EP0376909A1 - Moteur à combustion interne - Google Patents

Moteur à combustion interne Download PDF

Info

Publication number
EP0376909A1
EP0376909A1 EP19890870196 EP89870196A EP0376909A1 EP 0376909 A1 EP0376909 A1 EP 0376909A1 EP 19890870196 EP19890870196 EP 19890870196 EP 89870196 A EP89870196 A EP 89870196A EP 0376909 A1 EP0376909 A1 EP 0376909A1
Authority
EP
European Patent Office
Prior art keywords
cylinders
cylinder
oxidizing
stroke
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19890870196
Other languages
German (de)
English (en)
Other versions
EP0376909B1 (fr
Inventor
Gerhard Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schmitz Gerhard
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT8989870196T priority Critical patent/ATE105606T1/de
Publication of EP0376909A1 publication Critical patent/EP0376909A1/fr
Application granted granted Critical
Publication of EP0376909B1 publication Critical patent/EP0376909B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/06Engines with prolonged expansion in compound cylinders
    • F02B41/08Two-stroke compound engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the subject of the present invention is a method of producing an internal combustion engine of the type comprising at least one cylinder which comprises a working chamber of variable volume by the displacement in the cylinder of a piston between a top dead center position. and a bottom dead center position, under the effect of pressure forces generated periodically in said chamber, with each cylinder being associated means for admission and discharge of a gaseous fluid, the piston of each cylinder being connected to an engine crankshaft, and an engine for implementing this method.
  • thermodynamic cycle either two or four times.
  • the cylinder is filled with an air-fuel mixture when the piston is near its bottom dead center. Then by advancing the piston compresses this mixture and the fuel evaporates under the rise in temperature.
  • a candle ignites by means of a spark the mixture which causes a sudden rise in temperature and pressure.
  • the piston allows the combined gases to relax and it is at this point that the usable work is produced.
  • the gases are evacuated by an exhaust valve fitted in the cylinder head, and we speak of longitudinal sweeping, or by exhaust lights fitted in the cylinder liner discovered by the piston, and we speak of a transverse scan. The remaining gases are then swept by the arrival of the fresh air-fuel mixture, which is introduced by scanning lights fitted at the bottom of the cylinder liner and discovered by the piston a little later than the exhaust lights. The two times are therefore compression and relaxation.
  • the two-stroke diesel engine uses a comparable principle where the difference lies in the way the fuel is introduced, which in this case is directly injected into the compressed air, and therefore hot, and then ignites spontaneously.
  • the energy efficiency depends among other things on the compression compression ratio. The higher it is, the higher the yield.
  • this compression ratio is limited, in the case of the gasoline engine, by the risk of premature detonation of the mixture, and in the case of the diesel engine among other things by the need to preserve a suitable combustion chamber.
  • the increase in efficiency becomes smaller and smaller for an equal increase in the compression ratio from a value of 10 to 15 for this last, and it is then above all, in the case of the diesel engine, the mechanical stresses which determine the critical volumetric compression ratio.
  • the efficiency of the two-stroke spark-ignition cycle is generally lower than that of the four-stroke cycle, since a loss of fuel is inevitable when the combustion gases are swept by the fresh air-fuel mixture.
  • Another defect in the two-stroke and positive-ignition cycle compared to the four-stroke cycle is malfunction at part load, where a throttle on suction leads to a greater dilution of the fresh charge by the combustion gases during sweeping which can make combustion difficult.
  • the main object of the present invention is to increase the energy efficiency of the two-stroke internal combustion engine with reciprocating pistons, of the type defined above.
  • the method according to the invention is characterized in that at least one cylinder operating as a two-stroke low pressure cylinder and two cylinders operating as oxidizing cylinders is used, that at each stroke of the piston of the low pressure cylinder. towards its top dead center the gaseous fluid admitted into it is discharged alternately into one of the two oxidizing cylinders, that the latter is then caused to successively carry out intake strokes of the fluid to which fuel has been added, compression of the air-fuel mixture, of a first expansion of the combined gases, after ignition of the fluid, and of delivery of the combined gases into the low pressure cylinder during the second expansion stroke thereof, following that of said delivery of fresh air, for a second expansion of the combined gases and their exhaust from the engine.
  • the engine for implementing this process is characterized in that the pistons of the low pressure and oxidizing cylinders are connected to the crankshaft so that the pistons of the oxidizing cylinders, on the one hand, and the piston of the low pressure cylinder, on the other hand, move in opposite directions, the low pressure working chamber is capable of communicating with a gaseous fluid intake path and an exhaust path for the combined gases and with the work of each oxidizing cylinder, of a on the one hand, by a fresh air discharge channel in this working chamber, by means of a discharge valve associated with the low pressure cylinder and an introduction valve associated with the oxidizing cylinder and, on the other part, by a transfer channel of the combustion gases by means of a transfer valve associated with the oxidizing cylinder and in that the valves are controlled so that said delivery valve is open during the stroke of the piston of the low pressure cylinder towards its top dead center, simultaneously and alternately with the introduction valve of one of the two oxidizing cylinders and that the transfer valve of an oxidizing cylinder is open during
  • Figures 1 to 6 relate to a first embodiment of an engine according to the invention, namely an internal combustion engine with two stages stepped by controlled ignition which is produced using three cylinders arranged in line. It comprises two high pressure oxidizing cylinders 2, 3 located at the ends of the crankshaft and a central cylinder 1, low pressure and two-stroke. The volume of the low pressure cylinder 1 is greater than that of the oxidizing cylinders 2,3.
  • a heat exchanger 15 is connected to the low pressure cylinder 1 by a precompressed air delivery pipe 12 and its outlet is connected to the two high pressure oxidizing cylinders 2, 3 by the pipes for introducing the precompressed air-fuel mixture 13, 14 respectively.
  • the tubing 12 is closable by a discharge valve 7 associated with the low pressure cylinder, while the tubing 13, 14 are provided with introduction valves 8, 11 associated with the oxidizing cylinders 2,3. It is at the level of these introduction tubes 13 and 14 that the introduction of the fuel by means of a controlled injection device 25 or a carburetor.
  • the working chambers of the oxidizing cylinders 2, 3 are connected to the working chamber of the low pressure cylinder 1, respectively by transfer pipes 16, 17 of the combined gases.
  • the transfer pipes 16, 17 are respectively provided with transfer valves 9, 10 associated with the oxidizing cylinders.
  • the transfer valves 9 and 10, the air introduction or air-fuel mixture valves 8 and 11 as well as the spark plugs 26 are located in the cylinder head of the high pressure oxidizer cylinders 2 and 3.
  • the jacket of the low pressure cylinder 1 has exhaust ports 20 for the combined gases and fresh air intake 22, connected respectively to an exhaust manifold for the combined gases 19 and a fresh air intake manifold 18.
  • the low pressure casing 24, located downstream of the piston 4 of the cylinder 1 is a closed enclosure which is connected by means of the lights 21 and a scanning tube 23 to the part upstream of the low pressure piston 4.
