" werden allgemein Hohlraum-Rsonatoren für Elektronen- oder Protonenbeschleunigungsanlagen bezeichnet. Sie werden mit einem Hochfrequenz-Wechselfeld gespeist und dienen der schrittweisen Beschleunigung von Teilchen, wie beispielsweise Elektronen, Positronen oder Protonen, bis zum Erreichen ihrer vorgesehenen Kollisionsenergie.
    Die Cavities bekannter Art sind aus miteinander verschweiss­ten Niob- oder Kupferschalen aufgebaut. Jeweils benachbarte Schalen sind mit ihrem grösseren beziehungsweise mit ihrem kleineren Durchmesser miteinander verschweisst, so dass ins­gesamt ein Hohlraum mit sich periodisch vergrösserndem und verkleinerndem Durchmesser entsteht.
    Bereits seit einigen Jahren wird Niob als Material für supraleitende Cavities zur Teilchenbeschleunigung einge­setzt. Dabei liegt die Sprungtemperatur von Niob bei 9.25°K, unterhalb dieser Temperatur ist Niob supraleitend, sein elektrischer Widerstand ist 10⁶ mal kleiner als der Wider­stand von Kupfer.
    In der Technik sind fünf Bauartvarianten für supraleitende Cavities bekannt:
    • 1. Cavities aus reinem Niob, aus dem Vollen gearbeitet oder aus Blech, eingebaut in einen Flüssig-Helium-Tank.
    • 2. Cavities aus reinem Niob, mit einer auf der Aussenhaut aufgebrachten Silberschicht und aufgelöteten Kühlrohren aus Kupfer (DESY).
    • 3. Cavities aus Kupfer, mit einer auf der Innenseite auf­gesputterten dünnen Niob-Schicht, eingebaut in einen Flüssig-Helium-Tank (CERN).
    • 4. Cavities aus einer dickwandigen Kupferschale und einem darin heliumdicht befestigten dünnen Niob-Blech, wobei in der Kupferschale Kühlkanäle eingebracht sind.
    • 5. Cavities aus sprengverschweisstem Niob und Kupfer. Auf die Kupferschale werden Kühlrohre aufgeschweisst.
  • Bei der ersten Bauart wird neben der teuren Niob-Cavity noch zusätzlich eine grosse Menge Helium benötigt. Die Helium­menge konnte bei der zweiten Bauart erheblich reduziert werden, aber die Kosten der Niob-Cavity erhöhen sich durch die aufgetragene Silberschicht. Bei der dritten Bauart ist die Cavity billiger, jedoch muss die Qualität der Sputter­schicht noch optimiert werden und die erforderliche Helium­menge ist wiederum gross. Die vierte und fünfte Bauart spart bereits grosse Mengen an Helium ein und durch die Verwendung der dünnen Niob-Bleche ist auch der Kostenfaktor für Niob niedrig, jedoch lässt sich durch die dickwandige Kupfer­schale die Frequenznachstimmung der Cavity nicht oder nur erschwert durchführen.
  • Der Erfindung liegt die Aufgabe zugrunde, eine supraleitende Davity aufzuzeigen, die bei Verwendung von möglichst gerin­gen Mengen an Niob und Helium eine gute Frequenzabstimmung ermöglicht, wobei ausreichende Kühlung und Festigkeit ge­währleistet sind.
  • Diese Aufgabe wir durch die Cavity nach Anspruch 1 gelöst. Ausgestaltungen sind Bestandteile von Unteransprüchen.
  • Auf eine Innenschale in der vorgegebenen Form der Cavity wird eine äussere Schale aufgebracht, die die innere Schale vollständig einschliesst. Die innere Schale ist aus einem supraleitenden Material wie beispielsweise Niob hergestellt oder aber sie besteht aus einem normalleitenden Werkstoff, der mit einer supraleitenden Beschichtung versehen ist. Um dieser inneren Schale Kühlung und Stabilität zu verleihen, wird eine gewellte äussere Schale an der inneren Schale be­festigt. Durch die Wellenform der äusseren Schale ergeben sich mehrere Vorteile. Zwischen den einzelnen Wellen der Schale kann eine Kühlflüssigkeit eingeleitet werden. Eben­falls dient die stabilere Aussenschale zur Stützung der dünneren inneren Schale und durch die erfindungsgemässe Wellenform ist trotz der Stabilität der äusseren Schale ein Frequenznachtunen der Gesamtcavity durch Aufbringung von axialen Druck- oder Zugkräften möglich.
  • Statt einer zusammengehörigen Aussenschale können auch mehrere gewellte Ringe vorgesehen sein, die nebeneinander an der inneren Schale angebracht sind. Auch durch diese ge­wellten Ringe lässt sich die Kühlflüssigkeit, beispielsweise Helium, leiten. Dazu sind an den Ringen oder an der Schale Vorrichtungen zur Zu- und Abführung des Kühlmittels vorge­sehen und die Verbindung zwischen Innen- und Aussenschale ist heliumdicht.
  • Als Werkstoff für die äussere Schale oder die äusseren Ringe ist vorwiegend Niob vorgesehen. Statt Niob ist aber auch beispielsweise Edelstahl oder Kupfer anwendbar. Kupfer be­sitzt eine ausreichende Festigkeit und eine ausgezeichnete Wärmeleitfähigkeit. Nach dem verwendetem Werkstoff richtet sich die Befestigungstechnik, mit der innere Schale und äussere Schale oder äusserer Ring miteinander verbunden werden.
