EP0376990B1 - Gemisch-verbesserungs-vorrichtung für brennkraftmaschinen - Google Patents

Gemisch-verbesserungs-vorrichtung für brennkraftmaschinen Download PDF

Info

Publication number
EP0376990B1
EP0376990B1 EP89903674A EP89903674A EP0376990B1 EP 0376990 B1 EP0376990 B1 EP 0376990B1 EP 89903674 A EP89903674 A EP 89903674A EP 89903674 A EP89903674 A EP 89903674A EP 0376990 B1 EP0376990 B1 EP 0376990B1
Authority
EP
European Patent Office
Prior art keywords
mixture
rotor
fuel
improvement device
core cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89903674A
Other languages
English (en)
French (fr)
Other versions
EP0376990A1 (de
Inventor
Kurt Bless
Roland Bucher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nova Werke AG
Original Assignee
Nova Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nova Werke AG filed Critical Nova Werke AG
Priority to AT89903674T priority Critical patent/ATE81190T1/de
Publication of EP0376990A1 publication Critical patent/EP0376990A1/de
Application granted granted Critical
Publication of EP0376990B1 publication Critical patent/EP0376990B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/06Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by the pressurisation of the fuel being caused by centrifugal force acting on the fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M17/00Carburettors having pertinent characteristics not provided for in, or of interest apart from, the apparatus of preceding main groups F02M1/00 - F02M15/00
    • F02M17/16Carburettors having continuously-rotating bodies, e.g. surface carburettors