  • the low-pressure two-stroke cylinder 1 forms with the high-pressure oxidizing cylinder on the left 2 first a first pair of compressing cylinders and a first pair of expansion cylinders.
  • the low-pressure cylinder 1 first forms a second pair of compressing cylinders and also a second pair of expansion cylinders.
  • Fig. 3a The pistons 5 and 6 of the high-pressure oxidizing cylinders 2 and 3 are going up, and the piston 4 of the two-stroke low-pressure cylinder 1 is going down.
  • the first pair of expansion cylinders that is to say the combustion cylinders high pressure left 2 and low pressure two-stroke central 1, performs a second expansion of the combined gases, the transfer valve 9 being open.
  • the low-pressure two-stroke piston 4 approaches its bottom dead center, the combined gases will be evacuated by the exhaust ports 20 and the residue of these gases will be swept away by the fresh air supplied by means of the ports. intake 21.
  • the right high-pressure oxidizing cylinder 3 performs a second compression of the air-fuel mixture and the spark plug 26 will ignite it towards the end of this compression.
  • the two high pressure oxidizing pistons 5 and 6 are going down while the two-stroke low pressure piston 4 goes up.
  • the first pair of compression cylinders that is to say the right high-pressure oxidizing cylinder 2 and the low-pressure two-stroke cylinder 1, performs the first compression, the precompressed air delivery valves 7 and the intake of the air-fuel mixture 8 being open.
  • Petrol is introduced at the level of the pre-compressed air-fuel mixture intake manifold 13.
  • the high pressure oxidizer cylinder on the right side 3 performs the first expansion of the combined gases.
  • the two high pressure oxidizing pistons 5 and 6 go up a second time while the two-stroke low pressure piston 4 goes back down.
  • the second pair of expansion cylinders that is to say the low-pressure two-stroke cylinder 1 and the right high-pressure oxidizing cylinder 3, in turn performs the second expansion of the combined gases, the corresponding transfer valve 10 being open.
  • the low-pressure two-stroke piston 4 approaches its bottom dead center, the combined gases will be evacuated by the exhaust ports 20 and the residue of these gases will be swept away by the fresh air supplied by means of the ports. intake 21.
  • the left high-pressure oxidizing cylinder 2 in turn performs the second compression of the air-fuel mixture, which will be ignited by means of a spark plug 26 towards the end of this compression.
  • Another embodiment of the two-stage three-cylinder internal combustion engine with three cylinders would be an engine as just described, but where the difference lies in the way of introducing the fuel, which this time will be directly injected towards the end of second compression in the combustion chambers of the high pressure oxidizing cylinders 2, 3 where it will then ignite spontaneously.
  • the power of the radiator 15 as well as the displacement and compression ratios will obviously have to be readjusted.
  • Figures 7a to d show in detail the four phases encountered during two turns of the crankshaft in the two-stage two-stroke internal combustion engine with five cylinders, where the hatched areas in horizontal lines are filled with air only, hatched in small circles are filled with combined gases.
  • the two-stage internal combustion engine which is the subject of the present invention, will find use everywhere, where conventional internal combustion engines are currently used, in particular in road transport.
  • thermodynamic cycle comprises a first compression, a second compression, a first expansion of the combined gases producing a usable mechanical work and finally a second expansion of the gases also producing a usable mechanical work.
  • the air intake and the exhaust of the combined gases are carried out towards the end of the second expansion and at the start of the first compression according to the classic principle of the two-stroke internal combustion engine, where there is a sweep gases combusted by fresh air or air-fuel mixture while the piston is near its bottom dead center.
  • This new cycle makes it possible first of all to increase the overall compression ratio and then the sweeping of the gases combusted by air only. This is also possible in the petrol version, where petrol will be introduced between the compression stages.
  • the high pressure oxidizing cylinders are used only to receive the air or the pre-compressed air-fuel mixture, to compress it the second time, to undergo combustion, to relax the combined gases the first time and finally to discharge these same gases under high pressure through the transfer tube (s).
  • the two-stroke low-pressure cylinder has the sole function of compressing and discharging fresh air, to receive the combined gases under high pressure and to participate in their second expansion, the exhaust of the combined gases followed by the scanning of the remaining gases by the fresh air being produced towards the end of the second trigger when the piston is close to its bottom dead center.
  • the admission of fresh air into the low-pressure two-stroke cylinder is preferably done by means of scanning lights arranged in the cylinder liner so that they will be discovered by the piston towards the end of the stroke. of relaxation.
  • the exhaust will be done either by an exhaust valve fitted in the cylinder head and we will speak of a longitudinal sweep, or else by exhaust lights fitted in the cylinder liner so that the piston discovers them towards the end of the second trigger but before it discovers the scanning lights and we will speak in this case of a transverse scanning.
  • the fresh air will advantageously be under a slight overpressure.
  • This can be achieved either by any blower or by the conventional principle of the two-stroke engine, called the "pump housing" where air is drawn into the housing. It is in this case that the jacket of the low-pressure two-stroke cylinder can be fitted with air intake lights towards the casing. These will only be discovered by the piston when it is close to its bottom dead center position. During its downward stroke, the volume downstream of the piston, that is to say the volume of the casing, decreases and the air therein is slightly compressed.
  • Another advantage of the new two-stroke stepped engine, proposed by the invention, compared to the existing two-stroke engines is the possibility of adjusting the power in several ways.
  • the throttle on the suction used until now, poses problems because, the sweeping pressure becoming too small, it leads to a significant dilution of the fresh air-fuel mixture so as to make combustion difficult.
  • the two-stage internal combustion cycle allows, for example, to regulate the power at by means of a constriction at the level of the delivery pipes for precompressed air or also at the level of the pipes for introducing air or of a precompressed air-fuel mixture.
  • the pressure in the heat exchanger will rise at partial speed which can be exploited to satisfy a sudden demand for power.
  • the sweep is not affected by the power setting.
  • the second compression ratio that is to say the volumetric compression ratio of the high-pressure oxidizing cylinder, is relatively low (3 ... 6).
  • the rebound is distributed over a complete revolution of the crankshaft.
  • Another advantage of the new engine is that the exhaust gases are significantly less hot which will ensure a longer service life of the exhaust system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Moteur à combustion interne à deux temps étagés à pistons alternatifs où le cycle comprend une première compression d'air frais, suivi éventuellement d'un refroidissement, une deuxième compression d'air ou de mélange ou l'injection du combustible (version Diesel) une première détente produisant un travail utile, une deuxième détente produisant également un travail utile et l'échappement des gaz comburés suivi du balayage des gaz restants par l'air frais. Ce moteur comportera de préférence un nombre impair, plus grand ou égal à trois, de cylindres. Ce nouveau moteur permet d'augmenter le rendement énergétique et le rapport puissance/cylindrée par rapport au moteur à combustion interne à quatre temps.