    Durch den Aufbau aus dünner Innerschale und aus gedrückten Blechen oder aus geometrisch einfachen Ringen für die äus­sere Schale ist eine kostengünstige Herstellung der erfin­dungsgemässen Verbundcavity gegeben. Gegenüber Druckschwan­kungen in der Versorgung mit Kühlmittel ist die Cavity un­empfindlich, die einmal eingestellten Frequenzwerte werden beispielsweise durch Druckschwankungen in einer Helium-Ver­sorgung nicht beeinflusst.
  • Die zum Tunen, also zum Feineinstellen der Frequenz der Cavity, vorzunehmenden axialen Druck- oder Zugbeaufschla­gungen zeigen eine nahezu lineare Abhängigkeit der Länge von der Druckkraft. Die zwischen Innen- und Aussenschale erreichte Verbindungsfestigkeit übersteigt die Festigkeit des Kupfers. Eine Trennung von Niob und Kupfer ist ohne Zerstörung der Cavity nicht möglich.
  • Die Erfindung wird anhand von Figuren näher erläutert.
  • Es zeigen:
    • Figur 1 den Schnitt durch eine Cavity-Anordnung mit erfindungsgemässem Aufbau,
    • Figur 2a bis i verschiedene Befestigungsvariationen der Schalen.
  • Die Figur 1 zeigt den senkrechten Schnitt durch zwei Cavity-­Halbschalen 2 und 4. Im Punkt 5 sind die beiden Halbschalen 2 und 4 miteinander verbunden. Jede Halbschale 2 und 4, die die Innenschalen bilden, besitzen aussen zwei weitere Halb­schalen 6 und 8, die wellenförmig gebogen sind. Die Schalen 6 und 8 sind fest mit den Innenschalen 2 und 4 verbunden. In den Bereichen, in denen die Innenschalen 2 und 4 mitein­ander verbunden sind, sind auch die äusseren Schalen über einen Zwischenring 10 verbunden. Ebenso sind die Innenschalen an der Stelle mit engstem Durchmesser mit der nächsten
    Cavity in entsprechender Form verbunden. An diesen Stellen sind auch die Aussenschalen wiederum über Zwischenringe 14 mit der jeweils nächsten Aussenschale verbunden. In den Räumen 12 zwischen Aussenschalen und Innenschalen befindet sich das Kühlmittel, das über hier nicht gezeigte Verbin­dungsleitungen zu- und abgeführt wird. Die kreisförmig um­laufende Naht 16 zeigt die Verbindungsstelle zwischen zwei Halbschalen an deren grösstem Durchmesser.
  • Die verschiedenen Verbindungsmöglichkeiten zwischen Innen­schale und Aussenschale, die beide jeweils auch aus ver­schiedenen Materialien bestehen können, zeigt die Figur 2. In Figur 2a ist eine Kupfer-Aussenschale mit einer Niob-­Innenschale über eine Lötfläche verbunden.
    In Figur 2b besteht die Aussenschale aus Edelstahl und die Innenschale aus Niob. Zwischen beiden Schalen wird ein Kupferring zwischengelötet.
    In Figur 2c ist zwischen einer Kupfer-Aussenschale und einer Niob-Innenschale ein mit einer Vertiefung versehener Kupfer­ring vorgesehen, der mit der Kupfer-Aussenschale elektronen­ ring angelötet, der wiederum mit der Niob-Innenschale elek­tronenstrahlverschweisst ist.
    In Figur 2d ist eine Kupfer-Aussenschale mit einer Kupfer-­Innenschale verlötet.
    Die Figur 2e zeigt eine Kupfer-Aussenschale und eine Kupfer-­Innenschale, die miteinander elektronenstrahlverschweisst sind.
    Entsprechendes zeigt Figur 2f für das Material Niob.
    In Figur 2g wird an eine Edelstahl-Aussenschale ein Edel­stahl-Ring mit Vertiefung angeschweisst. An diesen Edel­stahl- Ring wird ein Kupferring angelötet und an diesen Kupferring ein Niobring ebenfalls angelötet, der dann wiederum mit der Niob-Innenschale elektronenstrahlver­schweisst ist.
    Die Figur 2h zeigt eine Niob-Aussenschale und eine Niob-­Innenschale, die über einen zwischengelöteten Kupferring verbunden ist.
    In Figur 2i ist die Aussenschale durch einen Ring 20 er­setzt, der wellenförmig ausgebogen und mit der Innenschale 22 verbunden ist. Dabei sind alle Werkstoffkombinationen und Verbindungstechniken der Figuren 2a bis 2h möglich.
    Zur Zuleitung der Kühlmittel sind in den nach aussen liegen­den Wellenbergen der Aussenschale Bohrungen vorgesehen, die über Rohrleitungen mit einer Kühlmittelquelle verbunden sind.
  • Die Erfindung verringert den Bedarf an teuren Materialien sowohl zur Herstellung als auch zum Betreiben der Cavity. Dennoch wird eine gute und ausreichende Kühlung erzielt und ausreichende Stabilität der Innenschale gewährleistet. Das Nachtunen der Frequenz der Cavity ist durch erfindungs­gemässen Aufbau in einfacher Weise möglich.