Definitions

  • the invention relates to a mixture improvement device for internal combustion engines with central injection, wherein an impeller rotated by the intake air flow is arranged in the intake pipe, this impeller drives a rotor with an injection device for the fuel and is connected thereto, the rotor has a cavity with a Has lateral surface which diverges in the direction of the flow of the intake air flow, this cavity has a termination against the direction of flow of the intake air flow, a spray edge is arranged at the extended end of the diverging lateral surface and a fuel feed line is introduced into the rotor at the end of the rotor with the cavity termination.
  • an air flow meter is installed between the air filter and mixture generator. With this air flow meter it can be a device with a damper, a hot wire or an ultrasonic measuring section. After flowing through the air flow meter, the intake air is led to the mixture formation point.
  • an injection valve is arranged in the intake pipe, to which the fuel is supplied under pressure. The injector is equipped with a nozzle and the fuel is injected into the intake air flow via this nozzle.
  • the throttle valve In the direction of flow of the intake air flow there is a known throttle valve for regulating the air or mixture flow below the injection valve.
  • the fuel is supplied to the injection valve by a fuel pump, the delivery rate of this pump being determined by a control system.
  • the air flow meter serves as a sensor for the control.
  • Injection nozzles for pulsating or air-jacketed systems are technically complex to design and manufacture and are accordingly expensive.
  • the injection valves and nozzles known today are not able to ensure an optimal mixing of the fuel with the air flow.
  • the droplet size of the injected fuel is distributed over a wide spectrum, which in addition to the poor mixture formation promotes the risk of fuel precipitation on the components of the mixture generator. This results in the known difficulties, such as increasing fuel consumption and pollutants in the exhaust gases.
  • a mixture improvement device is known from US Pat. No. 4,044,081, in which an injection valve is combined with a rotor atomizer.
  • an impeller is arranged in the intake pipe in the direction of flow of the intake air flow in front of the throttle valve, which is connected to a rotor and drives it.
  • the airflow flowing through the intake pipe sets the impeller and thus the rotor in rotation.
  • An air line for hot air and a pressure line for fuel are introduced into the rotor.
  • one or more swirl chambers are arranged in the interior of the rotor, in which the hot air is to be thoroughly mixed with the injected fuel.
  • Nozzle bores are arranged in the peripheral areas of the swirl chamber, which allow the fuel-air mixture to drain in the direction of the intake air flow.
  • the outflow of the fuel-air mixture through the nozzle bores is promoted by the centrifugal action of the rotating rotor, additional baffles being arranged in the intake pipe in order to improve the mixing of fuel and air.
  • the arrangement of the additional mixture improvement devices in the intake manifold makes it clear that the same difficulties also arise with this device as with the known injection valves without an additional rotating mixture improver.
  • the mixture formation in the vortex chamber and also the outflow via the nozzle channels are difficult to control and an optimal mixture formation can hardly be achieved.
  • the design of the device is complex and hinders the air flow in the intake pipe.
  • Another carburetor for internal combustion engines with a rotating atomizer is known from German Offenlegungsschrift No. 2 133 134.
  • An atomizer pot is mechanically rotated from the outside. In the center of the atomizer pot there is an inflow opening for fuel and an insert with a regulating needle.
  • An annular suction channel is formed between the inner wall of the atomizer pot and the insert body, from which the fuel is sucked into the air flow. The metering of the fuel is difficult and very difficult inaccurate.
  • the additional mechanical rotary drive is complex and prone to failure.
  • This device is intended for a suction gasifier and is not suitable for mixture devices with an injection pump and injection nozzle. The mixture quality is particularly inadequate for the operation of lean engines.
  • a generic mixture formation device is known from EP-A-0209073.
  • a rotor is arranged in the intake pipe, which is driven by an impeller and this in turn by the intake air flow.
  • a centrifugal pump for delivering fuel is arranged inside the rotor. The fuel is fed to the centrifugal pump from a container under normal pressure via a line and thrown into an annular gap in the rotor through an opening in the wall of the centrifugal pump. The outer circumferential surface of this annular gap diverges in the direction of the flow of the intake air flow and ends in a spray edge.
  • the annular gap in the rotor is arranged between the centrifugal pump arranged in the center of the rotor and an outer shell of the rotor and forms a cavity for distributing the fuel.
  • the fuel delivery rate depends on the speed of the rotor. Disruptions in the rotational movement but also changes in the viscosity of the fuel result in disruptions in the fuel metering. Since the centrifugal pump has only one outlet opening, it is very difficult to produce a uniform fuel film in the annular gap, which also leads to faults. The consequences are insufficient mixture formation and uncontrollable combustion processes in the rotor. As the core component of the rotor, the centrifugal pump is difficult to manufacture, and the sealing between the solid fuel supply line and the rotating pump leads to further difficulties. These can only be overcome with great effort.
  • the device should have a simple structure and allow the use of simple injection nozzles.
  • the mixture formation for the various operating states is to be simplified, the operation of the internal combustion engine as a lean engine is made possible and the pollutants in the exhaust gas are reduced.
  • the rotor has a jacket body with a core cavity free of internals, a flinger ring is connected to the jacket body in the flow direction of the intake air stream and directly at the widened end of the free core cavity, and the spray edge is part of this flinger ring, which is closed off
  • the fuel supply line introduced into the jacket body is a pressure line and is connected to a fixed injection nozzle, this injection nozzle is arranged in the region of the longitudinal axis of the free core cavity and the spray jets are directed against the diverging jacket surface of the core cavity.
  • the fuel injected into the core cavity via the injection nozzle is distributed as a result of the centrifugal action of the rotating jacket body over the jacket surface of the Core cavity.
  • the fuel film is driven in the direction of the widened end of the core cavity.
  • the fuel film on the jacket surface continues to expand and becomes thinner until it reaches the open end of the jacket body and thus the slinger ring at the enlarged end of the core cavity.
  • the fuel film flows to the periphery of the centrifuge ring and is torn off by centrifugal forces from the centrifugal ring and dissolved into the finest droplets.
  • the fuel droplets thrown into the intake air stream are smaller than 10 micrometers and all are of approximately the same size. Such small fuel droplets mix completely with the intake air and are entrained by it without being able to settle on the wall of the intake pipe. The result is a mixture quality that has not been achieved before. If the end of the jacket body that is flown by the intake air flow is completely closed, the fuel film is only conveyed to the other end as a result of the diverging jacket surfaces.
  • the conveying movement can additionally be supported by arranging air inlet openings at the closed end of the casing body.
  • the core cavity is closed off at the widened end by a plate which is transverse to the rotor axis and an annular passage extending parallel to the jacket surface of the core cavity is arranged between this plate and the casing body.
  • the turbulence of the air flow occurring in the intake pipe can also affect the core cavity in the jacket body.
  • the plate arranged at the widened end of the core cavity prevents such disturbances and facilitates the formation of the fuel film on the outer surface of the core cavity. The unhindered flow of the fuel film towards the enlarged end of the core cavity is made possible by the annular passage.
  • a further improvement with regard to the formation of a uniform fuel film on the lateral surface of the core cavity is achieved in that an annular channel extending around the entire circumference of the core cavity is arranged on the inner wall of the jacket body and in front of the slinger.
  • This ring channel has a rectangular cross section and is incorporated into the inner wall of the casing body.
  • the ring channel is formed by a local narrowing of the inner diameter of the core cavity.
  • a thicker liquid film is formed in the area of this ring channel, and the subsequent narrowing of the core cavity forms a higher flow resistance. Before the fuel film can overcome this resistance, it is completely evenly distributed over the entire circumference of the ring channel and only then continues to flow towards the enlarged end of the core cavity.
  • the continuation of the core cavity in the area of the centrifuge ring is widened conically from the inside out, and the conical surface area formed forms an annular spraying edge in the area of intersection with the outer surface of the centrifugal ring.
  • the design of this conical lateral surface allows the mixture improvement device to be adapted in a simple manner to different configurations of the intake manifold and the air flow.
  • a preferred embodiment is characterized in that an annular undercut is formed on the outer surface of the centrifugal ring and this runs out into the annular spraying edge. This backlash prevents fuel from flowing back against the direction of flow of the intake air flow along the outer surface of the slinger. Otherwise, undesirable fuel deposits could form on the outer surface of the rotor, which would interfere with the optimal mixture formation.
  • the outlet openings of the injection nozzle are designed in such a way that the emerging fuel jets completely meet the outer surface of the core cavity in the rotor. This can be done with simple and inexpensive nozzles, whereby both low and high pressure systems can be used.
  • the injection valves which inject the fuel directly into the air flow
  • less stringent requirements must be placed on the uniformity of the fuel jets and the size of the droplets.
  • the exact dimensioning of the droplet size and the intensive mixing with the intake air flow takes place only after the liquid film according to the invention has been formed from the spray jets and spun off.