Description

  • La présente invention a pour objet un procédé de réalisation d'un moteur à combustion interne du type comprenant au moins un cylindre qui comporte une chambre de travail de volume variable par le déplacement dans le cylindre d'un piston entre une position de point mort haut et une position de point mort bas, sous l'effet de forces de pression engendrée périodiquement dans ladite chambre, à chaque cylindre étant associés des moyens d'admission et d'évacuation d'un fluide gazeux, le piston de chaque cylindre étant relié à un arbre-vilebrequin du moteur, et un moteur pour la mise en oeuvre de ce procédé.
  • Les moteurs connus de ce type utilisent un cycle thermodynamique soit à deux, soit à quatre temps. Dans un moteur à deux temps, le cylindre est rempli d'un mélange air-combustible quand le piston est proche de son point mort bas. Ensuite en avançant le piston comprime ce mélange et le combustible s'évapore sous l'élévation de la température. Quand le piston arrive proche de son point mort haut, une bougie allume au moyen d'une étincelle le mélange ce qui provoque une brusque élévation de température et de la pression. En reculant, le piston permet aux gaz comburés de se détendre et c'est à ce moment que le travail utilisable est produit. Quand il arrive proche de son point mort bas, les gaz sont évacués par une soupape d'échappement aménagé dans la culasse, et l'on parle du balayage longitudinal, ou par des lumières d'échappement aménagés dans la chemise du cylindre découvertes par le piston, et l'on parle d'un balayage transversal. Les gaz restants sont ensuite balayés par l'arrivée du mélange air-combustible frais, qui est introduit par des lumières de balayage aménagées en bas de la chemise du cylindre et découvertes par le piston un peu plus tard que les lumières d'échappement. Les deux temps sont donc la compression et la détente.
  • Le moteur Diesel à deux temps utilise un principe comparable où la différence réside dans la manière d'introduction du combustible, qui dans ce cas est directement injecté dans l'air comprimé, et chaud par conséquent, et s'enflamme alors spontanément.
  • Dans les deux cas, le rendement énergétique dépend entre autre du rapport volumétrique de compression. Plus celui-ci est élevé, plus le rendement est élevé. Or, ce rapport de compression est limité, dans le cas du moteur à essence,par le risque du détonnement prématuré du mélange, et dans le cas du moteur Diesel entre autre par la nécessité de préserver une chambre de combustion convenable. De toute façon, pour un cycle thermodynamique tel qu'il a été décrit ci-dessus, l'accroissement du rendement devient de plus en plus faible pour une augmentation égale du rapport de compression à partir d'une valeur de 10 à 15 pour ce dernier, et ce sont alors surtout, dans le cas du moteur Diesel, les sollicitations mécaniques qui déterminent le rapport de compression volumétrique critique.
  • Le rendement du cycle à deux temps à allumage commandé est généralement inférieur à celui du cycle à quatre temps, car une perte de combustible est inévitable lors du balayage des gaz comburés par le mélange air-combustible frais. Un autre défaut du cycle à deux temps et à allumage commandé, comparé à celui à quatre temps, est le mauvais fonctionnement à charge partielle, où un étranglement à l'aspiration conduit à une dillution plus grande de la charge fraîche par les gaz comburés lors du balayage ce qui peut rendre la combustion difficile.
  • La présente invention a pour but principal d'augmenter le rendement énergétique du moteur à combustion interne à deux temps et à pistons alternatifs, du type défini plus haut.
  • Pour atteindre ce but, le procédé selon l'invention est caractérisé en ce qu'on utilise au moins un cylindre fonctionnant en cylindre basse pression à deux temps et deux cylindres fonctionnant en cylindres comburants, qu'à chaque course du piston du cylindre basse pression vers son point mort haut le fluide gazeux admis dans celui-ci est refoulé alternativement dans l'un des deux cylindres comburants, que celui-ci est amené à effectuer ensuite successivement des courses d'admission du fluide auquel on a ajouté du combustible, de compression du mélange air-combustible, d'une première détente des gaz comburés, après l'allumage du fluide, et de refoulement des gaz comburés dans le cylindre basse pression au cours de la deuxième course de détente de celui-ci, suivant celle dudit refoulement de l'air frais, en vue d'une deuxième détente des gaz comburés et leur échappement du moteur.
  • Le moteur pour la mise en oeuvre de ce procédé est caractérisé en ce que les pistons des cylindres basse pression et comburants sont reliés à l'arbre-vilebrequin de façon à ce que les pistons des cylindres comburants, d'une part, et le piston du cylindre basse pression, d'autre part, se déplacent dans des directions opposées, la chambre de travail basse pression est susceptible de communiquer avec une voie d'admission de fluide gazeux et une voie d'échappement des gaz comburés et avec la chambre de travail de chaque cylindre comburant, d'une part, par une voie de refoulement de l'air frais dans cette chambre de travail, par l'intermédiaire d'une soupape de refoulement associé au cylindre basse pression et d'une soupape d'introduction associé au cylindre comburant et, d'autre part, par une voie de transvasement des gaz comburés par l'intermédiaire d'une soupape de transvasement associée au cylindre comburant et en ce que les soupapes sont commandées de façon que ladite soupape de refoulement soit ouverte pendant la course du piston du cylindre basse pression vers son point mort haut, simultanément et alternativement avec la soupape d'introduction de l'un des deux cylindres comburants et que la soupape de transvasement d'un cylindre comburant est ouverte pendant la deuxième course du piston du cylindre basse pression vers son point mort bas, après l'admission du fluide gazeux dans ce cylindre.
  • L'invention sera mieux comprise, et d'autres buts, caractéristiques, détails et avantages de celle-ci apparaîtront plus clairement au cours de la description explicative qui va suivre faite en référence aux dessins schématiques annexés donnés uniquement à titre d'exemple illustrant deux modes de réalisation de l'invention, et dans lesquels.
    • La figure 1 est une vue en coupe verticale du bloc moteur d'un premier mode de réalisation à trois cylindres, d'un moteur selon l'invention.
    • La figure 2 est une vue en coupe horizontale du bloc moteur selon la figure 1.
    • Les figures 3a à 3d montrent quatres pases du fonctionnement du moteur selon l'invention représenté à la figure 1.
    • La figure 4 illustre l'aspiration de l'air dans le carter du cylindre basse pression à deux temps ;
    • La figure 5 illustre l'échappement des gaz comburés par le cylindre basse pression à deux temps, dans le cas de la version à balayage transversal.
    • La figure 6 illustre le balayage transversal des gaz comburés restants par l'air dans le cylindre basse pression à deux temps.
    • La figure 7 illustre de façon schématique les quatres phases se déroulant pendant deux tours de rotation du vilebrequin dans un moteur à combustion interne à deux temps et à cinq cylindres, constituant un deuxième mode de réalisation de l'invention.