Claims (12)

1. Supraleitende Cavity mit dünnwandiger Innenschale und die Innenschale umgebender Aussenschale, da­durch gekennzeichnet, dass die Aussenschale eine wellenförmige Struktur aufweist, an den zur Innenschale liegenden Wellenbergen mit der Innenschale verbunden ist und Vorrichtungen zur Zu- und Abführung von Kühlmitteln in durch die Wellenform ge­bildete Räume zwischen Innenschale und Aussenschale vor­gesehen sind.
2. Cavity nach Anspruch 1, dadurch gekennzeichnet, dass die Aussenschale aus einem wellenförmig gebogenen Teil besteht.
3. Cavity nach Anspruch 1, dadurch gekennzeichnet, dass die Aussenschale mehrteilig und aus einzelnen Ringen aufgebaut ist.
4. Cavity nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aussenschale aus Niob und die Innenschale aus Niob besteht und beide miteinander verschweisst sind.
5. Cavity nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aussenschale aus Kupfer und die Innenschale aus Niob besteht und beide miteinander verlötet sind.
6. Cavity nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aussenschale aus Kupfer und die Innenschale aus Kupfer mit einer supraleitenden Beschichtung be­steht und beide Schalen miteinander verlötet sind.
7. Cavity nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aussenschale aus Kupfer und die Innenschale aus Kupfer mit einer supraleitenden Beschichtung be­steht und beide Schalen miteinader verschweisst sind.
8. Cavity nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aussenschale aus Niob und die Innenschale aus Niob besteht und beide miteinander über einen Zwischen­ring aus Kupfer verlötet sind.
9. Cavity nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aussenschale aus Edelstahl oder einem ähn­lichen Werkstoff und die Innenschale aus Niob besteht und beide über einen zwischengelegten Kupferring mit­einander verlötet sind.
10. Cavity nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aussenschale aus Kupfer und die Innenschale aus Niob besteht, die Aussenschale mit einem innen­liegenden Kupferring verschweisst ist, der Kupferring mit einem innenliegenden Niobring verlötet ist und der Niobring mit der Innenschale verschweisst ist.
11. Cavity nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Aussenschale aus Edelstahl oder einem ähn­lichen Werkstoff und die Innenschale aus Niob besteht, wobei die Aussenschale mit einem innenliegenden Edel­ stahl-Ring mit einem innenliegenden Kupferring ver­schweisst ist, dieser Edelstahl-Ring mit einem innen­liegenden Kupferring verlötet ist, dieser Kupferring mit einem innenliegenden Niobring verlötet ist und dieser Niobring mit der Innenschale verschweisst ist.
12. Cavity nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass zum Durchtritt des Kühlmittels zwischen einzelnen Wellentälern Verbindungskanäle in der Aussenschale vorgesehen sind.
EP19900101117 1989-01-20 1990-01-19 Direktgekühlte supraleitende Cavity Withdrawn EP0379224A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19893901554 DE3901554A1 (de) 1989-01-20 1989-01-20 Direktgekuehlte supraleitende cavity
DE3901554 1989-01-20