  • the device according to the invention enables the rotor to be supported at the closed or open end of the casing body or else to be supported on both sides. When stored at the upper end of the jacket body, i.e. At the end, which is blown by the air flow, no further installation parts in the intake pipe are necessary after the spraying edge on the slinger. This further reduces the risk of fuel settling on components.
  • the thrown off fuel droplets may be deposited on the wall of the intake pipe. It is therefore advantageous to equip the rotor at the lower end with at least one additional impact ring, and / or to arrange at least one impact ring fixedly in the flow direction below the rotor in the flow direction. Even in single arrangement, these baffle rings effect additional atomization of the impacting fuel droplets and prevent fuel from being deposited on the intake manifold. For certain configurations of the device and speed ranges, multiple arrangements of the baffle rings provide optimal solutions.
  • the speed of the impeller is directly proportional to the amount of air sucked in. This is achieved in that the position and shape of the individual vanes are matched to the shape of the intake pipe and the speed range of the intake air flow in a known manner.
  • the linear dependence of the speed of the impeller on the amount of air enables easy control of the mixture formation.
  • This control is characterized in that the device has a measuring point for determining the speed of the rotor, this measuring point is connected to a fuel pump via a control unit and the control unit forms the control device for the fuel quantity with the fuel pump.
  • the control device is additionally equipped with sensors for measuring the density and the temperature of the intake air. The control used corresponds to the known controls which are already used for fuel injection systems.
  • the device according to the invention does not require an additional air volume meter, since the air volume can be determined on the basis of the speed of the existing impeller.
  • all known additional controls can be combined with the inventive device or control.
  • the control unit is advantageously set to a constant ratio of the air quantity to the fuel quantity over the entire speed range of the internal combustion engine.
  • the desired change in the fuel / air mixture ratio is achieved by supplying additional air.
  • inlet openings for additional air are arranged on the intake pipe in the flow direction of the intake air flow after the centrifugal ring. This additional air is taken either from the fresh air filter or the exhaust duct after the internal combustion engine.
  • the control of the additional air volume also takes place via the known control unit mentioned, this control being considerably simpler than that of other known systems necessary change in the fuel pump delivery rate.
  • Fig. 1 shows a section of an intake pipe 1 in the area where the mixture of intake air and fuel is formed.
  • a rotor 4 is arranged in the intake pipe forms an impeller with blades 2 and 3.
  • the rotor 4 further consists of a casing body 5, which encloses a core cavity 6.
  • the jacket body 5 is closed at one end 10 and open at the other end 11.
  • the closed end 10 of the jacket body 5 is directed against the flow direction of the intake air flow represented by the arrows 30.
  • a fuel feed line 8 and a nozzle holder 26 are inserted through the closed end 10 into the area of the core cavity 6 of the rotor 4.
  • a gap or labyrinth seal 27 is arranged in the area of the bushing.
  • the nozzle holder 26 is supported by radial struts 17, 18 on the intake pipe 1 and fixed in its position. On the nozzle holder 26, further bearings 15, 16 are arranged, on which the casing body 5, or the rotor 4, is supported and supported. At the end of the nozzle holder 26 there is an injection nozzle 9 which is connected to the fuel feed line 8. This injection nozzle 9 is designed such that fuel jets 24, 25 are formed which impinge on the inner wall 20 of the casing body 5. This inner wall 20 of the jacket body 5 is identical to the jacket surface 20 of the core cavity 6.
  • the jacket surface 20 of the core cavity 6 diverges in the flow direction 30, 31 of the intake air flow, ie the core cavity 6 has a narrow end 12 and an enlarged end 13.
  • the injection nozzle 9 is arranged in the area of the narrow part 12 of the core cavity 6.
  • the widened end 13 of the core cavity 6 forms part of the open end 11 of the casing body 5.
  • a slinger 14 is arranged, which adjoins the casing body 5 in one piece.
  • the widened end 13 of the core cavity 6 is additionally conically widened from the inside to the outside, as a result of which a conical outer surface 21 is formed.
  • This conical surface 21 intersects and forms the outer surface 22 of the slinger an annular spraying edge 23.
  • annular channel 19 is worked into the inner wall 20 of the casing body 5, which extends around the entire circumference of the core cavity 6.
  • a measuring probe 28 by means of which the speed of the rotor 4 is determined, is arranged on the intake pipe 1 in the area of the vanes 2, 3.
  • the signals determined on the measuring probe 28 are fed via a line 29 to a control device (not shown).
  • a control device It is a known electronic control unit, as is used in a similar version e.g. is used in the well-known Bosch monojetronic systems.
  • this control unit regulates the delivery capacity of a fuel pump, also not shown, which delivers fuel under pressure into the injection nozzle 9 via the fuel feed line 8.
  • a known throttle valve is located in the intake pipe 1 in the direction of flow of the intake air flow after the rotor 4. This is shown in Figure 4.
  • a negative pressure is created in the intake manifold 1, which causes an intake air flow in the direction of the arrows 30, 31 when the throttle valve is open.
  • This intake air flow flows through the impeller with the blades 2, 3 and sets it in rotation.
  • the angle of attack and the shape of the blades 2, 3 are chosen such that the speed of the rotor 4 and the amount of intake air are directly proportional or linear.
  • fuel is injected via the injection nozzle 9 onto the inner wall 20 of the casing body 5.
  • the rotor 4 rotates depending on the amount of air at a speed of up to 100,000 revolutions per minute. As a result of this rapid rotation, the fuel is distributed uniformly along the circumference of the inner wall 20 and forms a uniform fuel film. This Kraitstoffilm flows from the narrow end 12 of the core cavity 6 towards the widened end 13. This flow is caused by the diverging jacket surface or inner wall 20 and the rotation of the jacket body 5. Fuel accumulates in the area of the ring channel 19 until it is filled. Afterwards, the fuel film continues to develop thinly and uniformly and reaches the area of the conical outer surface 21.
  • This conical widening in the area of the slinger 14 further dilutes the fuel film, so that when it reaches the spraying edge 23, it dissolves into droplets that are smaller than 10 Micrometers are.
  • the fuel droplets thrown off are all practically of the same size, mix intensively with the intake air flow and the fuel / air mixture formed flows in the direction of the arrows 31 against the internal combustion engine.
  • the amount of fuel injected at the injector 9 is regulated as a function of the speed of the rotor 4 and the throttle valve position by means of the control unit and the fuel pump.
  • further probes for example for measuring the density and the temperature of the intake air, can be linked to the control unit in a known manner.
  • the control range of this mixture formation device extends over a range of lambda values from 0.9 to 1.6.
  • FIG. 2 shows essentially the same mixture improvement or mixing device as in FIG. 1.
  • the rotor 4 is mounted on the open end 11 of the casing body 5.
  • a plate 32 is arranged at the enlarged end 13 of the core cavity 6, which is provided with a bearing pin 34.
  • Two bearings 15, 16 are arranged on the bearing journal 34, which in turn are supported in the bearing 36.
  • Struts 37, 38 connect the bearing 36 to the intake pipe 1 and hold the rotor 4 in the desired position.
  • the plate 32 has the purpose of protecting the core cavity 6 from disturbances by the intake air flow, e.g. To protect vortex formation below the rotor.
  • one or more air channels 35 are arranged in the area of the passage of the nozzle holder 26 through the closed end 10 of the jacket body 5, which allow intake air to enter the core cavity 6.
  • the air flowing into the core cavity 6 through the channels 35 supports the fuel flow along the inner wall 20 and additionally dampens the disturbances already mentioned, e.g. due to vortex formation.
  • the solution shown in FIG. 2 enables the injection nozzle 9 to be easily installed and removed without the rotor 4 also having to be removed. Otherwise, this embodiment has the same advantages and properties, and the mixture is formed in the same way.
  • an additional impact ring 60 is arranged in the region of the lower end of the rotor 4.
  • This impact ring 60 is fixedly connected via struts 61 to the open end 11 of the casing body 5 and rotates with it.
  • the baffle ring 60 is arranged such that the droplets thrown off by the spraying edge 23 strike the inner surface of the baffle ring 60.
  • the droplets hitting at very high speed are also atomized and carried away by the air flow.
  • baffle rings 60, 62 can be arranged together or only individually in the device shown.
  • FIG. 3 shows a special embodiment of the slinger 14, in which the backflow of fuel along the outer wall 40 of the jacket body 5 is prevented.
  • an undercut 41 is arranged on the outer surface of the centrifugal ring 14, which runs out into the annular spraying edge 23.
  • the core cavity 6 in the region of the centrifugal ring 14 is widened conically from the inside to the outside and forms a conical outer surface 21.
  • the arrangement of the undercut 41 and the sharp spraying edge 23 prevent fuel from flowing back in any case and promote the tearing off of the fuel film at the edge 23 through the air flow in the finest droplet form.
  • FIG. 3 shows a further possibility for designing an annular channel 42.
  • the inner diameter of the core cavity 6 is narrowed locally, whereby a constriction 43 is formed. This creates behind it a pocket-shaped ring channel 42, in which a thicker fuel film is formed than on the other areas of the inner wall 20. This thicker fuel film enables, on the one hand, compensation of the film over the entire circumference of the inner wall 20 and a more uniform one The fuel film flows off in the direction of the spraying edge 23.
  • FIG. 4 shows a complete mixture formation device in a simplified version.
  • the rotor 4 with the casing body 5 and the vanes 2, 3 is arranged in the intake pipe 1.
  • the fuel is fed into the core cavity 6 of the casing body 5 via the injection nozzle 9, the nozzle holder 26 and the fuel feed line 8.
  • the rotor 4 is supported in the bearing 36 by means of the bearing pin 34 via the bearings 15, 16.
  • a throttle valve 45 which is connected to an actuating device 46.
  • an inlet opening 47 is arranged in the form of an annular gap in the intake pipe 1, which is surrounded by an annular air channel 48.