  • Les figures 1 à 6 sont relatives à un premier mode de réalisation d'un moteur selon l'invention, à savoir un moteur à combustion interne à deux temps étagés par allumage commandé qui est réalisé à l'aide de trois cylindres rangés en ligne. Il comporte deux cylindres comburants haute pression 2, 3 situés aux extrémités du vilebrequin et un cylindre central 1, basse pression et à deux temps. Le volume du cylindre basse pression 1 est supérieure à celle des cylindres comburants 2,3. Un échangeur de chaleur 15 est relié au cylindre basse pression 1 par une tubulure de refoulement d'air précomprimé 12 et sa sortie est relié aux deux cylindres comburants haute pression 2, 3 par les tubulures d'introduction du mélange air-combustible précomprimé 13, 14 respectivement. La tubulure 12 est obturable par une soupape de refoulement 7 associée au cylindre basse pression, tandis que les tubulures 13, 14 sont pourvues de soupapes d'introduction 8, 11 associées aux cylindres comburants 2,3. C'est au niveau de ces tubulures d'introduction 13 et 14 que se fait l'introduction du combustible au moyen d'un dispositif d'injection 25 commandé ou d'un carburateur. Les chambres de travail des cylindres comburants 2, 3 sont reliées à la chambre de travail du cylindre basse pression 1, respectivement par des tubulures de transvasement 16, 17 des gaz comburés. Les tubulures de transvasement 16, 17 sont pourvues respectivement de soupapes de transvasement 9, 10 associées aux cylindres comburants. Les soupapes de transvasement 9 et 10, les soupapes d'introduction d'air ou de mélange air-combustible 8 et 11 ainsi que les bougies d'allumage 26 se trouvent dans la culasse des cylindres comburant haute pression 2 et 3. La chemise du cylindre basse pression 1 présente des lumières d'échappement 20 des gaz comburés et d'admission 22 de l'air frais, reliées respectivement à un collecteur d'échappement des gaz comburés 19 et un collecteur d'admission de l'air frais 18. Le carter basse pression 24, situé en aval du piston 4 du cylindre 1 est une enceinte fermée qui est reliée au moyen des lumières 21 et une tubulure 23 de balayage à la partie en amont du piston basse pression 4.
  • Dans cette configuration des trois cylindres 1 à 3, le cylindre basse pression à deux temps 1 forme avec le cylindre comburant haute pression gauche 2 d'abord une première paire de cylindres comprimants et une première paire de cylindres détendants. Avec le cylindre comburant haute pression droit 3, le cylindre basse pression 1 forme d'abord une deuxième paire de cylindres comprimants et aussi une deuxième paire de cylindres détendants. Ceci ressortira de la description suivante du fonctionnement du moteur, en se référant aux figures 3a à 3d. Ces figures montrent en détail les quatre phases que l'on rencontre lors de deux tours du vilebrequin dans le moteur représenté aux figures 1 et 2. Sur les figures 3a à 3d les zones pourvues de simples points sont des zones remplies de mélange air-combustible et les zones pourvues de petits ronds représentent des zones qui sont remplies de gaz comburés.
  • Fig. 3a) Les pistons 5 et 6 des cylindres comburants haute pression 2 et 3 sont en train de monter, et le piston 4 du cylindre basse pression 1 à deux temps est en train de descendre. La première paire de cylindres détendants, c'est-à-dire les cylindres comburant haute pression gauche 2 et basse pression à deux temps central 1, effectue une deuxième détente des gaz comburés, la soupape de transvasement 9 étant ouverte. Quand le piston basse pression à deux temps 4 s'approche de son point mort bas, les gaz comburés seront évacués par les lumières d'échappement 20 et le résidu de ces gaz sera balayé par l'air frais amené au moyen des lumières d'admission 21. Le cylindre comburant haute pression droit 3 effectue une deuxième compression du mélange air-combustible et la bougie 26 va l'allumer vers la fin de cette compression.
  • Fig. 3b) Les deux pistons comburants haute pression 5 et 6 sont en train de descendre pendant que le piston basse pression à deux temps 4 monte. La première paire de cylindres comprimants, c'est-à-dire le cylindre comburant haute pression droit 2 et le cylindre basse pression à deux temps 1, effectue la première compression, les soupapes de refoulement d'air précomprimé 7 et d'admission du mélange air-ombustible 8 étant ouvertes. L'essence est introduite au niveau de la tubulure d'admission de mélange air-combustible précomprimé 13. Le cylindre comburant haute pression du côté droit 3 effectue la première détente des gaz comburés.
  • Fig. 3c) Les deux pistons comburants haute pression 5 et 6 remontent une deuxième fois pendant que le piston basse pression à deux temps 4 redescend. La deuxième paire de cylindres détendants, c'est-à-dire le cylindre basse pression à deux temps 1 et le cylindre comburant haute pression droit 3, effectue à leur tour la deuxième détente des gaz comburés, la soupape de transvasement 10 correspondante étant ouverte. Quand le piston basse pression à deux temps 4 s'approche de son point mort bas, les gaz comburés seront évacués par les lumières d'échappement 20 et le résidu de ces gaz sera balayé par l'air frais amené au moyen des lumières d'admission 21. Le cylindre comburant haute pression gauche 2 effectue à son tour la deuxième compression du mélange air-combustible, qui sera allumé au moyen d'une bougie 26 vers la fin de cette compression.
  • Fig. 3d) Les pistons comburants haute pression 5 et 6 redescendent à nouveau pendant que le piston basse pression à deux temps remonte. La deuxième paire de cylindres comprimants, c'est-à-dire le cylindre basse pression à deux temps 1 et le cylindre comburant haute pression droit 3, effectue maintenant la première compression, les soupapes de refoulement d'air précomprimé 7 et d'admission de mélange air-combustible précomprimé correspondante 11 étant ouvertes. L'essence est introduite au niveau de la tubulure d'admission de mélange air-cimbustible précomprimé 14. Le cylindre comburant haute pression gauche 2 effectue la première détente des gaz comburés.
    La phase suivante est celle illustrée à la figure 3a).
  • Une autre réalisation du moteur à combustion interne à deux temps étagés à trois cylindres serait un moteur tel qu'il vient d'être décrit, mais où la différence réside dans la façon d'introduire le combustible, qui cette fois sera directement injecté vers la fin de la deuxième compression aux chambres à combustion des cylindres comburants haute pression 2, 3 où il s'enflammera alors spontanément. La puissance du radiateur 15 ainsi que les rapports des cylindrées et de compression devront être évidemment réajustrés.
  • De cette réalisation du moteur à trois cylindres, on déduit, en se référant à la figure 7, celle à cinq cylindres en juxtaposant deux moteurs trois cylindres en les rangeant en ligne de façon à ce que les deux cylindres comburants haute pression centraux travaillent parfaitement en phase. On peut alors les "fusionner" en un unique cylindre comburant haute pression central 3, qui aura alors une cylindrée de préférence deux fois plus grande que celle des deux cylindres comburants haute pression se trouvant aux extrémités du vilebrequin 2. Le cylindre comburant haute pression central 3 communiquera avec les deux cylindres basse pression à deux temps avoisinant 1 au moyen de soupapes 10 et tubulures 17 de transvasement. La deuxième détente des gaz comburés se trouvant dans ce cylindre 3 se fera en les transférant simultanémant vers les deux cylindres basse pression à deux temps adjacents 1. Les figures 7a à d reprennent en détail les quatres phases que l'on rencontre lors de deux tours du vilebrequin dans le moteur à combustion interne à deux temps étagés à cinq cylindres, où les zones hachurées en traits horizontaux sont remplies d'air uniquement, hachurées en petits ronds sont remplies de gaz comburés.