Publications (2)

Publication Number Publication Date
EP0379224A2 true EP0379224A2 (de) 1990-07-25
EP0379224A3 EP0379224A3 (de) 1991-07-17

Family

ID=6372431

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900101117 Withdrawn EP0379224A3 (de) 1989-01-20 1990-01-19 Direktgekühlte supraleitende Cavity

Country Status (2)

Country Link
EP (1) EP0379224A3 (de)
DE (1) DE3901554A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4238359A1 (de) * 1992-11-13 1994-05-19 Deutsches Elektronen Synchr Im Querschnitt veränderbare Vakuumkammer
US5347242A (en) * 1991-01-24 1994-09-13 The Furukawa Electric Co., Ltd. Superconducting accelerating tube comprised of half-cells connected by ring shaped elements
CN100384305C (zh) * 2005-11-11 2008-04-23 赵夔 大晶粒铌材超导腔及其制造方法
EP2571338A4 (de) * 2010-05-12 2015-05-06 Mitsubishi Heavy Ind Ltd Supraleitender beschleunigungsraum und verfahren zur herstellung des supraleitenden beschleunigungsraums
CN108449860A (zh) * 2018-03-05 2018-08-24 中国科学院高能物理研究所 一种低温插杆调谐器及超导腔

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009028182B3 (de) * 2009-08-03 2011-02-24 Forschungszentrum Dresden - Rossendorf E.V. Hochfrequenz-Fotoelektronenquelle mit supraleitendem Hohlraumresonatorsystem stabilisierter Eigenfrequenz

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB606684A (en) * 1943-02-25 1948-08-18 Mytton S Ltd Improvements in heat-interchanging apparatus
US3318376A (en) * 1966-04-13 1967-05-09 Vihl Bernhard Heat transfer fluid conduit wrapping for vessels
US4205720A (en) * 1979-01-05 1980-06-03 Joseph Epstein Heat transfer conduit
DE3616548A1 (de) * 1986-05-16 1987-11-19 Dornier System Gmbh Supraleitende cavity mit integrierter kuehlung
DE3722745A1 (de) * 1987-07-09 1989-01-19 Interatom Herstellungsverfahren fuer hohlkoerper aus beschichteten blechen und apparat, insbesondere supraleitender hochfrequenz-resonator
DE3812660A1 (de) * 1988-04-15 1989-11-02 Interatom Hochfrequenz-resonator mit kuehlmantel und verfahren zur herstellung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1927825B2 (de) * 1969-05-31 1971-06-03 Verfahren zur herstellung von supraleitenden hohlraumreso natoren insbesondere fuer teilchenbeschleuniger
DE2164529C2 (de) * 1971-12-24 1974-01-10 Siemens Ag, 1000 Berlin U. 8000 Muenchen Supraleitender Hohlraumresonator
DE2809573C2 (de) * 1978-03-06 1982-12-16 Siemens AG, 1000 Berlin und 8000 München Supraleiteraufbau und Verfahren zu seiner Herstellung
DE2809913B1 (de) * 1978-03-08 1979-06-07 Kernforschungsz Karlsruhe Einrichtung zum Kuehlen eines supraleitenden Resonators und Verfahren zum Herstellen desselben