  • This annular gap 47 forms an inlet opening for additional air which can be sucked into the intake pipe 1 from the ring channel 48.
  • the ring duct 48 is connected to an air supply line 49, which leads additional air from the fresh air filter or hot exhaust gases from the exhaust duct to the ring duct 48.
  • this air supply line 49 there is also a throttle valve 50 which is connected to an actuating device 51, 52.
  • Connecting lines 54, 55 and 29 lead from an electronic control device 53 to the corresponding actuating devices or sensors.
  • the line 29 connects the control device 53 to the sensor 28 for measuring the speed of the rotor 4.
  • the connecting line 54 controls the fuel pump and contains further supply and discharge lines for additional control and measuring elements.
  • the connecting line 55 serves to control the actuators 51, 52 or the throttle valve 50 in the air supply line 49.
  • the fuel injector 9 is always supplied with so much fuel that a mixture with a lambda number of 0.9, i.e. a fat mixture that forms.
  • This ratio is kept constant over the entire range of the air quantity change or the speed change of the rotor 4.
  • additional air is added to the mixture flow downstream of the rotor 4 via the annular gap 47, it being possible for conventional engines to be operated with a lambda number of approximately 1.25. This is in contrast to previously known carburettors or injection systems, in which a lambda number of approximately 1.05 has to be set.
  • the device according to FIG. 4 is equipped so that additional air can be supplied until a lambda value of approximately 1.6 is reached, with which special so-called lean-burn engines can be operated. Thanks to the homogeneous mixing of intake air and fuel and the small fuel droplets, even with these high admixtures of additional air, there is no precipitation of fuel on the intake pipe walls.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die Erfindung betrifft eine Gemisch-Verbesserungs-Vorrichtung für Brennkraftmaschinen mit Zentraleinspritzung, wobei im Ansaugrohr ein vom Ansaugluftstrom in Rotation versetztes Flügelrad angeordnet ist, dieses Flügelrad einen Rotor mit einer Einspritzvorrichtung für den Kraftstoff antreibt und mit diesem verbunden ist, der Rotor einen Hohlraum mit einer Mantelfläche aufweist welche in Richtung der Strömung des Ansaugluftstromes divergiert, dieser Hohlraum entgegen der Strömungsrichtung des Ansaugluftstromes einen Abschluss aufweist, am erweiterten Ende der divergierenden Mantelfläche eine Sprühkante angeordnet und an demjenigen Ende des Rotors mit dem Hohlraumabschluss eine Kraftstoffzuleitung in den Rotor eingeführt ist.
  • Bei der Gemisch-Aufbereitung und der Kraftstoffzumessung für Brennkraftmaschinen werden sowohl an Vergaser als auch an Einspritzanlagen im Hinblick auf den Schadstoffgehalt der Abgase sehr hohe Anforderungen gestellt. Bekanntlich sind hohe Schadstoffanteile in den Abgasen vor allem auf eine ungenügende Gemischqualität, d.h. Vermischung von Kraftstoff und Verbrennungsluft zurückzuführen. Zur Erreichung einer guten Gemischqualität sind eine optimale Vermischung von Kraftstoff und Ansaugluft, eine homogene Verteilung des Kraftstoffes im Luftstrom und eine homogene Tröpfchengrösse besonders wichtig. Insbesondere bei Magermotorkonzepten, wo mit hohem Luftüberschuss gearbeitet wird, erlangen diese Faktoren noch grössere Wichtigkeit.
  • Bekannte Mittel zur Erlangung einer guten Gemischqualität sind Zentraleinspritzanlagen, wie sie im Kraftfahrttechnischen Taschenbuch, 19. Auflage, VDI-Verlag GmbH, Düsseldorf, auf den Seiten 374 und 375 beschrieben sind. Bei diesen Einrichtungen ist zwischen Luftfilter und Gemischbildner ein Luftmengenmesser eingebaut. Bei diesem Luftmengenmesser kann es sich um eine Einrichtung mit einer Stauklappe, einem Hitzdraht oder einer Ultraschallmessstrecke handeln. Nach dem Durchströmen des Luftmengenmessers wird die Ansaugluft zur Gemischbildungsstelle geführt. Hier ist im Ansaugrohr ein Einspritzventil angeordnet, welchem der Kraftstoff unter Druck zugeführt werden. Das Einspritzventil ist mit einer Düse ausgestattet, und der Kraftstoff wird über diese in den Ansaugluftstrom gespritzt. In Strömungsrichtung des Ansaugluftstromes befindet sich unterhalb des Einspritzventils eine bekannte Drosselklappe zur Regelung des Luft- bzw. Gemischstromes. Die Zuführung des Kraftstoffes zum Einspritzventil erfolgt durch eine Kraftstoffpumpe, wobei die Fördemenge dieser Pumpe durch eine Steuerung bestimmt wird. Als Sensor für die Steuerung dient der Luftmengenmesser.
  • Zur Verbesserung der Gemischqualität werden zusätzlich zu den Einspritzventilen teilweise noch Drallschaufeln, Ultraschallschwinger, pulsierende Systeme und andere Vorrichtungen angewendet. Einspritzdüsen für pulsierende oder luftummantelte Systeme sind technisch aufwendig in der Konstruktion und Herstellung und entsprechend teuer. Die heute bekannten Einspritzventile und -düsen sind nicht in der Lage, eine optimale Durchmischung des Kraftstoffes mit dem Luftstrom zu gewährleisten. Zudem ist die Tröpfchengrösse des eingespritzten Kraftstoffes über ein weites Spektrum verteilt, was zusätzlich zur schlechten Gemischbildung die Gefahr des Kraftstoffniederschlages an den Bauteilen des Gemischbilders fördert. Daraus resultieren die bekannten Schwierigkeiten, wie Erhöhung des Kraftstoffverbrauches und der Schadstoffe in den Abgasen.
  • Aus der US-PS Nr. 4 044 081 ist eine Gemisch-Verbesserungs-Vorrichtung bekannt, bei welcher ein Einspritzventil mit einem Rotorzerstäuber kombiniert wird. Bei dieser Einrichtung ist im Ansaugrohr, und zwar in Strömungsrichtung des Ansaugluftstromes vor der Drosselklappe ein Flügelrad angeordnet, welches mit einem Rotor verbunden ist und diesen antreibt. Der durch das Ansaugrohr strömende Luftstrom setzt das Flügelrad und damit den Rotor in Rotation. In den Rotor ist eine Luftleitung für Heissluft sowie eine Druckleitung für Kraftstoff eingeführt. Im Bereich, wo die beiden Leitungen in den Rotor münden, sind im Innern des Rotors eine oder mehrere Wirbelkammern angeordnet, in welchen eine intensive Durchmischung der Heissluft mit dem eingespritzten Brennstoff erfolgen soll. In den peripheren Bereichen der Wirbelkammer sind Düsenbohrungen angeordnet, welche einen Abfluss des Kraftstoffluftgemisches in Richtung des Ansaugluftstromes ermöglichen. Das Abströmen des Kraftstoffluftgemisches durch die Düsenbohrungen wird durch die Zentrifugalwirkung des rotierenden Rotors gefördert, wobei im Ansaugrohr noch zusätzliche Schikanen angeordnet sind, um eine Verbesserung der Durchmischung von Kraftstoff und Luft zu erreichen. Die Anordnung der zusätzlichen Gemisch-Verbesserungs-Vorrichtungen im Ansaugrohr macht deutlich, dass auch bei dieser Einrichtung die gleichen Schwierigkeiten auftreten, wie bei den bekannten Einspritzventilen ohne zusätzlichen rotierenden Gemisch-Verbesserer. Die Gemischbildung im Wirbelraum und auch die Abströmung über die Düsenkanäle ist nur schwer kontrollierbar und eine optimale Gemischbildung kaum erreichbar. Die konstruktive Ausgestaltung der Einrichtung ist aufwendig und behindert den Luftstrom im Ansaugrohr.
  • Aus der deutschen Offenlegungsschrift Nr. 2 133 134 ist ein weiterer Vergaser für Brennkraftmaschinen mit einem rotierenden Zerstäuber bekannt. Ein Zerstäubertopf wird von aussen mechanisch in Rotation versetzt. Im Zentrum des Zerstäubertopfes befindet sich eine Zuflussöffnung für Kraftstoff und ein Einsatzkörper mit einer Reguliernadel. Zwischen der Innenwand des Zerstäubertopfes und dem Einsatzkörper ist ein ringförmiger Saugkanal gebildet, aus welchem der kraftstoff in den Luftstrom gesaugt wird. Die Zumessung des Kraftstoffes ist hierbei schwierig und sehr ungenau. Der zusätzliche mechanische Drehantrieb ist aufwendig und störungsanfällig. Diese Einrichtung ist für einen Saugvergaser bestimmt und für Gemisch-Vorrichtungen mit Einspritzpumpe und Einspritzdüse nicht geeignet. Die Gemischqualität ist insbesondere für den Betrieb von Magermotoren ungenügend.
  • Eine gattungsgemäße Gemischbildungseinrichtung ist aus EP-A-0209073 bekannt. Bei dieser Einrichtung ist im Ansaugrohr ein Rotor angeordnet, welcher von einem Flügelrad und dieses seinerseits vom Ansaugluftstrom angetrieben wird. Im Innern des Rotors ist eine Zentrifugalpumpe zur Förderung von Kraftstoff angeordnet. Der Kraftstoff wird der Zentrifugalpumpe aus einem Behälter unter Normaldruck über eine Leitung zugeführt und durch eine Oeffnung in der Wandung der Zentrifugalpumpe in einen Ringspalt im Rotor geschleudert. Die äussere Mantelfläche dieses Ringspaltes divergiert in Richtung der Strömung des Ansaugluftstromes und endet in einer Sprühkante. Der Ringspalt im Rotor wird zwischen der im Zentrum des Rotors angeordneten Zentrifugalpumpe und einer Aussenhülle des Rotors angeordnet und bildet einen Hohlraum zur Verteilung des Kraftstoffes. Bei dieser Einrichtung ist die Kraftstoff-Fördermenge von der Drehzahl des Rotors abhängig. Störungen der Rotationsbewegung aber auch Viskositätsänderungen des Kraftstoffes haben Störungen der Kraftstoffdosierung zur Folge. Da die Zentrifugalpumpe nur eine Austrittsöffnung aufweist ist es sehr schwierig, im Ringspalt einen gleichmässigen Kraftstoffilm zu erzeugen, was ebenfalls zu Störungen führt. Die Folgen sind ungenügende Gemischbildung und unkontrollierbare Verbrennungsabläufe im Rotor. Die Zentrifugalpumpe ist als Kernbestandteil des Rotors schwierig herzustellen, und die Abdichtung zwischen fester Kraftstoffzuleitung und rotierender Pumpe führt zu weiteren Schwierigkeiten. Diese sind nur mit hohem Aufwand überwindbar.
  • Es ist Aufgabe der Erfindung, die Nachteile des Standes der Technik zu vermeiden und eine Gemisch-Verbesserungs-Vorrichtung zu schaffen, welche eine optimale Gemischbildung mit feinen Tröpfchen und einer homogenen Tröpfchengrösse gewährleistet. Die Einrichtung soll einen einfachen Aufbau aufweisen und den Einsatz von einfachen Einspritzdüsen ermöglichen. Zusätzlich soll die Gemischbildung für die verschiedenen Betriebszustände vereinfacht, der Betrieb der Brennkraftmaschine als Magermotor ermöglicht und eine Reduktion der Schadstoffe im Abgas erreicht werden.
  • Diese Aufgabe ist erfindungsgemäss dadurch gelöst, dass der Rotor einen Mantelkörper mit einem, von Einbauten freien Kernhohlraum aufweist, in Strömungsrichtung des Ansaugluftstromes und direkt am erweiterten Ende des freien Kernhohlraumes ein Schleuderring mit dem Mantelkörper verbunden und die Sprühkante Teil dieses Schleuderringes ist, die am abgeschlossenen Ende des Kernhohlraumes in den Mantelkörper eingeführte Kraftstoffzuleitung eine Druckleitung ist und mit einer feststehenden Einspritzdüse verbunden ist, diese Einspritzdüse im Bereiche der Längsachse des freien Kernhohlraumes angeordnet ist und die Sprühstrahlen gegen die divergierende Mantelfläche des Kernhohlraumes gerichtet sind.