  • Cette façon de procéder n'est évidemment pas limitée à cinq cylindres et on peut ainsi créer des moteurs à combustion interne à deux temps étagés de 5, 7, 9, ... cylindres. Toutes ces réalisations se prêtent aux deux types d'allumage, spontané et commandé.
  • Toutes ces versions du moteur à combustion interne à deux temps étagés se prêtent évidemment aussi à un balayage longitudinal, où les lumières d'échappement seront alors remplacées par au moins une soupape d'échappement aménagée dans la culasse du cylindre basse pression à deux temps.
  • Le moteur à combustion interne à deux temps étagés, objet de la présente invention, trouvera une utilisation partout, où l'on utilise actuellement des moteurs à combustion interne classiques, notamment dans le transport routier.
  • On constate que les moteurs à combustion interne à deux temps et à pistons alternatifs, qui viennent d'être décrits, à titre d'exemple permettent d'augmenter le rendement énergétique du moteur à combustion interne à deux temps et à piston alternatif par rapport aux moteurs connus. Pour atteindre ce but, on réalise un cycle thermodynamique à deux temps étagés. Ce cycle comporte une première compression, une deuxième compression, une première détente des gaz comburés produisant un travail mécanique utilisable et finalement une deuxième détente des gaz produisant également un travail mécanique utilisable. L'aspiration d'air et l'échappement des gaz comburés sont réalisés vers la fin de la deuxième détente et au début de la première compression suivant le principe classique du moteur à combustion interne à deux temps, où l'on assiste à un balayage des gaz comburés par l'air ou le mélange air-combustible frais pendant que le piston se trouve proche de son point mort bas. Ce nouveau cycle permet d'abord d'augmenter le rapport global de compression et puis le balayage des gaz comburés par l'air uniquement. Ceci est également possible dans la version essence, où l'on introduira l'essence entre les étages de compression.
  • Dans le cas de la version essence, l'augmentation du rapport global de compression nécessite un refroidissement intensif entre les deux étages de compression afin de ne pas courir le risque d'un détonnement prématuré du mélange air-combustible.
  • Les cylindres comburants haute pression servent uniquement à accueillir l'air ou le mélange air-combustible précomprimé, à le comprimer la deuxième fois, à subir la combustion, à détendre les gaz comburés la première fois et finalement à refouler ces mêmes gaz sous haute pression à travers la ou les tubulures de transvasement.
  • Le cylindre basse pression à deux temps a pour unique fonction de comprimer et de refouler l'air frais, à accueillir les gaz comburés sous haute pression et à participer à leur deuxième détente, l'échappement des gaz comburés suivi du balayage des gaz restants par l'air frais se faisant vers la fin de la deuxième détente quand le piston se trouve proche de son point mort bas.
  • L'admission de l'air frais dans le cylindre basse pression à deux temps se fait de préférence au moyen de lumières de balayage aménagées dans la chemise du cylindre de façon à ce qu'elles seront découvertes par le piston vers la fin de la course de détente. L'échappement se fera soit par une soupape d'échappement aménagée dans la culasse et l'on parlera d'un balayage longitudinal, ou bien par des lumières d'échappement aménagées dans la chemise du cylindre de façon à ce que le piston les découvre vers la fin de la deuxième détente mais avant qu'il découvre les lumières de balayage et l'on parlera dans ce cas d'un balayage transversal.
  • Pour que le balayage se produise, l'air frais sera avantageusement sous une légère surpression. Ceci peut être réalisé soit par une soufflante quelconque ou par le principe classique du moteur à deux temps, appelé le "carter-pompe" où l'air est aspiré dans le carter. C'est dans ce cas que la chemise du cylindre basse pression à deux temps peut être équipé de lumières d'admission d'air vers le carter. Celles-ci seront uniquement découvertes par le piston quand celui-ci sera proche de sa position point mort bas. Lors de sa course descendante, le volume en aval du piston, c'est-à-dire le volume du carter, diminue et l'air s'y trouvant est légèrement comprimé.
  • Le principal avantage par rapport aux moteurs existants est un accroissement du rendement énergétique. Pour des puissances d'échangeurs et des pressions maximales qui semblent tout à fait admissibles, les calculs promettent un accroissement de ce rendement d'environ 10 à 20 % dans le cas du moteur à essence. Ce moteur hérite un avantage du moteur classique à deux temps, qui est une puissance spécifique, c'est-à-dire un rapport puissance/cylindrée notable, sans pour autant avoir le grand défaut des moteurs à deux temps existants, qui est l'entraînement de combustible vers le collecteur d'échappement lors du balayage.
  • Un autre avantage du nouveau moteur à deux temps étagés, proposé par l'invention, par rapport au moteurs à deux temps existants est la possibilité de régler la puissance de plusieurs façons. En effet, l'étranglement à l'aspiration, utilisé jusqu'à présent, pose des problèmes car, la pression de balayage devenant trop petite, il conduit à une dillution importante du mélange air-combustible frais de façon à rendre la combustion difficile. Le cycle à combustion interne à deux temps étagés permet, par exemple, de régler la puissance au moyen d'un étranglement au niveau des tubulures de refoulement d'air précomprimé ou encore au niveau des tubulures d'introduction d'air ou de mélange air-combustible précomprimé. Dans le dernier cas, la pression dans l'échangeur de chaleur va monter à régime partiel ce qui peut être exploité pour satisfaire une demande brusque de puissance. Dans les deux cas, le balayage n'est pas affecté par le réglage de la puissance.
  • Le deuxième taux de compression, c'est-à-dire le rapport de compression volumétrique du cylindre comburant haute pression est relativement faible (3 ... 6). La détente est répartie sur un tour complet du vilebrequin. Ces deux facteurs diminuent sensiblement l'influence défaborable d'un temps de combustion non instantanée. La compacité de la chambre à combustion, qui est en fait l'espace mort du cylindre comburant à haute pression, dont la cylindrée est relativement petite et dont le rapport de compression est faible, tout d'abord limite, malgré des pressions maximales importantes, les contraintes mécaniques et puis évite une perte thermique exagérée. Elle contribue à éviter le cliquetis de la combustion à essence et probablement à augmenter la richesse de la combustion spontanée. Ce dernier avantage est aussi dû au second taux de compression faible qui évite une chute trop rapide de la pression et de la température après que le piston ait dépassé le point mort haut.
  • Un autre avantage du nouveau moteur est que les gaz d'échappement sont nettement moins chauds ce qui assurera une durée de vie plus longue du système d'échappement.
  • Encore un autre avantage supplémentaire réside dans le fait que le cylindre basse pression ne subit pas des combustions, donc pas d'élévations brusques de pression et de température, ce qui permet l'utilisation de matériaux autres que ceux des cylindres actuels, qui pourraient être avantageux entre autre au niveau de la lubrification et supporter même le frottement "sec".