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB606684A (en) * 1943-02-25 1948-08-18 Mytton S Ltd Improvements in heat-interchanging apparatus
US3318376A (en) * 1966-04-13 1967-05-09 Vihl Bernhard Heat transfer fluid conduit wrapping for vessels
US4205720A (en) * 1979-01-05 1980-06-03 Joseph Epstein Heat transfer conduit
DE3616548A1 (de) * 1986-05-16 1987-11-19 Dornier System Gmbh Supraleitende cavity mit integrierter kuehlung
DE3722745A1 (de) * 1987-07-09 1989-01-19 Interatom Herstellungsverfahren fuer hohlkoerper aus beschichteten blechen und apparat, insbesondere supraleitender hochfrequenz-resonator
DE3812660A1 (de) * 1988-04-15 1989-11-02 Interatom Hochfrequenz-resonator mit kuehlmantel und verfahren zur herstellung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5347242A (en) * 1991-01-24 1994-09-13 The Furukawa Electric Co., Ltd. Superconducting accelerating tube comprised of half-cells connected by ring shaped elements
DE4238359A1 (de) * 1992-11-13 1994-05-19 Deutsches Elektronen Synchr Im Querschnitt veränderbare Vakuumkammer
CN100384305C (zh) * 2005-11-11 2008-04-23 赵夔 大晶粒铌材超导腔及其制造方法
EP2571338A4 (de) * 2010-05-12 2015-05-06 Mitsubishi Heavy Ind Ltd Supraleitender beschleunigungsraum und verfahren zur herstellung des supraleitenden beschleunigungsraums
CN108449860A (zh) * 2018-03-05 2018-08-24 中国科学院高能物理研究所 一种低温插杆调谐器及超导腔

Also Published As

Publication number Publication date
DE3901554A1 (de) 1990-08-02
EP0379224A3 (de) 1991-07-17

Similar Documents

Publication Publication Date Title
DE69914987T2 (de) Auf hohen thermischen Belastungen abgestimmter Plasmamotor mit geschlossenem Elektronendrift
DE69333128T2 (de) Stromzuleitung für supraleitendes Magnetsystem ohne flüssiges Helium
DE3928015A1 (de) Dielektrisches filter
EP0581784A1 (de) Elektrisch beheizbarer wabenkörper
WO1995028720A1 (de) Leiterdurchführung für ein wechselstromgerät mit supraleitung
EP0379224A2 (de) Direktgekühlte supraleitende Cavity
DE4209518C2 (de) Magnetspulenaufbau
DE2748479A1 (de) Uebergangsstueck zwischen einem supraleiter und einem normalleiter
DE102018121486B4 (de) Strommesswiderstand und zugehöriges Herstellungsverfahren
DE2135439A1 (de) Vorrichtung mit hnienformigem Elek tronenstrahl
DE4130796A1 (de) Elektrisch antreibbare stosswellenquelle
DE3616548C2 (de)
EP1796237B1 (de) Elektrische Durchführung zur Verbindung einer supraleitenden Einrichtung mit einer bei Raumtemperatur befindlichen Einrichtung
DE3803285C2 (de)
DE60225412T2 (de) Wanderfeldröhre
DE2905677A1 (de) Hohlraum-resonator
EP1411619B1 (de) Generatorableitung, insbesondere für einen Anschlussbereich im Generatorfundament
DE3610584A1 (de) Hochenergie-beschleuniger
WO2018109099A1 (de) Mri-system mit spaltstruktur in einer abschirmrohr-anordnung
DE1237704B (de) Thermionischer Energiewandler fuer Kernreaktoren mit Kernbrennstaeben
CH654439A5 (de) Supraleiter.
DE2535157C2 (de) Induktor zur Magnetimpulsbearbeitung metallischer Rohrhalbzeuge
DE2607729C2 (de) Vorrichtung zum tiegelfreien Zonenschmelzen von Halbleitermaterialstäben
DE1764268C3 (de) Supraleitungsmagnetspule
AT357399B (de) Induktor zur magnetimpulsbearbeitung metallischer rohre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH FR IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH FR IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920118