  • Der über die Einspritzdüse in den Kernhohlraum eingespritzte Kraftstoff verteilt sich infolge der Zentrifugalwirkung des rotierenden Mantelkörpers über die Mantelfläche des Kernhohlraumes. Infolge der in Strömungsrichtung des Ansaugluftstromes divergierenden Mantelfläche wird der Kraftstoffilm in Richtung des erweiterten Endes des Kernhohlraumes getrieben. Der Kraftstoffilm auf der Mantelfläche dehnt sich weiter aus und wird immer dünner, bis er am erweiterten Ende des Kernhohlraumes das offene Ende des Mantelkörpers und damit den Schleuderring erreicht. Hier fliesst der Kraftstoffilm an die Peripherie des Schleuderringes und wird durch die Zentrifugalkräfte vom Schleuderring abgerissen und in feinste Tröpfchen aufgelöst. Die in den Ansaugluftstrom abgeschleuderten Kraftstofftröpfchen sind kleiner als 10 Mikrometer und alle von etwa gleicher Grösse. Derart kleine Kraftstofftröpfchen vermischen sich vollständig mit der Ansaugluft und werden von dieser mitgerissen, ohne dass sie sich an der Wandung des Ansaugrohres absetzen können. Es entsteht eine bisher nicht erreichte Gemischqualität. Ist das vom Ansaugluftstrom angeströmte Ende des Mantelkörpers vollständig geschlossen, so wird der Kraftstoffilm nur infolge der divergierenden Mantelflächen zum anderen Ende gefördert. Die Förderbewegung kann zusätzlich unterstützt werden, indem am geschlossenen Ende des Mantelkörpers Lufteintrittsöffnungen angeordnet werden.
  • In weiterer Ausgestaltung der Vorrichtung ist der Kernhohlraum am erweiterten Ende durch eine quer zur Rotorachse stehende Platte abgeschlossen und zwischen dieser Platte und dem Mantelkörper ein ringförmiger parallel zur Mantelfläche des Kernhohlraumes verlaufender Durchlass angeordnet. Die im Ansaugrohr auftretenden Turbulenzen des Luftstromes können sich auch auf den Kernhohlraum im Mantelkörper auswirken. Die am erweiterten Ende des Kernhohlraumes angeordnete Platte verhindert derartige Störungen und erleichtert die Ausbildung des Kraftstoffilmes an der Mantelfläche des Kernhohlraumes. Der ungehinderte Fluss des Kraftstoffilmes in Richtung des erweiterten Endes des Kernhohlraumes wird durch den ringförmigen Durchlass ermöglicht.
  • Eine weitere Verbesserung bezüglich der Ausbildung eines gleichmässigen Kraftstoffilmes an der Mantelfläche des Kernhohlraumes wird dadurch erreicht, dass an der Innenwand des Mantelkörpers und vor dem Schleuderring ein sich um den ganzen Umfang des Kernhohlraumes erstreckender Ringkanal angeordnet ist. Dieser Ringkanal weist einen rechteckförmigen querschnitt auf und ist in die Innenwand des Mantelkörpers eingearbeitet. In einer anderen bevorzugten Ausführungsform ist der Ringkanal durch eine lokale Verengung des Innendurchmessers des Kernhohlraumes gebildet. Im Bereiche dieses Ringkanales wird ein dickerer Flüssigkeitsfilm gebildet, und die nachfolgende Verengung des Kernhohlraumes bildet einen höheren Fliesswiderstand. Bevor der Kraftstoffilm diesen Widerstand überwinden kann, verteilt er sich vollständig gleichmässig über den ganzen Umfang des Ringkanales und strömt erst dann weiter in Richtung des erweiterten Endes des Kernhohlraumes.
  • Zur weiteren Verdünnung des Flüssigkeitsfilms und damit der Reduktion der Tröpfchengrösse ist die Fortsetzung des Kernhohlraumes im Bereiche des Schleuderringes von innen nach aussen kegelförmig erweitert, und die entstandene Kegelmantelfläche bildet im Schnittbereich mit der Aussenfläche des Schleuderringes eine ringförmige Abspritzkante. Die Gestaltung dieser Kegelmantelfläche lässt in einfacher Weise die Anpassung der Gemisch-Verbesserungs-Vorrichtung an verschiedene Ausgestaltungen des Saugrohres und des Luftstromes zu. Eine bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass an der Aussenfläche des Schleuderringes eine ringförmige Hinterstechung ausgebildet ist und diese in die ringförmige Abspritzkante ausläuft. Durch diese Hinterstechung wird verhindert, dass Kraftstoff entgegen der Strömungsrichtung des Ansaugluftstromes entlang der Aussenfläche des Schleuderringes zurückfliessen kann. Andernfalls könnten sich an der Aussenfläche des Rotors unerwünschte Niederschläge von Kraftstoff bilden, welche die optimale Gemischbildung stören.
  • In weiterer Ausgestaltung der Vorrichtung sind die Austrittsöffnungen der Einspritzdüse so ausgebildet, dass die austretenden Kraftstoffstrahlen vollständig an die Mantelfläche des Kernhohlraumes im Rotor treffen. Dies lässt sich mit einfachen und billigen Düsen bewerkstelligen, wobei sowohl Nieder- als auch Hochdrucksysteme zur Anwendung gelangen können. Im Gegensatz zu den Einspritzventilen, welche den Kraftstoff direkt in den Luftstrom einspritzen, müssen hier weniger hohe Anforderungen an die Gleichförmigkeit der Kraftstoffstrahlen und die Tröpfchengrösse gestellt werden. Die genaue Bemessung der Tröpfchengrösse und die intensive Vermischung mit dem Ansaugluftstrom erfolgt erst, nachdem aus den Sprühstrahlen der erfindungsgemässe Flüssigkeitsfilm gebildet und abgeschleudert wurde. Die erfindungsgemässe Vorrichtung ermöglicht die Lagerung des Rotors am geschlossenen oder am offenen Ende des Mantelkörpers oder auch eine beidseitige Lagerung. Bei der Lagerung am oberen Ende des Mantelkörpers, d.h. an dem Ende, welches vom Luftstrom angeströmt wird, sind nach der Abspritzkante am Schleuderring keine weiteren Einbauteile im Ansaugrohr mehr notwendig. Dadurch verringert sich die Gefahr der Abesetzung von Kraftstoff an Bauteilen noch zusätzlich.
  • Bei Betrieb der Vorrichtung in Grenzbereichen können sich die abgeschleuderten Kraftstofftröpfchen eventuell an der Wandung des Ansaugrohres ablagern. Es ist deshalb vorteilhaft, den Rotor am unteren Ende mit mindestens einem zusätzlichen Prallring auszustatten, und/oder im Ansaugrohr, in Strömungsrichtung unterhalb des Rotors mindestens einen Prallring fest anzuordnen. Diese Prallringe bewirken bereits in Einzelanordnung eine zusätzliche Zerstäubung der aufschlagenden Kraftstofftröpfchen und verhindern die Ablagerung von Kraftstoff am Ansaugrohr. Für bestimmte Ausgestaltungen der Vorrichtung und Drehzahlbereiche ergeben Mehrfachanordnungen der Prallringe optimale Lösungen.
  • In vorteilhafter Ausgestaltung der Erfindung ist die Drehzahl des Flügelrades direkt proportional zur angesaugten Luftmenge. Dies wird dadurch erreicht, dass Stellung und Form der einzelnen Flügel auf die Form des Ansaugrohres und den Geschwindigkeitsbereich des Ansaugluftstromes in bekannter Weise abgestimmt werden. Die lineare Abhängigkeit der Drehzahl des Flügelrades von der Luftmenge ermöglicht eine einfache Steuerung der Gemischbildung. Diese Steuerung ist dadurch ausgezeichnet, dass die Vorrichtung eine Messstelle zur Ermittlung der Drehzahl des Rotors aufweist, diese Messstelle über ein Steuergerät mit einer Kraftstoffpumpe verbunden ist und das Steuergerät mit der Kraftstoffpumpe die Regeleinrichtung für die Kraftstoffmenge bildet. In weiterer Ausgestaltung ist das Steuergerät zusätzlich mit Sensoren zur Messung der Dichte und der Temperatur der Ansaugluft ausgestattet. Die eingesetzte Steuerung entspricht den bekannten Steuerungen, welche für Kraftstoffeinspritzsysteme bereits Verwendung finden. Im Gegensatz zu den bekannten Einrichtungen, bedarf die erfindungsgemässe Vorrichtung keines zusätzlichen Luftmengenmessers, da die Luftmenge anhand der Drehzahl des vorhandenen Flügelrades ermittelt werden kann. Zusätzlich zu dem hier beschriebenen Regelkreis können alle bekannten Zusatzregelungen mit der erfindungsgemässen Vorrichtung, bzw. Steuerung, kombiniert werden. In vorteilhafter Weise ist das Steuergerät über den ganzen Drehzahlbereich der Brennkraftmaschine auf ein konstantes Verhältnis der Luftmenge zur Kraftstoffmenge eingestellt. Die gewünschte Veränderung des Kraftstoff-/Luft-Mischungsverhältnisses wird durch Zuführen von Zusatzluft erreicht. Dazu sind am Ansaugrohr in Strömungsrichtung des Ansaugluftstromes nach dem Schleuderring Einlassöffnungen für Zusatzluft angeordnet. Diese Zusatzluft wird entweder dem Frischluftfilter oder dem Abgaskanal nach der Brennkraftmaschine entnommen. Die Steuerung der Zusatzluftmenge erfolgt ebenfalls über das erwähnte bekannte Steuergerät, wobei diese Steuerung wesentlich einfacher ist als die bei anderen bekannten Systemen notwendige Veränderung der Kraftstoffpumpen-Förderleistung.
  • Die durch die Erfindung erreichten Vorteile sind somit im wesentlichen darin zu sehen, dass ein sehr homogenes Kraftstoff-/Luft-Gemisch mit ausserordentlich kleinen Kraftstofftröpfchen gebildet wird. Dieses optimale Gemisch ermöglicht den Betrieb von Brennkraftmaschinen mit Lambda-Werten bis gegen 1,6. Daraus resultiert der Vorteil einer hohen Ausnützung des Kraftstoffes und infolge des Luftüberschusses eines ausserordentlich geringen Schadstoffgehaltes der Abgase. Die Gemischbildung in den verschiedenen Betriebszuständen wird zudem erheblich vereinfacht, und die gesamte Gemischbildungseinrichtung weist weniger und teilweise einfachere Bauteile auf.
  • Im folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
    • Fig. 1 einen Schnitt in schematischer Darstellung durch eine Gemisch-Verbesserungs-Vorrichtung mit am oberen Ende des Mantelkörpers gelagertem Rotor,
    • Fig. 2 einen Schnitt in schematischer Darstellung durch eine Gemisch-Verbesserungs-Vorrichtung mit am unteren offenen Ende des Mantelkörpers gelagertem Rotor,
    • Fig. 3 einen Schnitt durch das Ende des Mantelkörpers und einen Schleuderring in spezieller Ausgestaltung,
    • Fig. 4 einen Teilausschnitt aus dem Ansaugrohr in schematischer Darstellung mit einer Gemisch-Verbesserungs-Vorrichtung, Drosselklappe und nachgeordneter Zusatzluftzuführung.
  • Fig. 1 zeigt einen Ausschnitt aus einem Ansaugrohr 1 im Bereiche wo das Gemisch von Ansaugluft und Kraftstoff gebildet wird. Im Ansaugrohr ist ein Rotor 4 angeordnet, welcher mit den Flügeln 2 und 3 ein Flügelrad bildet. Der Rotor 4 besteht im weiteren aus einem Mantelkörper 5, welcher einen Kernhohlraum 6 umschliesst. Der Mantelkörper 5 ist an einem Ende 10 geschlossen und am anderen Ende 11 offen. Das geschlossene Ende 10 des Mantelkörpers 5 ist gegen die durch die Pfeile 30 dargestellte Strömungsrichtung des Ansaugluftstromes gerichtet. Durch das geschlossene Ende 10 ist eine Kraftstoffzuleitung 8 und eine Düsenhalterung 26 in den Bereich des Kernhohlraumes 6 des Rotors 4 eingeführt. Im Bereiche der Durchführung ist eine Spalt- oder Labyrinth-Dichtung 27 angeordnet. Diese Anordnung verhindert, dass Ansaugluft unkontrolliert in den Kernhohlraum 6 eindringen kann. Die Düsenhalterung 26 ist über radiale Streben 17, 18 am Ansaugrohr 1 abgestützt und in ihrer Position festgelegt. Auf der Düsenhalterung 26 sind im weiteren Lager 15, 16 angeordnet, auf welchen der Mantelkörper 5, bzw. der Rotor 4, abgestützt und gelagert ist. Am Ende der Düsenhalterung 26 ist eine Einspritzdüse 9 angeordnet, welche mit der Kraftstoffzuleitung 8 in Verbindung steht. Diese Einspritzdüse 9 ist so ausgebildet, dass Kraftstoffstrahlen 24, 25 gebildet werden, welche auf die Innenwand 20 des Mantelkörpers 5 auftreffen. Diese Innenwand 20 des Mantelkörpers 5 ist identisch mit der Mantelfläche 20 des Kernhohlraumes 6. Die Mantelfläche 20 des Kernhohlraumes 6 divergiert in der Strömungsrichtung 30, 31 des Ansaugluftstromes, d.h. der Kernhohlraum 6 verfügt über ein enges Ende 12 und ein erweitertes Ende 13. Die Einspritzdüse 9 ist im Bereiche des engen Teiles 12 des Kernhohlraumes 6 angeordnet. Das erweiterte Ende 13 des Kernhohlraumes 6 bildet einen Teil des offenen Endes 11 des Mantelkörpers 5. Am offenen Ende 11 des Mantelkörpers 5 ist ein Schleuderring 14 angeordnet, welcher einstückig an den Mantelkörper 5 anschliesst. Im Bereiche des Schleuderringes 14 ist das erweiterte Ende 13 des Kernhohlraumes 6 zusätzlich kegelförmig von innen nach aussen erweitert, wodurch eine Kegelmantelfläche 21 gebildet wird. Diese Kegelmantelfläche 21 schneidet die Aussenfläche 22 des Schleuderringes und bildet eine ringförmige Abspritzkante 23. Vor dem Schleuderring ist im weiteren in die Innenwand 20 des Mantelkörpers 5 ein Ringkanal 19 eingearbeitet, welcher sich um den ganzen Umfang des Kernhohlraumes 6 erstreckt.