Claims (8)

1. Procédé de réalisation d'un moteur à combustion interne du type comprenant au moins un cylindre qui comporte une chambre de travail de volume variable par le déplacement dans le cylindre d'un piston entre une position de point mort haut et une position de point mort bas, sous l'effet de forces de pression engendrées périodiquement dans ladite chambre, à chaque cylindre étant associés des moyens d'admission d'un fluide gazeux et d'évacuation des gaz comburés, le piston de chaque cylindre étant relié à un arbre-vilebrequin du moteur, caractérisé en ce que l'on utilise au moins un cylindre (1) fonctionnant en cylindre basse pression à deux temps et deux cylindres (2, 3) fonctionnant en cylindres comburants, qu'à chaque course du piston du cylindre basse pression vers son point mort haut, le fluide gazeux admis dans celui-ci est refoulé alternativement dans l'un des deux cylindres comburants, que celui-ci est amené a effectuer ensuite successivement des courses d'admission dudit fluide comprenant du combustible ou non, de compression de ce fluide, une première détente des gaz comburés, après l'allumage de ce fluide ou après la combustion spontanée de combustible injecté vers la fin de la course de compression, et de refoulement des gaz comburés dans le cylindre basse presion au cours de la deuxième course de détente de celui-ci, suivant celle dudit refoulement du fluide, en vue d'une deuxième détente des gaz comburés et de leur échappement du moteur.
2. Moteur pour la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce que les pistons (4, 5, 6) des cylindres basse pression (1) et comburants (2, 3) sont reliés à l'arbre- vilebrequin de façon à ce que les pistons (5,6) des cylindres comburants (2,3), d'une part, et le piston (4) du cylindre basse pression (1), d'autre part, se déplacent dans des sens opposés, la chambre de travail du cylindre basse pression (1) est susceptible de communiquer avec une voie d'admission (18) de fluide gazeux et une voie d'échappement (19) des gaz comburés et avec la chambre de travail de chaque cylindre comburant (2, 3), d'une part, par une voie de refoulement (12,13; 12,14) du fluide dans cette chambre de travail, par l'intermédiaire d'une soupape de refoulement (7) associée au cylindre basse pression (1) et d'une soupape d'introduction (8 ou 11) associée au cylindre comburant (2 ou 3) et, d'autre part, par une voie de transvasement (16 ou 17) des gaz comburés par l'intermédiaire d'une soupape de transvasement (9 ou 10) associée au cylindre comburant (2 ou 3), et en ce que les soupapes (7 à 11) sont commandées de façon que ladite soupape de refoulement (7) soit ouverte pendant la course du piston (4) du cylindre basse pression (1) vers son point mort haut, simultanément avec la soupape d'introduction (8 ou 11) de l'un des deux cylindres comburants (2 ou 3) et que la soupape de transvasement (9 ou 10) de ce cylindre comburant (2 ou 3) est ouverte pendant la deuxième course du piston (4) du cylindre basse pression (1) vers son point mort bas, après l'admission du fluide dans ce cylindre.
3. Moteur selon la revendication 2,; caractérisé en ce qu'il comporte trois cylindres (1 à 3) rangés en ligne, les deux cylindres comburants haute pression (2 et 3) se trouvant aux extrémités de l'arbre-vilebrequin auquel ils sont reliés.
4. Moteur selon la revendication 2, caractérisé en ce qu'il comprend cinq cylindres rangés en ligne, qui sont trois cylindres comburants haute pression et deux cylindres basse pression à deux temps, deux cylindres comburants haute pression se trouvant aux extrémités de l'arbre-vilbrequin auquel ils sont reliés, le troisième cylindre comburant haute pression se trouvant au milieu et étant susceptible de communiquer avec les deux cylindres basse pression à deux temps adjacents par respectivement au moins une soupape et tubulure de transvasement de façon à transférer, lors de la deuxième détente, les gaz comburés contenus dans le cylindre comburant haute pression central dans les deux cylindres basse pression qui lui sont associés et cela d'une manière simultanée.
5. Moteur selon la revendication 2, caractérisé en ce qu'il comprend un nombre impair, plus grand que cinq, de cylindres rangés en ligne de façon qu'aux extrémités du vilebrequin se trouvent deux cylindres comburants haute pression et de façon à ce que les autres cylindres comburants se trouvent entre deux cylindres basse pression à deux temps, et soient susceptibles de communiquer avec les deux cylindres basse pression à deux temps adjacents par respectivement au moins une soupape et tubulure de transvasement de façon à transférer, lors de la deuxième détente, les gaz comburés contenus dans le cylindre comburant haute pression dans les deux cylindres basse pression qui lui sont associés et cela d'une manière simultanée.
6. Moteur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un échangeur de chaleur (15) dont les entrées (12) sont susceptibles de communiquer avec les chambres de travail des cylindres basse pression à deux temps (1), par les soupapes de refoulement précitées (7), et par ses sorties (13, 14) avec les chambres de travail des cylindres comburants haute pression (2, 3), par l'intermédiaire des soupapes précitées d'introduction (8, 11).
7. Moteur selon l'une des revendications précédentes, caractérisé en ce que les passages de commutation des chambres de travail des cylindres comburants haute pression (2,3) comportent des moyens d'introduction du combustible dans le fluide précomprimé, tels que les moyens d'injection commandée ou des moyens carburateurs, les chambres de travail des cylindres comburants haute pression étant équipées par un moyen (26) pouvant allumer le mélange air-combustible.
8. Moteur selon les revendications 1 à 6, caractérisé en ce que les chambres de travail des cylindres comburants haute pression (2, 3) comportent des moyens d'injection directe du combustible dans l'air comprimé vers la fin de la compression dans les cylindres, de manière que le combustible s'enflamme spontanément.
EP89870196A 1988-12-30 1989-12-01 Moteur à combustion interne Expired - Lifetime EP0376909B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT8989870196T ATE105606T1 (de) 1988-12-30 1989-12-01 Brennkraftmaschine.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE8801451 1988-12-30
BE8801451A BE1002364A4 (fr) 1988-12-30 1988-12-30 Moteur a combustion interne a deux temps etages.