  • Am Ansaugrohr 1 ist im Bereiche der Flügel 2, 3 eine Messsonde 28 angeordnet, mittels welcher die Drehzahl des Rotors 4 festgestellt wird. Die an der Messonde 28 ermittelten Signale werden über eine Leitung 29 einem nicht dargestellten Steuergerät zugeführt. Es handelt sich dabei um ein bekanntes elektronisches Steuergerät, wie es in ähnlicher Ausführung z.B. bei den bekannten Monojetronic-Anlagen der Firma Bosch eingesetzt wird. Dieses Steuergerät regelt abhängig von der Drehzahl des Rotors 4 die Förderleistung einer ebenfalls nicht dargestellten Kraftstoffpumpe, welche Kraftstoff über die Kraftstoffzuleitung 8 unter Druck in die Einspritzdüse 9 fördert.
  • Beim Betrieb der dargestellten Gemischbildungs-Vorrichtung befindet sich in Strömungsrichtung des Ansaugluftstromes nach dem Rotor 4 im Ansaugrohr 1 eine bekannte Drosselklappe. Diese ist in Figur 4 dargestellt. Beim Betrieb der nachgeordneten Brennkraftmaschine entsteht im Ansaugrohr 1 ein Unterdruck, wodurch bei geöffneter Drosselklappe ein Ansaugluftstrom in Richtung der Pfeile 30, 31 entsteht. Dieser Ansaugluftstrom durchströmt das Flügelrad mit den Flügeln 2, 3 und setzt dieses in Rotation. Anstellwinkel und Form der Flügel 2, 3 werden dabei so gewählt, dass sich die Drehzahl des Rotors 4 und die Ansaugluftmenge direkt proportional, bzw. linear, verhalten. Gleichzeitig wird über die Einspritzdüse 9 Kraftstoff an die Innenwand 20 des Mantelkörpers 5 gespritzt. Der Rotor 4 dreht dabei je nach Luftmenge mit einer Drehzahl von bis zu 100′000 Umdrehungen pro Minute. Durch diese schnelle Rotation wird der Kraftstoff gleichmässig entlang des Umfanges der Innenwand 20 verteilt und bildet einen gleichmässigen Kraftstoffilm. Dieser Kraitstoffilm strömt vom engen Ende 12 des Kernhohlraumes 6 gegen das erweiterte Ende 13. Diese Strömung wird durch die divergierende Mantelfläche bzw. Innenwand 20 und die Rotation des Mantelkörpers 5 bewirkt. Im Bereiche des Ringkanales 19 sammelt sich Kraftstoff an bis dieser gefüllt ist. Nachher bildet sich der Kraftstoffilm weiterhin dünn und gleichmässig aus und erreicht den Bereich der Kegelmantelfläche 21. Durch diese kegelförmige Erweiterung im Bereiche des Schleuderringes 14 wird der Kraftstoffilm zusätzlich verdünnt, so dass er sich bei Erreichen der Abspritzkante 23 in Tröpfchen auflöst, welche kleiner als 10 Mikrometer sind. Die abgeschleuderten Kraftstofftröpfchen sind alle praktisch gleich gross, vermischen sich intensiv mit dem Ansaugluftstrom und das gebildete Kraftstoff-/Luftgemisch strömt in Richtung der Pfeile 31 gegen die Brennkraftmaschine. Bei dieser Anordnung wird die an der Einspritzdüse 9 eingespritzte Kraftstoffmenge in Abhängigkeit von der Drehzahl des Rotors 4 und der Drosselklappenstellung mittels des Steuergerätes und der Kraftstoffpumpe geregelt. Zur Verfeinerung der Regelung können neben der Sonde 28 zur Drehzahlmessung noch weitere Sonden, z.B. für die Messung der Dichte und der Temperatur der Ansaugluft mit dem Steuergerät in bekannter Weise verknüpft werden. Der Regelbereich dieser Gemischbildungs-Einrichtung erstreckt sich dabei über einen Bereich der Lambda-Werte von 0,9 bis 1,6.
  • Figur 2 zeigt im wesentlichen die gleiche Gemischverbesserungs-, bzw. Mischungs-Vorrichtung wie Figur 1. Im Unterschied zu Figur 1 ist hier der Rotor 4 am offenen Ende 11 des Mantelkörpers 5 gelagert. Dazu ist am erweiterten Ende 13 des Kernhohlraumes 6 eine Platte 32 angeordnet, welche mit einem Lagerzapfen 34 versehen ist. Auf dem Lagerzapfen 34 sind zwei Lager 15, 16 angeordnet, welche wiederum in der Lagerung 36 abgestützt sind. Streben 37, 38 verbinden die Lagerung 36 mit dem Ansaugrohr 1 und halten den Rotor 4 in der gewünschten Position.
  • Zwischen der Platte 32 und der Innenwand bzw. Mantelfläche 20 des Mantelkörpers 5 ist ein ringförmiger, parallel zur Mantelfläche 20 verlaufender Durchlass 33 angeordnet. Der Mantelkörper 5 ist dabei mittels mehrerer Streben an der Platte 32 abgestützt. Die Platte 32 hat zum Zweck, den Kernhohlraum 6 vor Störungen durch den Ansaugluftstrom, z.B. Wirbelbildungen unterhalb des Rotors zu schützen. Bei dieser Ausführung sind im Bereiche der Durchführung der Düsenhalterung 26 durch das geschlossene Ende 10 des Mantelkörpers 5 eine oder mehrere Luftkanäle 35 angeordnet, welche das Eintreten von Ansaugluft in den Kernhohlraum 6 ermöglichen. Die durch die Kanäle 35 in den Kernhohlraum 6 einströmende Luft unterstützt den Kraftstofffluss entlang der Innenwand 20 und dämpft zusätzlich die schon oben erwähnten Störungen, z.B. infolge Wirbelbildung. Die in Figur 2 dargestellte Lösung ermöglicht ein einfaches Ein- und Ausbauen der Einspritzdüse 9, ohne dass der Rotor 4 ebenfalls ausgebaut werden müsste. Im übrigen weist diese Ausführungsform die gleichen Vorteile und Eigenschaften auf, und die Gemischbildung erfolgt in gleicher Weise.
  • Zur weiteren Verbesserung der Gemischbildung ist im Bereiche des unteren Endes des Rotors 4 ein zusätzlicher Prallring 60 angeordnet. Dieser Prallring 60 ist über Streben 61 fest mit dem offenen Ende 11 des Mantelkörpers 5 verbunden und rotiert mit diesem. Dabei ist der Prallring 60 so angeordnet, dass die von der Abspritzkante 23 abgeschleuderten Tröpfchen an der Innenfläche des Prallringes 60 aufschlagen. Die mit sehr hoher Geschwindigkeit aufschlagenden Tröpfchen werden zusätzlich zerstäubt und vom Luftstrom mitgerissen.
  • Beim Anlaufen der Vorrichtung oder bei anderen nicht vollständig kontrollierten Drehzahlbereichen des Rotors 4 kann sich Gemisch an der Wandung des Ansaugrohres 1 niederschlagen und dort einen ungewünschten Film oder grössere Tropfen bilden. Um zu verhindern, dass Tröpfchen von den rotierenden Teilen direkt an die Wandung des Ansaugrohres 1 geschleudert werden, ist ein stationärer Prallring 62 eingebaut. Dieser ist über die Streben 63 mit dem Ansaugrohr 1 verbunden. Die Kraftstofftröpfchen werden vom Prallring 60, oder wenn dieser nicht eingebaut ist, von der Abspritzkante 23 an die Innenfläche des Prallringes 62 geschleudert. Bilden sich bei Grenzzuständen an dieser Innenfläche ein Kraftstoffilm oder grössere Tropfen, so fliessen diese zur Kante 64 und werden dort von Luftstrom mitgerissen und zerstäubt. Dadurch wird die Bildung von Kraftstoffablagerungen am Ansaugrohr 1 verhindert und auch in Grenzbereichen eine gute Gemischbildung gewährleistet. Die Prallringe 60, 62 können in der dargestellten Vorrichtung gemeinsam oder auch nur je einzeln angeordnet sein.
  • In Figur 3 ist eine spezielle Ausgestaltung des Schleuderringes 14 dargestellt, bei welcher das Zurückfliessen von Kraftstoff entlang der Aussenwand 40 des Mantelkörpers 5 verhindert wird. Dazu ist an der Aussenfläche des Schleuderringes 14 eine Hinterstechung 41 angeordnet, welche in die ringförmige Abspritzkante 23 ausläuft. Auch hier ist der Kernhohlraum 6 im Bereiche des Schleuderringes 14 von innen nach aussen kegelförmig erweitert und bildet eine Kegelmantelfläche 21. Die Anordnung der Hinterstechung 41 und die scharfe Abspritzkante 23 verhindern in jedem Fall ein Rückfliessen von Kraftstoff und fördern das Abreissen des Kraftstoffilmes an der Kante 23 durch den Luftstrom in feinster Tröpfchenform. In Figur 3 ist eine weitere Möglichkeit zur Ausgestaltung eines Ringkanales 42 dargestellt. Der Innendurchmesser des Kernhohlraumes 6 wird lokal verengt, wodurch sich eine Engstelle 43 bildet. Dadurch entsteht dahinter ein taschenförmiger Ringkanal 42, in welchem sich ein dickerer Kraftstoffilm bildet als an den übrigen Bereichen der Innenwand 20. Dieser dickere Kraftstoffilm ermöglicht einerseits einen Ausgleich des Filmes über den ganzen Umfang der Innenwand 20 und ein gleichmässigeres Abfliessen des Kraftstoffilmes in Richtung der Abspritzkante 23.
  • Die Darstellung gemäss Figur 4 zeigt eine vollständige Gemischbildungs-Einrichtung in vereinfachter Ausführung. Im Ansaugrohr 1 ist der Rotor 4 mit dem Mantelkörper 5 und den Flügeln 2, 3 angeordnet. Die Zuführung des Kraftstoffes in den Kernhohlraum 6 des Mantelkörpers 5 erfolgt über die Einspritzdüse 9, den Düsenhalter 26 und die Kraftstoffzuleitung 8. Der Rotor 4 ist mittels des Lagerzapfens 34 über die Lager 15, 16 in der Lagerung 36 abgestützt. In Strömungsrichtung der Ansaugluft nach dem Rotor befindet sich eine Drosselklappe 45, welche mit einer Stelleinrichtung 46 verbunden ist. In Strömungsrichtung, wiederum unterhalb der Drosselklappe, ist im Ansaugrohr 1 eine Einlassöffnung 47 in der Form eines Ringspaltes angeordnet, welche von einem ringförmigen Luftkanal 48 umgeben ist. Dieser Ringspalt 47 bildet eine Einlassöffnung für Zusatzluft welche aus dem Ringkanal 48 in das Ansaugrohr 1 eingesaugt werden kann. Der Ringkanal 48 steht mit einer Luftzuleitung 49 in Verbindung, welche Zusatzluft vom Frischluftfilter oder heisse Abgase vom Abgaskanal zum Ringkanal 48 führt. In dieser Luftzuleitung 49 befindet sich ebenfalls eine Drosselklappe 50, die mit einer Stelleinrichtung 51, 52 in Verbindung steht.
  • Von einem elektronischen Steuergerät 53 führen Verbindungsleitungen 54, 55 und 29 zu den entsprechenden Stelleinrichtungen, bzw. Sensoren. Die Leitung 29 verbindet das Steuergerät 53 mit dem Sensor 28 zur Messung der Drehzahl des Rotors 4. Die Verbindungsleitung 54 steuert die Kraftstoffpumpe und enthält weitere Zu- und Ableitungen für zusätzliche Steuer- und Messglieder. Die Verbindungsleitung 55 dient zur Ansteuerung der Stellglieder 51, 52, bzw. der Drosselklappe 50 in der Luftzuleitung 49.
  • Bei der in Figur 4 gezeigten Gemischbildungs-Einrichtung wird der Einspritzdüse 9 immer so viel Kraftstoff zugeführt, dass sich ein Gemisch mit einer Lambda-Zahl von 0,9, d.h. ein fettes Gemisch, bildet. Dieses Verhältnis wird über den ganzen Bereich der Luftmengenveränderung, bzw. Drehzahlveränderung des Rotors 4 konstant gehalten. Infolge der hohen Gemischqualität, welche nach der Abspritzkante 23 entsteht, muss das Gemisch auch in extremen Situationen nicht stärker angereichert werden. Im Normalbetrieb wird dem Gemischstrom nach dem Rotor 4 über den Ringspalt 47 Zusatzluft beigemischt, wobei übliche Motoren mit einer Lambda-Zahl von ca. 1,25 betrieben werden können. Dies im Gegensatz zu bisher bekannten Vergasern oder Einspritzanlagen, bei welchen eine Lambda-Zahl von etwa 1,05 eingestellt werden muss. Dadurch entstehen im Abgas wesentlich weniger Kohlenmonoxyd, Kohlenwasserstoffe und Stickoxyde. Die Einrichtung gemäss Figur 4 ist so ausgestattet, dass so viel Zusatzluft zugeführt werden kann, bis ein Lambda-Wert von ca. 1,6 erreicht wird, womit spezielle sogenannte Magermotoren betrieben werden können. Dank der homogenen Durchmischung von Ansaugluft und Kraftstoff sowie der kleinen Kraftstofftröpfchen erfolgt auch bei diesen hohen Beimischungen von Zusatzluft kein Niederschlag von Kraftstoff an den Ansaugrohrwänden.

Claims (20)

  1. Gemisch-Verbesserungs-Vorrichtung für Brennkraftmaschinen mit Zentraleinspritzung, wobei im Ansaugrohr (1) ein vom Ansaugluftstrom in Rotation versetztes Flügelrad (2, 3) angeordnet ist, dieses Flügelrad (2, 3) einen Rotor (4) mit einer Einspritzvorrichtung für den Kraftstoff antreibt und mit diesem verbunden ist, der Rotor (4) einen Hohlraum (6) mit einer Mantelfläche (20) aufweist welche in Richtung der Strömung des Ansaugluftstromes divergiert, dieser Hohlraum (6) entgegen der Strömungsrichtung des Ansaugluftstromes einen Abschluss (10) aufweist, am erweiterten Ende der divergierenden Mantelfläche (20) eine Sprühkante (23) angeordnet und an demjenigen Ende des Rotors (4) mit dem Hohlraumabschluss (10) eine Kraftstoffzuleitung (8) in den Rotor (4) eingeführt ist, dadurch gekennzeichnet, dass der Rotor (4) einen Mantelkörper (5) mit einem, von Einbauten freien Kernhohlraum (6) aufweist, in Strömungsrichtung des Ansaugluftstromes und direkt am erweiterten Ende (13) des freien Kernhohlraumes (6) ein Schleuderring (14) mit dem Mantelkörper (5) verbunden und die Sprühkante (23) Teil dieses Schleuderringes (14) ist, die am abgeschlossenen Ende (10) des Kernhohlraumes (6) in den Mantelkörper (5) eingeführte Kraftstoffzuleitung (8) eine Druckleitung ist und mit einer feststehenden Einspritzdüse (9) verbunden ist, diese Einspritzdüse (9) im Bereiche der Längsachse (7) des freien Kernhohlraumes (6) angeordnet ist und die Sprühstrahlen (24, 25) gegen die divergierende Mantelfläche (20) des Kernhohlraumes (6) gerichtet sind.
  2. Gemisch-Verbesserungs-Vorrichtung nach Patentanspruch 1, dadurch gekennzeichnet, dass der Kernhohlraum (6) am erweiterten Ende (13) durch eine quer zur Rotorachse (7) stehende Platte (32) abgeschlossen und zwischen dieser Platte (32) und dem Mantelkörper (5) ein ringförmiger, parallel zur Mantelfläche (20) des Kernhohlraumes (6) verlaufender Durchlass (33) angeordnet ist.
  3. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 oder 2, dadurch gekennzeichnet, dass an der Innenwand (20) des Mantelkörpers (5) und vor dem Schleuderring (14) ein sich um den ganzen Umfang des Kernhohlraumes (6) erstreckender Ringkanal (19) angeordnet ist.
  4. Gemisch-Verbesserungs-Vorrichtung nach Patentanspruch 3, dadurch gekennzeichnet, dass der Ringkanal (19) einen rechteckförmigen querschnitt aufweist und in die Innenwand (20) des Mantelkörpers (5) eingearbeitet ist.
  5. Gemisch-Verbesserungs-Vorrichtung nach Patentanspruch 3, dadurch gekennzeichnet, dass der Ringkanal (19) durch eine lokale Verengung (43) des Innendurchmessers des Kernhohlraumes (6) gebildet ist.
  6. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, dass die Fortsetzung des Kernhohlraumes (6) im Bereiche des Schleuderringes (14) von Innen nach Aussen kegelförmig erweitert ist und die entstandene Kegelmantelfläche (21) im Schnittbereich mit der Aussenfläche (22) des Schleuderringes (14) eine ringförmige Abspritzkante (23) bildet.
  7. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 6, dadurch gekennzeichnet, dass an der Aussenfläche (22) des Schleuderringes (14) eine ringförmige Hinterstechung (41) ausgebildet ist und diese in die ringförmige Abspritzkante (23) ausläuft.
  8. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 7, dadurch gekennzeichnet, dass die Austrittsöffnungen der Einspritzdüse (9) so ausgebildet sind, dass die austretenden Kraftstoffstrahlen (24, 25) vollständig an die Mantelfläche (20) des Kernhohlraumes (6) im Rotor (4) treffen.
  9. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 8, dadurch gekennzeichnet, dass der Rotor (4) am oberen Ende (10) des Mantelkörpers (5) gelagert ist und sich die Lager (15, 16) an der Kraftstoffzuleitung (8) und/ oder der Einspritzdüse (9, 26,) abstützen.
  10. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 8, dadurch gekennzeichnet, dass der Rotor (4) am offenen Ende (11) des Mantelkörpers (5) und nach dem Schleuderring (14) gelagert ist und die Lagerung (36) über radiale Streben (37, 38) am Ansaugrohr (1) abgestützt ist.
  11. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 8, dadurch gekennzeichnet, dass der Rotor (4) in Strömungsrichtung (30) des Ansaugluftstromes vor der Einspritzdüse (9) und nach dem Schleuderring (14) gelagert ist.
  12. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 11, dadurch gekennzeichnet, dass der Rotor (4) am unteren Ende mit mindestens einem zusätzlichen Prallring (60) ausgestattet ist.
  13. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 11, dadurch gekennzeichnet, dass im Ansaugrohr (1), in Strömungsrichtung unterhalb des Rotors (4) mindestens ein Prallring (62) fest angeordnet ist.
  14. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 13, dadurch gekennzeichnet, dass die Drehzahl des Flügelrades mit den Flügeln (2, 3) direkt proportional zur angesaugten Luftmenge ist.
  15. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 14, dadurch gekennzeichnet, dass die Vorrichtung eine Messonde (28) zur Ermittlung der Drehzahl des Rotors (4) aufweist, diese Messonde (28) über ein Steuergerät (53) mit einer Kraftstoffpumpe verbunden ist und das Steuergerät (53) mit der Kraftstoffpumpe die Regeleinrichtung für die Kraftstoffmenge bildet.
  16. Gemisch-Verbesserungs-Vorrichtung nach Patentanspruch 15, dadurch gekennzeichnet, dass das Steuergerät (53) zusätzlich mit Sensoren zur Messung der Dichte und der Temperatur der Ansaugluft ausgestattet ist.
  17. Gemisch-Verbesserungs-Vorrichtung nach Patentanspruch 15, dadurch gekennzeichnet, dass das Steuergerät (53) über den ganzen Drehzahlbereich der Brennkraftmaschine auf ein konstantes Verhältnis der Luftmenge zur Kraftstoffmenge eingestellt ist.
  18. Gemisch-Verbesserungs-Vorrichtung nach einem der Patentansprüche 1 bis 17, dadurch gekennzeichnet, dass am Ansaugrohr (1) in Strömungsrichtung (30) des Ansaugluftstromes nach dem Schleuderring (14) Einlassöffnungen (47) für Zusatzluft angeordnet sind.
  19. Gemisch-Verbesserungs-Vorrichtung nach Patentanspruch 18, dadurch gekennzeichnet, dass die Einlassöffnungen (47) für die Zusatzluft über einen Luftkanal (48, 49) mit dem Frischluftfilter verbunden sind.
  20. Gemisch-Verbesserungs-Vorrichtung nach Patentanspruch 18, dadurch gekennzeichnet, dass die Einlassöffnungen (47) für die Zusatzluft über einen Luftkanal (48, 49) mit dem Abgaskanal nach der Brennkraftmaschine verbunden sind.
EP89903674A 1988-06-02 1989-04-04 Gemisch-verbesserungs-vorrichtung für brennkraftmaschinen Expired - Lifetime EP0376990B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89903674T ATE81190T1 (de) 1988-06-02 1989-04-04 Gemisch-verbesserungs-vorrichtung fuer brennkraftmaschinen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2118/88 1988-06-02
CH211888 1988-06-02