Publications (2)

Publication Number Publication Date
EP0376909A1 true EP0376909A1 (fr) 1990-07-04
EP0376909B1 EP0376909B1 (fr) 1994-05-11

Family

ID=3883783

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89870196A Expired - Lifetime EP0376909B1 (fr) 1988-12-30 1989-12-01 Moteur à combustion interne

Country Status (5)

Country Link
US (1) US5072589A (fr)
EP (1) EP0376909B1 (fr)
AT (1) ATE105606T1 (fr)
BE (1) BE1002364A4 (fr)
DE (1) DE68915262D1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030017A1 (fr) * 1997-12-05 1999-06-17 Marek Drosio Moteur a combustion interne
WO2008101495A3 (fr) * 2007-02-22 2008-10-09 Seneca S A Moteur à combustion interne
CN101225767B (zh) * 2008-02-03 2012-09-19 浙江大学 嵌套式气动/内燃混合动力发动机
FR3001765A1 (fr) * 2013-02-07 2014-08-08 Andre Chaneac Moteurs trois temps

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265564A (en) * 1989-06-16 1993-11-30 Dullaway Glen A Reciprocating piston engine with pumping and power cylinders
EP0892162B1 (fr) * 1991-04-01 2002-02-20 Caterpillar Inc. Moteur à combustion interne à compression double et à expansion double
US5499605A (en) * 1995-03-13 1996-03-19 Southwest Research Institute Regenerative internal combustion engine
US5566549A (en) * 1995-06-05 1996-10-22 Caterpillar Inc. In-line engines having residual cycles and method of operation
US6318310B1 (en) 1999-08-05 2001-11-20 Caterpillar Inc. Internal combustion engine
AU7091100A (en) 1999-08-31 2001-03-26 Richard Patton Internal combustion engine with regenerator and hot air ignition
US7004115B2 (en) * 1999-08-31 2006-02-28 Richard Patton Internal combustion engine with regenerator, hot air ignition, and supercharger-based engine control
US7219630B2 (en) * 1999-08-31 2007-05-22 Richard Patton Internal combustion engine with regenerator, hot air ignition, and naturally aspirated engine control
US6606970B2 (en) 1999-08-31 2003-08-19 Richard Patton Adiabatic internal combustion engine with regenerator and hot air ignition
BE1013791A5 (fr) * 2000-10-26 2002-08-06 Gerhard Schmitz Moteur a combustion interne a cinq temps.
US20040099887A1 (en) * 2001-10-31 2004-05-27 Hazelton Lloyd R. Engine that captures additional power from wasted energy
CA2482336A1 (fr) * 2002-02-28 2003-09-12 Nikolay Shkolnik Systeme generateur a combustion interne et a piston a liquide
JP4964598B2 (ja) 2004-01-12 2012-07-04 リキッドピストン, インコーポレイテッド 混成サイクル燃焼エンジンおよび方法
US7273023B2 (en) * 2005-03-11 2007-09-25 Tour Engine, Inc. Steam enhanced double piston cycle engine
CN101548082B (zh) * 2005-03-11 2013-01-23 托尔发动机股份有限公司 双活塞循环发动机
US7143725B1 (en) 2005-11-22 2006-12-05 Lung Tan Hu Dual six-stroke self-cooling internal combustion engine
CN100360773C (zh) * 2006-04-06 2008-01-09 郑哲立 超高增压双循环变排量内燃机
US7909013B2 (en) 2006-08-02 2011-03-22 Liquidpiston, Inc. Hybrid cycle rotary engine
US7937943B2 (en) * 2006-12-22 2011-05-10 Yiding Cao Heat engines
US7634988B1 (en) * 2007-04-26 2009-12-22 Salminen Reijo K Internal combustion engine
US20090049822A1 (en) * 2007-08-23 2009-02-26 James Michael Fichera Method, apparatus and system for thermal regeneration
CN101225765B (zh) * 2008-02-03 2011-11-09 谢声利 多缸联动复合内燃机
US8449270B2 (en) * 2008-04-02 2013-05-28 Frank Michael Washko Hydraulic powertrain system
US8714119B2 (en) * 2008-06-05 2014-05-06 Stuart B. Pett, Jr. Parallel cycle internal combustion engine with double headed, double sided piston arrangement
US8499727B1 (en) 2008-06-05 2013-08-06 Stuart B. Pett, Jr. Parallel cycle internal combustion engine
CA2732810A1 (fr) 2008-08-04 2010-02-11 Liquidpiston, Inc. Moteurs et procedes d'addition de chaleur isochore
WO2010036994A1 (fr) * 2008-09-26 2010-04-01 Voisin Robert D Entraînement d’un moteur à combustion interne
US8646421B2 (en) * 2009-10-23 2014-02-11 GM Global Technology Operations LLC Engine with internal exhaust gas recirculation and method thereof
US8381692B2 (en) * 2010-01-29 2013-02-26 John J. Islas Internal combustion engine with exhaust-phase power extraction serving cylinder pair(s)
DE102010015698A1 (de) * 2010-04-16 2011-10-20 Seneca International Ag Brennkraftmotor
DE102010025050A1 (de) * 2010-06-18 2011-12-22 Seneca International Ag Brennkraftmotor
DE102010025051A1 (de) * 2010-06-18 2011-12-22 Seneca International Ag Brennkraftmotor
ITRM20100432A1 (it) * 2010-08-03 2012-02-04 Stefano Grillo Sistema di alimentazione e sovralimentazione per motori a scoppio.
NO332861B1 (no) * 2010-12-10 2013-01-28 Viking Heat Engines As Anordning og metode for energiforsyning ved kraftvarmeverksystem til en bygning eller en farkost
EP3173579B1 (fr) 2011-03-29 2019-05-08 LiquidPiston, Inc. Moteur à rotor cycloïdal
US8607566B2 (en) 2011-04-15 2013-12-17 GM Global Technology Operations LLC Internal combustion engine with emission treatment interposed between two expansion phases
CN105008666B (zh) 2013-01-25 2018-12-04 液体活塞公司 空气冷却式转子发动机
US8910613B2 (en) * 2013-03-14 2014-12-16 Kurt Amplatz Internal combustion engine
US8904987B2 (en) * 2013-04-26 2014-12-09 Gary G. Gebeau Supercharged engine design
US9494075B2 (en) * 2014-03-07 2016-11-15 Filip Kristani Four-cycle internal combustion engine with pre-stage cooled compression
KR101786199B1 (ko) * 2015-09-11 2017-10-17 현대자동차주식회사 복합사이클 연소제어방식 3기통 엔진 및 제어방법
AT518217A1 (de) * 2015-12-15 2017-08-15 Ing Markus Dornauer Dipl Nutzung von Abgasenthalpie beim Zweitakt-Dieselmotor
JP6450475B2 (ja) * 2015-12-17 2019-01-09 本田技研工業株式会社 内燃機関
US20170306839A1 (en) * 2016-04-20 2017-10-26 Raymond F. Lippitt Four cylinder engine with shared power event
EP3516188B1 (fr) * 2016-09-23 2020-10-28 Volvo Truck Corporation Procédé de commande d'un système de moteur à combustion interne
DE102016122855A1 (de) * 2016-11-28 2018-05-30 Gerd Bauer Ottomotor mit Folgezylindern
US10830128B2 (en) * 2017-02-15 2020-11-10 Roland Clark Two-stroke engine having fuel/air transfer piston
US10865717B2 (en) * 2018-06-05 2020-12-15 Alexey TYSHKO Dual mode internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR771168A (fr) * 1933-04-03 1934-10-02 Perfectionnements apportés aux moteurs à explosion ou à combustion interne
GB585391A (en) * 1942-03-16 1947-02-06 Daniel Michel Weigel Improvements in and relating to internal combustion engines
BE893338A (nl) * 1982-05-28 1982-09-16 Gijbels Peter H Verbrandingsmotor met konstante verbrandingsruimte
EP0200714A2 (fr) * 1985-04-02 1986-11-05 Dr. Brücker & Zeman SOFT COMBUSTION SYSTEMS Gesellschaft bürgerlichen Rechts Moteur à pistons alternatifs à combustion interne
EP0302042A1 (fr) * 1987-07-30 1989-02-01 Gerhard Schmitz Moteur à combustion interne à six temps