Publications (2)

Publication Number Publication Date
EP0376990A1 EP0376990A1 (de) 1990-07-11
EP0376990B1 true EP0376990B1 (de) 1992-09-30

Family

ID=4226292

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89903674A Expired - Lifetime EP0376990B1 (de) 1988-06-02 1989-04-04 Gemisch-verbesserungs-vorrichtung für brennkraftmaschinen

Country Status (6)

Country Link
US (1) US5036826A (de)
EP (1) EP0376990B1 (de)
JP (1) JPH02504537A (de)
KR (1) KR900702222A (de)
BR (1) BR8907001A (de)
WO (1) WO1989012163A1 (de)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1002255A (fr) * 1946-08-26 1952-03-04 Pulvérisateur pour combustibles liquides non gazéifiables
US2791409A (en) * 1952-09-26 1957-05-07 Lauder Alfred Ernest Carburetors
US3654909A (en) * 1970-08-06 1972-04-11 Eugene C Rollins Carburetor having auxiliary turbine and idle fuel shutoff mechanism
DE2133134A1 (de) * 1971-07-03 1973-01-18 Wilhelm Stute Vergaser fuer brennkraftmaschinen
SE396116B (sv) * 1975-02-06 1977-09-05 Weidlich Franz Anordning vid forgasare - serskilt for forbrenningsmotorer
CH640603A5 (de) * 1979-08-02 1984-01-13 Autoelektronik Ag Rotor-vergasereinrichtung mit leerlauf-gemischbildung fuer brennkraftmaschinen.
US4422432A (en) * 1980-10-23 1983-12-27 Knox Sr Kenneth L Variation of fuel vaporizer for internal combustion engine
US4399800A (en) * 1982-05-07 1983-08-23 Outboard Marine Corporation Device for improving fuel efficiency in internal combustion engine
US4474712A (en) * 1982-05-28 1984-10-02 Autoelektronik Ag Central injection device for internal combustion engines
EP0208802A1 (de) * 1985-07-17 1987-01-21 Kwik Europe London Limited Lambda-Korrekturvorrichtung an einem Rotorvergaser für Brennkraftmaschinen
US4726342A (en) * 1986-06-30 1988-02-23 Kwik Products International Corp. Fuel-air ratio (lambda) correcting apparatus for a rotor-type carburetor for integral combustion engines
IT1182605B (it) * 1985-10-11 1987-10-05 Weber Spa Dispositivo per l alimentazione di una miscela di aria e carburante ad un cellettore di un motore a combustione interna
US4725385A (en) * 1986-06-30 1988-02-16 Kwik Products International Corporation Turbine rotor assembly for a rotor-type carburetor

Also Published As

Publication number Publication date
JPH02504537A (ja) 1990-12-20
BR8907001A (pt) 1990-12-26
WO1989012163A1 (en) 1989-12-14
KR900702222A (ko) 1990-12-06
US5036826A (en) 1991-08-06
EP0376990A1 (de) 1990-07-11

Similar Documents

Publication Publication Date Title
DE4137179C2 (de) Vorrichtung zum Erzeugen einer Wasser-in-Öl Emulsion und Verwendung der Vorrichtung an einem Dieselmotor
DE2429951A1 (de) Vorrichtung zur kraftstoffeinspritzung
DE2213124A1 (de) Vorrichtung zum Einspritzen von Kraftstoff in Brennkraftmaschinen
EP0258207A2 (de) Einlasskanal für Brennkraftmaschinen
DE2609082C2 (de) Vergaser für Verbrennungsmotoren
DE2844504A1 (de) Brennstoffzufuehrungsvorrichtung fuer einen verbrennungsmotor
DE3024181A1 (de) Rotor-vergasereinrichtung mit leerlauf-gemischbildung fuer brennkraftmaschinen
DE2849945C2 (de) Abgasturbolader für eine Brennkraftmaschine
DE2819474A1 (de) Treibstoff-versorgungseinrichtung fuer verbrennungsmotoren
WO1983004282A1 (en) Central injection device for internal combustion engines
EP0376990B1 (de) Gemisch-verbesserungs-vorrichtung für brennkraftmaschinen
DE3614115C2 (de)
DE747986C (de) Vergaser mit Nadelsteuerung
DE2407995C2 (de) Vergaservorrichtung für einen Ottomotor
DE3600153C2 (de)
DE2160675C3 (de) Brennereinrichtung für eine Gasturbinenbrennkammer
DE2515463C3 (de) Vergaser für Brennkraftmaschinen
DE2544088C3 (de) Kreiskolben-Brennkraftmaschine
DE2000301A1 (de) Leerlaufvorrichtung fuer Vergaser
DE2542620A1 (de) Vorrichtung zur erzeugung eines brennstoff-luftgemisches zur speisung von brennkraftmaschinen
CH559856A5 (de)
DE3339680C1 (de) Vorrichtung für Gemischbildung für Brennkraftmaschinen
DE3804453A1 (de) Verfahren zur gemischaufbereitung von brennkraftmaschinen und vergaser hierfuer
WO1991014093A1 (de) Vorrichtung zur einspritzung eines brennstoff-gas-gemisches
DE2219982A1 (de) Verbrennungs-gemisch-regler fuer ottomotoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910704

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 81190

Country of ref document: AT

Date of ref document: 19921015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58902380

Country of ref document: DE

Date of ref document: 19921105

ITF It: translation for a ep patent filed

Owner name: INTERPATENT ST.TECN. BREV.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930105

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930303

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930309

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930317

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930322

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930323

Year of fee payment: 5

Ref country code: AT

Payment date: 19930323

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930408

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930430

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19930630

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EPTA Lu: last paid annual fee
26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940404

Ref country code: GB

Effective date: 19940404

Ref country code: AT

Effective date: 19940404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940430

Ref country code: CH

Effective date: 19940430

Ref country code: BE

Effective date: 19940430

BERE Be: lapsed

Owner name: NOVA-WERKE A.G.

Effective date: 19940430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19941101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940404

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19941229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950103

EUG Se: european patent has lapsed

Ref document number: 89903674.3

Effective date: 19941110

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050404