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1325810A (en) * 1919-12-23 Multiple-expansion internal-combustion engine
DE362855C (de) * 1922-11-02 Hinselmann Geb Seitenkipper fuer Foerderwagen u. dgl.
US1347087A (en) * 1918-12-16 1920-07-20 Waldo G Gernandt Compound quick-combustion engine
FR614873A (fr) * 1926-04-21 1926-12-24 Automobiles Delahaye Soc D Perfectionnements aux moteurs à combustion interne
DE664611C (de) * 1934-06-29 1938-08-31 Mitsubishi Heavy Ind Ltd Aus wenigstens zwei Viertakthochdruckzylindern und wenigstens einem gemeinsamen Zweitaktniederdruckzylinder bestehende Verbundbrennkraftmaschine
DE697682C (de) * 1938-01-06 1940-10-19 Raul Pateras Pescara ndestens drei Zylindern, von denenmindestens ein Zylinder ein Brennkraftzylinder ist

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR771168A (fr) * 1933-04-03 1934-10-02 Perfectionnements apportés aux moteurs à explosion ou à combustion interne
GB585391A (en) * 1942-03-16 1947-02-06 Daniel Michel Weigel Improvements in and relating to internal combustion engines
BE893338A (nl) * 1982-05-28 1982-09-16 Gijbels Peter H Verbrandingsmotor met konstante verbrandingsruimte
EP0200714A2 (fr) * 1985-04-02 1986-11-05 Dr. Brücker & Zeman SOFT COMBUSTION SYSTEMS Gesellschaft bürgerlichen Rechts Moteur à pistons alternatifs à combustion interne
EP0302042A1 (fr) * 1987-07-30 1989-02-01 Gerhard Schmitz Moteur à combustion interne à six temps

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999030017A1 (fr) * 1997-12-05 1999-06-17 Marek Drosio Moteur a combustion interne
WO2008101495A3 (fr) * 2007-02-22 2008-10-09 Seneca S A Moteur à combustion interne
CN101225767B (zh) * 2008-02-03 2012-09-19 浙江大学 嵌套式气动/内燃混合动力发动机
FR3001765A1 (fr) * 2013-02-07 2014-08-08 Andre Chaneac Moteurs trois temps

Also Published As

Publication number Publication date
DE68915262D1 (de) 1994-06-16
BE1002364A4 (fr) 1991-01-15
US5072589A (en) 1991-12-17
ATE105606T1 (de) 1994-05-15
EP0376909B1 (fr) 1994-05-11

Similar Documents

Publication Publication Date Title
EP0376909B1 (fr) Moteur à combustion interne
BE1013791A5 (fr) Moteur a combustion interne a cinq temps.
EP0302042B1 (fr) Moteur à combustion interne à six temps
EP1084334B1 (fr) Procede de fonctionnement et dispositif de moteur a injection d'air comprime additionnel fonctionnat en mono-energie, ou en bi-energie bi ou tri modes d'alimentation
US6199369B1 (en) Separate process engine
FR2748776A1 (fr) Procede de moteur a combustion interne cyclique a chambre de combustion independante a volume constant
FR2544384A1 (fr) Turbomoteur compound perfectionne
FR2485087A1 (fr) Moteur a combustion interne
FR2965581A1 (fr) Moteur a chambre active incluse mono et/ou bi energie a air comprime et/ou a energie additionnelle
US20110036324A1 (en) DEV cycle engine
CA2324102C (fr) Moteur diesel a forte puissance volumique
EP0358655B1 (fr) Procede et dispositif d'amenagement d'un moteur a deux temps a post-remplissage
FR2957631A1 (fr) Element de moteur a combustion interne a detente prolongee et moteur a combustion interne comprenant un ou plusieurs de ces elements
RU2300650C1 (ru) Дизельный двигатель
JP2003516494A (ja) Z−機関
FR2538031A2 (fr) Moteur deux temps a pistons complementaires et chambres independantes en zone de point mort haut
RU2167315C2 (ru) Термодинамический цикл для двигателя внутреннего сгорания и устройство для его осуществления
FR3077095A1 (fr) Moteur a combustion interne a cycle divise muni d'une chambre de post-combustion
WO1986000374A1 (fr) Procede d'amelioration du fonctionnement d'un moteur a combustion interne a deux temps
KR20080038273A (ko) 증기 강화 이중 피스톤 싸이클 엔진
RU2066773C1 (ru) Способ работы двигателя внутреннего сгорания
FR3059714A1 (fr) Moteur a combustion interne a detente separee dans deux cylindres de detente
FR2583108A2 (fr) Procede d'amelioration du fonctionnement d'un moteur a combustion interne, a cycle court, et moteur a combustion interne a fonctionnement ameliore a cycle court et a structure simplifiee
FR3085725A1 (fr) Moteur a combustion externe a cycle divise
FR2668543A1 (fr) Moteur a gaz chaud.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901105

17Q First examination report despatched

Effective date: 19920110

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHMITZ, GERHARD

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19940511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19940511

Ref country code: GB

Effective date: 19940511

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940511

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940511

Ref country code: AT

Effective date: 19940511

Ref country code: DE

Effective date: 19940511

Ref country code: NL

Effective date: 19940511

REF Corresponds to:

Ref document number: 105606

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68915262

Country of ref document: DE

Date of ref document: 19940616

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19940511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19941201

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19941228

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19951231

Ref country code: CH

Effective date: 19951231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021026

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030115

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

BERE Be: lapsed

Owner name: *SCHMITZ GERHARD

Effective date: 20031231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST