WO1986000374A1 - Procede d'amelioration du fonctionnement d'un moteur a combustion interne a deux temps - Google Patents

Procede d'amelioration du fonctionnement d'un moteur a combustion interne a deux temps Download PDF

Info

Publication number
WO1986000374A1
WO1986000374A1 PCT/FR1985/000156 FR8500156W WO8600374A1 WO 1986000374 A1 WO1986000374 A1 WO 1986000374A1 FR 8500156 W FR8500156 W FR 8500156W WO 8600374 A1 WO8600374 A1 WO 8600374A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
intake
exhaust
air
orifice
Prior art date
Application number
PCT/FR1985/000156
Other languages
English (en)
Inventor
Patrick Guy Hazera
Paul Henri Hazera
Original Assignee
Hazera-Nadvornik, Sylvie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazera-Nadvornik, Sylvie filed Critical Hazera-Nadvornik, Sylvie
Publication of WO1986000374A1 publication Critical patent/WO1986000374A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/04Engines with prolonged expansion in main cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention essentially relates to a process for improving the operation of an internal combustion engine, with short cycle, and an internal combustion engine with improved operation, with short cycle, and simplified structure.
  • any internal combustion engine comprises at least one cylinder, defining a combustion chamber, provided with at least one air intake orifice and at least one gas exhaust orifice. combustion, said orifices being arranged in the side wall of the cylinder, a piston with alternating movement between a top dead center (TDC) and a bottom dead center (PMB),
  • TDC top dead center
  • PMB bottom dead center
  • the piston is connected to a crankshaft by a connecting rod system classic so as to transform a continuous alternating movement into a rotary movement.
  • Fuel injection means are also provided, this injection usually being carried out in the intake air.
  • This fuel can be of the light type, gasoline type, of the heavy type gas oil, oil etc.
  • the operating cycle includes carrying out, during a first ascent of the piston, a premixing of air and fuel admitted at the bottom of the cylinder.
  • a transfer takes place from the premix chamber in the combustion chamber through orifices provided in the piston and simultaneously an evacuation of the burnt gases from the combustion chamber.
  • the compression and explosion of the transferred gases takes place and the cycle begins again. It can thus be seen that during the evacuation of the burnt gases from the combustion chamber, the transfer of the air and fuel premixes takes place from the premix chamber into the combustion chamber . This necessarily results in an inadmissible significant loss of fuel passing directly to the exhaust at the time of transfer.
  • the advantage of two-stroke engines lies in their power, their simplicity of operation, their rise in speed and the number of moving parts very reduced.
  • Fuel injection is always carried out in the air before the compression piston so that this piston compresses an air-fuel mixture.
  • the motors described in this document have the disadvantage of being still relatively complicated by the presence of a special air compression piston, which is therefore very expensive.
  • the torque / power relationship of these motors taking into account the operating conditions described in this document, is average or poor.
  • the present invention therefore aims to remedy the drawbacks of the prior art by providing a solution combining the advantages of the four-stroke engine with those of the two-stroke engine, without their respective drawbacks.
  • a method of improving the operation of an internal combustion engine, with short cycle comprising at least one cylinder, defining a combustion chamber, provided with at least one inlet orifice. air and at least one combustion gas exhaust orifice, said orifices being arranged in the side wall of the cylinder, a piston with reciprocating movement between a top dead center and a bottom dead center being arranged in said cylinder and closing or releasing during its movement each of said orifices, said piston being connected to a crankshaft by a conventional connecting rod system, comprising compression and an explosion each time the piston is raised to top dead center, an injection of air into the pressurized cylinder, called supercharged injection, and fuel injection, characterized in that, with a view to radically simplifying the design of the engine, in particular by limiting the min imum moving parts, each cylinder is provided without valve, shutter, regulator or the like so that the intake port and the exhaust port are freely open, air is continuously injected under pressure in direction of the intake port,
  • the angle of rotation of the crankshaft during which the intake orifice is released by the piston is between approximately 200 and 220 °, all being symmetrical with respect to the bottom dead center.
  • the angle of rotation of the crankshaft during which the exhaust orifice is released by the piston is approximately 10 to 60 ° less, preferably approximately 20 to 40 °, at the angle of rotation of the crankshaft during which the air intake orifice is released by the piston.
  • the angle of rotation of the crankshaft during which the exhaust orifice is released by the piston is between 170 and less than 180 ° while being symmetrical with respect to at bottom dead center.
  • the total cross-section of the air intake opening (s) is provided so that it is substantially equal to twice that of the exhaust opening (s).
  • the piston is located in the vicinity of the lower edge of the exhaust port, and preferably also simultaneously of the lower edge of the intake port.
  • the air is compressed using a compressor or booster, preferably driven by the crankshaft so that the air pressure is a function of the speed motor rotation.
  • the ratio of the height of each intake orifice relative to the stroke of the piston is between approximately 0.45 and approximately 0.65 while the ratio of the height of each exhaust port relative to the stroke of the piston is between about 0.40 and about 0.55, the ratio relating to the exhaust port being less than the ratio relating to the intake port.
  • an internal combustion engine with improved operation, with short cycle, and with simplified structure comprising at least one cylinder, defining a combustion chamber, provided with at least one intake inlet. air, of at least one combustion gas exhaust orifice, said orifices being arranged in the side wall of the cylinder, a piston with reciprocating movement between a top dead center and a bottom dead center being arranged in said cylinder, said piston being connected to a town shaft by a conventional connecting rod system, the intake port being offset upwards from the cylinder relative to the exhaust port, air injection means being provided providing injection of pressurized air in the cylinder, called supercharged injection, and fuel injection means are also provided, characterized in that each cylinder is devoid of valve, shutter or regulator or the like, so that the intake port and the exhaust port are permanently freely open, the fuel injection means open directly into the cylinder independently of the air injection means which permanently inject air in the direction of the intake orifice, the angle of rotation of the crankshaft during which the inlet port is cleared by
  • the invention makes it possible to provide an engine without valve, shutter, regulator or the like and without crankcase pressure.
  • a short cycle engine that is to say comprising a cycle which is less than that of a two-stroke engine, as will be understood from the diagram of the engine operating principle. Thanks to these characteristics, a maximum of the substantially flat torque is unexpectedly obtained for a person skilled in the art like a four-stroke engine. On the other hand, the ramp-up is rapid as for two-stroke engines.
  • FIG. 1 shows a partial vertical schematic section of the engine according to the invention at a cylinder;
  • FIG. 2 shows the operating principle diagram of this engine;
  • the internal combustion engine comprises at least one cylinder 1, defining a combustion chamber 2, provided with at least one air intake orifice 6 and at least one orifice exhaust 7 of the combustion gases, said orifices being arranged in the side wall of cylinder 1, a reciprocating piston between a top dead center and a bottom dead center being arranged in said cylinder.
  • the piston 3 is connected to a crankshaft 4 by a conventional connecting rod system 5.
  • the air intake port 6 is offset towards the top of the cylinder 1 relative to the exhaust port 7.
  • the intake ports 6 and exhaust 7 are located at a certain distance from the top or top of the cylinder.
  • several intake ports 6 are provided located in the upper two thirds of the cylinder.
  • This engine also includes air injection means 10 injecting pressurized air into the cylinder 1, called supercharged injection.
  • air injection means 10 can be constituted by a conventional compressor or booster or preferably according to the invention, these air compression means are driven by the crankshaft and therefore deliver an air pressure depending on the speed. motor rotation.
  • each cylinder 1 is devoid of valve, shutter or regulator or the like so that the intake port 6 and the exhaust port 7 are permanently freely open as is understandable from the consideration of the figure 1.
  • the air injection means 10 continuously supply pressurized air in the direction of the intake orifice 6.
  • the angle of rotation of the Villebrequin during which the intake orifice is released by the piston is greater than the angle of rotation of the Villebrequin during which the exhaust orifice is released by the piston.
  • the engine according to the invention begins the admission of air before the exhaust and ends the admission of air after The exhaust.
  • the angle of rotation of the crankshaft during which the intake port is released by the piston is expected to be about 10 to about 60 ° greater than the angle of rotation of the crankshaft during which the exhaust port is released by the piston.
  • the angle of rotation of the crankshaft during which the intake orifice is released by the piston is greater than 180 °.
  • the angle of rotation of the .villebrequin during which the intake orifice is cleared by the piston is understood between 200 and 220 ° and is arranged symmetrically with respect to bottom dead center while the angle of rotation of the crankshaft during which the exhaust orifice is released by the piston is between approximately 170 ° and less than 180 ° .
  • the lower edge 7a of the exhaust orifice 7 is provided so as to be in the vicinity of the bottom dead center of the piston 3. Furthermore, preferably, the orifice intake 6 at its lower edge 6a which is also in the vicinity of the bottom dead center of the piston 3.
  • the total section of the air intake opening (s) 6 is substantially equal to twice that of the exhaust opening (s) 7.
  • the ratio of the height of each intake port 6 relative to the stroke of the piston is between approximately 0.45 and 0.65 while the ratio of the height of each exhaust port 7 relative to the stroke of the piston is between approximately 0.40 and approximately 0.65, the ratio relating to the exhaust port 7 being less than the ratio relating to the orifice admission 6.
  • inlet 6 or exhaust 7 ports are preferably located in the upper two thirds of the cylinder.
  • the fuel injection means 18 comprise a fuel injection orifice 8, a fuel in ector 20 and an injection pump 22.
  • This injection pump can be traditional, whether the fuel is light like gasoline or heavy like diesel oil (Diesel engine).
  • a traditional ignition 24 is provided, for example with a spark plug 26.
  • the supply pressure is a function of the speed of rotation of the engine.
  • the pressure is 1.008 bar at start-up, reaches 1.5 bar at 3500 revolutions.
  • these values are simply given by way of indication since the boost pressure value can be arbitrary as is well known to those skilled in the art.
  • the pressure in the combustion chamber 2 is greater than the pressure in the exhaust pipe so that the air pressure feed sweeps the combustion chamber 2 and promotes the escape of combustion gases or burnt gases.
  • the piston 3 continues to rise to the top of the cylinder 1, then completely blocking the intake orifice 6 and then performs the compression of the air until top dead center.
  • the fuel is injected by the injection means 18 comprising the injection pump 22.
  • the injection means 18 comprising the injection pump 22.
  • the total injection of fuel is carried out before the ignition of the spark plug, this ignition being traditional by igniter and spark plug.
  • the pressure value at the inlet 6 is lower, equal or higher than the expansion pressure prevailing in chamber 2.
  • This supply pressure value has no 'importance because even if it is lower than the pressure value prevailing in the chamber 2, the combustion gases only escape through the intake orifice 6 for a fraction of a second thanks to the delay in opening the exhaust port on the order of 10 to approximately 60 ° angle of rotation of the villebrequin 4 over the entire duration of the intake and exhaust, which gives a gap when the exhaust is opened or closed, compared to opening or closing of the intake, from only 5 to 30 ° angle of rotation of the crankshaft.
  • the duration of the escapement is less than 180 °, preferably is between approximately 160 and less than 180 °.
  • the angle of rotation of the crankshaft (P0E-PFE) during which the exhaust port 7 is released by the piston is equal to 175 °.
  • the duration of the air intake expressed in angle of rotation of the crankshaft 4 is thus greater than 180 °, preferably is between 200 and 220 °. In the example shown, this total duration of admission is 200 °. Note that these intake and exhaust durations are arranged symmetrically with respect to the bottom dead center.
  • the positioning of the intake and exhaust ports is also critical.
  • the ratio of the height of each intake port 6 relative to the stroke of the piston is between about 0.45 to about 0.65 while the ratio of the height of each port d exhaust 7 relative to the stroke of piston 3 is between approximately 0.40 and approximately 0.55, the port relative to the exhaust port 7 being less than the intake port 6.
  • the engine according to the invention has power and torque curves which are completely new and unexpected for a person skilled in the art.
  • this maximum torque coincides substantially with the maximum power, the maximum power also being substantially flat.
  • this engine system gives frank acceleration with exceptional power and torque.
  • Diesel with a cylinder with a useful volume of 300 cm gives a power of 30 horsepower at 3,500 rpm in comparison with an engine of the same cubic capacity on the market which only provides power of 6 to 9 horsepower depending on the brand, for the same consumption. It will also be observed that good commercial diesel engines give 30 to 35 horsepower per liter, turbo diesel engines giving
  • the engine according to the present invention gives a minimum of 100 horsepower per liter for consumption equal to an engine of the same displacement, but three times less efficient.
  • each intake port is 39 mm, that of each exhaust port is 34 mm, the lower edge of each intake port 6 of exhaust 7 coinciding with neutral low, the total intake area being
  • lubrication of the moving parts in the lower casing is carried out either by bubbling or by pressing an oil pump.
  • lubrication is limited to the lubrication of the bearings, the crankshaft and the connecting rod (foot and head).
  • the bottom of the piston and the bottom casing are sealed by a scraper segment 28 preventing the oil from rising and which is located below the exhaust orifice 7 and therefore the intake 6 at top dead center. For this reason, the height of the piston is greater than the stroke of the scraper segment.
  • the piston can have a traditional shape for the use of heavy fuel while in the case of light fuel, the piston can be flat or domed, depending on the desired compression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Procédé et moteur à combustion interne à fonctionnement amélioré, à cycle court. Ce moteur est caractérisé en ce que chaque cylindre (1) est dépourvu de soupape, d'obturateur ou de régulateur ou analogue de sorte que l'orifice d'admission (6) et l'orifice d'échappement (7) sont en permanence librement ouverts. Des moyens (10) d'injection d'air alimentent en permanence de l'air sous pression en direction de l'orifice d'admission (6). En outre, l'angle de rotation du vilebrequin (4) pendant lequel l'orifice d'admission (6) est dégagé par le piston (3) est supérieur à l'angle de rotation du villebrequin pendant lequel l'orifice d'échappement (7) est dégagé par le piston (3). On obtient ainsi un fonctionnement à cycle court, c'est-à-dire inférieur à deux temps aboutissant à un maximum de couple et de puissance qui coïncident.

Description

Procédé d'amélioration du fonctionnement d'un moteur à combustion interne à deux temps.
La présente invention concerne essentiellement un rocédé d'amélioration du fonctionnement d'un moteur à combustion interne, à cycle court, et un moteur à combustion interne à fonctionnement amélioré, à cycle court, et structure simplifiée.
Dans tout moteur à combustion interne,actuellement connu, celui-ci comporte au moins un cylindre, définissant une chambre de combustion, pourvu d'au moins un orifice d'admission d'air et d'au moins un orifice d'échappement des gaz de combustion, lesdits orifices étant disposés dans la paroi latérale du cylindre, un piston à déplacement alterna¬ tif entre un point mort haut (PMH) et un point mort bas(PMB), Le piston est relié à un villebrequin par un système de bielle classique de manière à transformer un mouvement continu alter- natif en mouvement-rotatif . Des moyens d'injection de carbu¬ rant sont également prévus, cette injection étant habituel¬ lement réalisée dans l'air d'admission. Ce carburant peut être du type léger, type essence, du type lourd type gaz- oil, huile etc. Dans tous les moteurs à quatre temps, les orifices d'admission d'air et d'échappement des gaz brûlés sont disposés en haut du cylindre. Ces orifices d'admission et d'échappement sont normalement obturés par des soupapes respectivement d'admission et d'échappement nécessitant pour leur déplacement une commande par des systèmes de culbuteur et d'arbacame. Ceci entraîne une complication importante de la construction du moteur et la nécessité de mettre en mouvement de nombreuses pièces. D'autre part, sur les moteurs à quatre temps, le remplissage des chambres de combustion ou d'explosion n'est jamais parfait, ce qui augmente la consommation en carburant.
D'un autre côté, dans les moteurs à deux temps connus, le cycle de fonctionnement comprend la réalisation lors d'une première remontée du piston d'un pré-mélange de l'air et du carburant admis en bas du cylindre. Lors de la descente du piston il se produit un transfert depuis la chambre de pré-mélange dans la chambre de combustion par des orifices prévus dans le piston et simultanément une évacuation des gaz brûlés de la cha mbre de combustion. Lors de la deuxième remontée du piston, il se produit la compression et l'explosion des gaz transférés et le cycle recommence. On peut ainsi constater que lors de l'évacua¬ tion des gaz brûlés de la chambre de combustion, il se produit le transfert des pré-mélanges d'air et de carbu¬ rant depuis la chambre de pré-mélange dans la chambre de combustion. Ceci aboutit nécessairement à une perte impor¬ tante inadmissible de carburant passant directement à l'échappement au moment du transfert. L'intérêt des moteurs à deux temps réside dans leur puissance, leur simplicité de fonctionnement, leur montée en régime et le nombre de pièces en mouvement très réduit.
Le document relatif au moteur à deux temps considéré le plus significatif par les demandeurs est constitués par US-A-2 522 649. Selon ce moteur faisant l'objet des figures 1 à 12, on prévoit cependant un piston 43 de compression du mélange air-carburant avant son in¬ troduction dans le cylindre de combustion. Ce piston donne donc une pression alternative. Ce piston de compression 43 est prévu de telle sorte qu'il réalise une obturation de l'orifice d'admission jusqu'à ce que le piston 33 agencé dans la chambre de combustion 10 dégage l'orifice d'échappement 25 (voir figures 2 et 3). Autrement dit, ce piston de compression 43 constitue en quelque sorte une soupape ou un obturateur d'autant qu'il est actionné également par l'arbre villebrequin 23.
L'injection de carburant est toujours réalisée dans l'air avant le piston de compression de sorte que ce piston comprime un mélange air-carburant. Les moteurs décrits dans ce document présentent l'inconvénient d'être encore relativement compliqués par la présence d'un piston de compression d'air spécial, donc fort coûteux. D'autre part, la relation couple /puissance de ces moteurs, compte tenu des conditions de fonction¬ nement décrites dans ce document, est moyenne ou médiocre.
La présente invention a donc pour but de remédier aux inconvénients de la technique antérieure en fournissant une solution associant les avantages du moteur à quatre temps avec ceux du moteur à deux temps, sans leurs inconvénients respectifs.
Ainsi, selon la présente invention, on fournit un procédé d'amélioration du fonctionnement d'un moteur à combustion interne, à cycle court, comprenant au moins un cylindre, définissant une chambre de combustion, pourvu d'au moins un orifice d'admission d'air et d'au moins un orifice d'échappement de gaz de combustion, lesdits- orifices étant disposés dans la paroi latérale du cylindre, un piston à déplacement alternatif entre un point mort haut et un point mort bas étant agencé dans ledit cylindre et obturant ou dégageant lors de son déplacement chacun desdits orifices, ledit piston étant relié à un villebrequin par un système de bielle classique, comprenant une compression et une explosion à chaque remontée du piston vers le point mort haut, une injection d'air dans le cylindre sous pression, dite injection suralimentée, et une injection de carburant, caractérisé en ce que, en vue de simplifier radicalement la conception du moteur notamment en limitant au minimum les pièces en mouvement, on prévoit chaque cylindre sans soupape, obturateur, régulateur ou analogue de telle sorte que l'orifice d'admission et l'orifice d'échappement soient librement ouverts, on injecte en permanence de l'air sous pression en direction de l'orifice d'admission, on injecte le carburant directement dans le cylindre indépendamment de l'air, on prévoit la position de l'orifice d'admission relativement à l'orifice d'échappement de telle sorte que l'orifice d'admission soit dégagé par le piston pendant un angle de rotation de l'arbre villebrequin supérieur à l'angle de rotation de l'arbre villebrequin pour lequel l'orifice d'échappement est également dégagé par le piston, de manière en outre à débuter l'admission d'air avant l'échappement et à terminer l'admission d'air après 1'échappment, de préférence l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'admission est dégagé par le piston étant supérieur à 180°.
Selon un mode de réalisation actuellement préféré, l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'admission est dégagé par le piston est compris entre environ 200 et 220°, tout étant symétrique par rapport au point mort bas.
Selon encore une autre caractéristique du procédé selon l'invention, l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston est inférieur d'environ 10 à 60° , de préférence d'environ 20 à 40°, à l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'admission d'air est dégagé par le piston. Selon encore une autre caractéristique du procédé selon l'invention, l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston est compris entre 170 et moins de 180° tout en étant symétrique par rapport au point mort bas.
Selon encore une autre caractéristique du procédé selon l'invention, on prévoit la section totale du ou des orifices d'admission d'air de telle sorte qu'elle soit sensiblement égale à deux fois celle du ou des orifices d'échappement. Selon encore une autre caractéristique du procédé selon l'invention, au point mort bas, le piston se trouve au voisinage du bord inférieur de l'orifice d'échappement, et de préférence également simultanément du bord inférieur de l'orifice d'admission.
Selon encore une autre caractéristique du procédé selon l'invention, on réalise la compression de l'air à l'aide d'un compresseur ou surpresseur, de préférence entraîné par le villebrequin de sorte que la pression d'air soit fonction de la vitesse de rotation du moteur.
Selon encore une autre caractéristique du procédé selon l'invention, le rapport de la hauteur de chaque orifice d'admission relativement à la course du piston est compris entre environ 0,45 et environ 0,65 tandis que le rapport de la hauteur de chaque orifice d'échappement relativement à la course du piston est compris entre environ 0,40 et environ 0,55, le rapport relatif à l'orifice d'échappement étant inférieur au rapport relatif à l'orifice d'admission.
Selon la présente invention, on fournit également un moteur à combustion interne à fonctionnement amélioré, à cycle court, et à structure simplifiée, comprenant au moins un cylindre, définissant une chambre de combustion, pourvu d'au moins un orifice d'admission d'air, d'au moins un orifice d'échappement des gaz de combustion, lesdits orifices étant disposés dans la paroi latérale du cylindre, un piston à déplacement alternatif entre un point mort haut et un point mort bas étant agencé dans ledit cylindre, ledit piston étant relié à un arbre villebrequin par un système de bielle classique, l'orifice d'admission étant décalé vers le haut du cylindre par rapport à l'orifice d'échappement, des moyens d'injection d'air étant prévus réalisant une injection d'air sous pression dans le cylindre, dite injection suralimentée, et des moyens d'injection de carburant sont également prévus, caractérisé en ce que chaque cylindre est dépourvu de soupape, d'obturateur ou de régulateur ou analogue, de sorte que l'orifice d'admission et l'orifice d'échappement soient en permanence librement ouverts, les moyens d'injection de carburant débouchent directement dans le cylindre indépendamment des moyens d'injection d'air qui injectent de l'air en permanence en direction de l'orifice d'admission, l'angle de rotation du villebrequin pendant lequel l'orifice d'admission est dégagé par le piston est supérieur à l'angle de rotation du villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston. De préférence, ce moteur présente également toutes les caractéristiques correspondantes à celles qui ont été énoncées ci-dessus relativement au procédé de l'invention.
Ainsi, on observera que l'invention permet de fournir un moteur sans soupape, obturateur, régulateur ou analogue et sans pression carter.
Il n'y a plus de pièce en mouvement autre que le piston et le villebrequin. L'admission d'air est libre, et assurée en permanence sous pression.
Seuls les mouvements alternatifs du piston dans le cylindre permettent l'admission de l'air dans le cylindre et/ou l'échappement du contenu du cylindre (air et/ou gaz de combustion) .
D'autre part, l'admission d'air ayant lieu sur plus de 180° et débutant avant et se terminant après l'échappement, alors qu'une explosion a lieu à chaque remontée du piston vers le point mort haut, on obtient un moteur à cycle court, .c'est-à-dire comportant un cycle qui est inférieur à celui d'un moteur deux temps, comme cela sera compréhensible à partir du diagramme de principe de fonctionnement du moteur. Grâce à ces caractéristiques, on obtient de manière inattendue pour un homme du métier un maximum du couple sensiblement plat comme un moteur à quatre temps. D'autre part, la montée en puissance est rapide comme pour les moteurs deux temps.
En outre, il existe une intersection des courbes de couple et de puissance comme dans les moteurs à quatre temps.
Enfin, et de manière tout à fait inattendue, les maximum du couple et de puissance coïncident pratiquement tout en étant relativement plats en étant sensiblement constants pendant pratiquement 1500 tours.
En outre, par l'injection directe de carburant dans le cylindre, on aboutit à une consommation minimum. Egalement, une caractéristique importante de l'invention réside dans le fait que la partie supérieure du moteur est d'une seule pièce plus le carter, en supprimant ainsi les problèmes de joint du culasse et les différents aléas habituellement rencontrés. Par la pression de l'air d'admission, on obtient encore l'avantage supplémentaire de l'évacuation des gaz brûlés au maximum par la turbulence due à l'air frais injecté en permanence ce qui conduit à une diminution de la chauffe du moteur. La pression de suralimentation en air peut être quelconque et sera fonction des performances souhaitées du moteur comme cela est bien connu à l'homme du métier.
D'autres buts, caractéristiques et avantages de l'invention apparaîtront clairement à la lumière de la description explicative qui va suivre' faite en référence aux dessins annexés dans lesquels :
- la figure 1 représente une coupe schématique verticale partielle du moteur selon l'invention au niveau d'un cylindre ; - la figure 2 représente le diagramme de principe de fonctionnement de ce moteur ; et
- la figure 3 représente les courbes de couple et de puissance en fonction de la vitesse de rotation du moteur.
En référence aux figures 1 à 3, le moteur à combustion interne comprend au moins un cylindre 1, définissant une chambre de combustion 2, pourvu d'au moins un orifice d'admission d'air 6 et d'au moins un orifice d'échappement 7 des gaz de combustion, lesdits orifices étant disposés dans la paroi latérale du cylindre 1, un piston à déplacement alternatif entre un point mort haut et un point mort bas étant agencé dans ledit cylindre. Le piston 3 est relié à un villebrequin 4 par un système de bielle 5 classique.
L'orifice d'admission d'air 6 est décalé vers le haut du cylindre 1 par rapport à l'ori ice d'échappement 7. Cependant, les orifices d'admission 6 et d'échappement 7 se trouvent à une certaine distance du haut ou sommet la du cylindre. De préférence, on prévoit plusieurs orifices d'admission 6 situés dans les deux tiers supérieurs du cylindre.
Ce moteur comprend aussi des moyens d'injection d'air 10 réalisant une injection d'air sous pression dans le cylindre 1, dite injection suralimentée. Ces moyens d'injection d'air 10 peuvent être constitués par un compresseur ou un surpresseur classique ou de préférence selon l'invention ces moyens de compression d'air sont entraînés par le villebrequin et délivrent donc une pression d'air fonction de la vitesse de rotation du moteur.
Ces moyens d'injection d'air sous pression constituent donc une pompe à air entraînée par le moteur et apte à fournir l'air nécessaire au balayage ou garnissage dans le cylindre 1. Des moyens d'injection de carburant 18 dans le cylindre 1 sont également prévus indépendamment des moyens d'injection de l'air 10 et réalisant selon l'invention une injection directe par l'orifice 8. Ce moteur est en outre caractérisé en ce chaque cylindre 1 est dépourvu de soupape, d'obturateur ou de régulateur ou analogue de sorte que l'orifice d'admission 6 et l'orifice d'échappement 7 soient en permanence librement ouverts comme cela se conçoit bien à partir de la considération de la figure 1.
Par ailleurs, les moyens d'injection d'air 10 alimentent en permanence de l'air sous pression en direction de l'orifice d'admission 6.
D'autre part, l'angle de rotation du villebrequin pendant lequel l'orifice d'admission est dégagé par le piston est supérieur à l'angle de rotation du villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston.
Ainsi, grâce à l'alimentation permanente de l'air sous pression en direction de l'orifice d'admission, le moteur selon l'invention débute l'admission d'air avant l'échappement et termine l'admission d'air après 1'échappement.
De plus, l'angle de rotation du villebrequin pendant lequel l'orifice d'admission est dégagé par le piston est prévu supérieur d'environ 10 à environ 60° à l'angle de rotation du villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston.
Selon une autre caractéristique du moteur selon l'invention, l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'admission est dégagé par le piston est supérieur à 180°.
Selon une caractéristique encore préférée, l'angle de rotation du .villebrequin pendant lequel l'orifice d'admission est dégagé par le piston est compris entre 200 et 220° et est disposé de manière symétrique par rapport au point mort bas tandis que 1'angle de rotation du villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston est compris entre environ 170° et moins de 180°.
Selon encore une autre caractéristique du moteur selon l'invention, le bord inférieur 7a de l'orifice d'échappement 7 est prévu de manière à se trouver au voisinage du point mort bas du piston 3. Par ailleurs, de préférence, l'orifice d'admission 6 a son bord inférieur 6a qui se trouve également au voisinage du point mort bas du piston 3.
Selon une autre caractéristique du moteur selon l'invention, la section totale du ou des orifices d'admission d'air 6 est sensiblement égale à deux fois celle du ou des orifices d'échappement 7.
D'autre part, selon encore une autre caractéristique préférée du moteur selon l'invention, le rapport de la hauteur de chaque orifice d'admission 6 relativement à la course du piston est compris entre environ 0,45 et 0,65 tandis que le rapport de la hauteur de chaque orifice d'échappement 7 relativement à la course du piston est compris entre environ 0,40 et environ 0,65, le rapport relatif à l'orifice d'échappement 7 étant inférieur au rapport relatif à l'orifice d'admission 6.
On conçoit aisément que l'on peut prévoir plusieurs orifices d'admission 6 ou d'échappement 7. Ces orifices d'admission 6 et d'échappement 7 sont de préférence situés dans les deux tiers supérieurs du cylindre.
Les moyens d'injection de carburant 18 comprennent un orifice 8 d'injection de carburant, un in ecteur de carburant 20 et une pompe à injection 22. Cette pompe à injection peut être traditionnelle, que le carburant soit léger comme de l'essence ou lourd comme du gaz-oil (moteur Diesel).
D'autre part, dans le cas d'un carburant léger comme l'essence, on prévoit un allumage traditionnel 24, par exemple à bougie 26.
Le fonctionnement de ce moteur ainsi décrit est conforme au procédé précédemment énoncé et est le suivant en référence aux figures 2 et 3, et principalement relativement à la figure 2.
Ainsi, au point mort bas, les orifices d'admis¬ sion 6 et d'échappement 7 sont entièrement dégagés, de sorte que l'air est alimenté sous pression par l'orifice d'admission 6 depuis les moyens de suralimentation 10. Dans le cas préféré de moyens de suralimentation
10 entraînés par le villebrequin 4, la pression d'alimentation est fonction de la vitesse de rotation du moteur. Par exemple, la pression est de 1,008 bar au démarrage, atteint 1,5 bar à 3500 tours. Naturellement, ces valeurs sont simplement données à titre indicatif étant donné que la valeur de pression de suralimentation peut être quelconque comme cela est bien connu à l'homme du métier.
Ainsi, étant donné que que l'orifice d'échappement 7 est libre en débouchant librement dans l'atmosphère, la pression dans la chambre de combustion 2 est supérieure à la pression dans la conduite d'échappe¬ ment de sorte que l'air d'alimentation sous pression balaie la chambre de combustion 2 et favorise l'échappe- ment des gaz de combustion ou gaz brûlés.
Au fur et à mesure que le piston 3 remonte, l'orifice d'échappement 7 se trouve obturé alors que l'orifice d'admission 6 est encore partiellement ouvert grâce au décalage prévu entre l'orifice d'admission 5 et l'orifice d'échappement 7, comme dans la position représentée à la figure 1. Ainsi, on réalise à ce moment-là un remplissage d'air complet du cylindre avec une pré-compression due à l'injection sous pression de l'air de sorte que le volume d'air à comprimer sera plus important.
Le piston 3, continue à remonter vers le haut du cylindre 1 en obturant ensuite complètement l'orifice d'admission 6 et réalise alors la compression de l'air jusqu'au point mort haut. Juste avant d'arriver au point mort haut, on injecte le carburant par les moyens d'injection 18 comprenant la pompe à injection 22. Dans le cas d'un moteur à carburant léger, type essence, l'injection totale du carburant se réalise avant l'allumage de la bougie, cet allumage étant traditionnel par allumeur et bougie.
Dans le cas d'un moteur à carburant lourd type gaz-oil, huile, etc., l'injection se réalise quelques degrés avant le point mort haut, par pompe haute pression et il n'y a pas de système d'allumage comme cela est bien connu pour un homme du métier.
On obtient donc l'explosion juste avant le point mort haut et la descente du piston 3 débute alors en réalisant la détente dans la chambre 2, jusqu'à ce que le piston 3 vienne dégager l'orifice d'admission 6 (POA = point d'ouverture admission).
Selon le niveau de pression de suralimentation, la valeur de pression à l'orifice d'admission 6 est plus faible, égale ou plus élevée que la pression de détente régnant dans la chambre 2. Cette valeur de pression d alimentation n'a pas d'importance car même si elle est plus faible que la valeur de pression régnant dans la chambre 2, les gaz de combustion ne s'échappent par l'orifice d'admission 6 que pendant une fraction de seconde grâce au retard à l'ouverture de l'orifice d'échappement de l'ordre de 10 à environ 60° d'angle de rotation du villebrequin 4 sur la totalité de la durée de l'admission et de l'échappement, ce qui donne un écart au moment de l'ouverture ou de la fermeture de l'échappement, par rapport à l'ouverture ou à la fermeture de l'admission, de seulement 5 à 30° d'angle de rotation de villebrequin. Il en résulte que les gaz de combustion s'échappent presque instannément par l'orifice d'échappement 7 lorsque le piston vient à son tour le dégager, à l'instant POE ≈ point ouverture échappement. Ce décalage entre admission et échappement pour l'ouverture est essentiel car l'alimentation en permanence d'air sous pression dans le conduit d'admission 6 permet de réfrigérer le conduit d'admission et également le piston 3 avant que l'orifice d'admission ne soit dégagé mais également lorsque celui-ci devient dégagé alors que l'orifice d'échappement est obturé, ce refroidissement étant amplifié grandement lors du balayage très important qui a lieu au moment du dégagement de l'orifice d'échappement 7 par le piston 3. A ce moment (POE) commence un balayage intensif par l'air frais provenant de l'orifice d'admission 6 jusqu'au point PFE = point de fermeture échappement.
Selon l'invention, la durée de l'échappement, exprimée en l'angle de rotation du villebrequin, est • inférieure à 180° , de préférence est comprise entre environ 160 et moins de 180°. Dans l'exemple représenté à la figure 2, l'angle de rotation du villebrequin (P0E-PFE) pendant lequel l'orifice d'échappement 7 est dégagé par le piston, est égal à 175°. Ainsi, comme mentionné ci-dessus, grâce à ce balayage très important de l'air, la tête du piston, le cylindre et l'échappement aura une température de fonctionnement extrêmement basse, le refroidissement de l'intérieur du moteur est .très important, ce qui améliore les facilités de fonctionnement. Il y a en effet très peu de dilatation et il suffit d'une faible tolérance d'usinage.
De même, avec le même décalage en angle de rotation de villebrequin, que pour l'ouverture, l'admission étant terminée au point PFA = point fermeture admission, la durée de l'admission d'air, exprimée en angle de rotation du villebrequin 4 est ainsi supérieure à 180°, de préférence est comprise entre 200 et 220°. Dans l'exemple représenté, cette durée totale d'admission est de 200°. On notera que ces durées d'admission et d'échappement sont disposées symétriquement par rapport au point mort bas.
Dans ces conditions, la durée de la compression exprimée en angle de rotation de villebrequin est dans l'exemple représenté de 92,5° et il en est de même de la détente en prenant comme point final de détente le point POE = point d'ouverture de l'échappement.
On notera que la suralimentation du moteur est favorisée par le fait que la section totale des orifices d'admission 6 est sensiblement égale à deux fois la section totale des orifices d'échappement 7.
D'autre part, le positionnement des orifices d'admission et d'échappement est également critique. Selon l'invention, comme mentionné précédemment, le rapport de la hauteur de chaque orifice d'admission 6 relativement à la course du piston est compris entre environ 0,45 à environ 0,65 tandis que le rapport de la hauteur de chaque orifice d'échappement 7 relativement à la course du piston 3 est compris entre environ 0,40 et environ 0,55, le rap¬ port relatif à l'orifice d'échappement 7 étant inférieur à l'orifice d'admission 6. On observera que pendant toute la durée du cycle, la pression de l'air dans l'admission est constante et favorise un refroidissement parfait du piston et du cylindre. On obtient ainsi un fonctionnement à cycle court, c'est-à-dire inférieur au cycle d'un moteur deux temps car quand l'échappement est terminé, l'admission et le garnissage du cycle suivant sont eux aussi pratiquement terminés. Le diagramme théorique de pression est mentionné à la figure 3 et fait partie intégrante du texte descriptif du brevet.
D'autre part, comme on peut le voir à partir de la figure 4, le moteur selon l'invention présente des courbes de puissance et de couple qui sont tout à fait nouvelles et inattendues pour un homme du métier.
Ainsi, ces courbes ont un point d'intersection I situé avant 2000 tours. D'autre part, et de manière tout à fait nouvelle, le maximum de la courbe de couple est sensiblement plat de sorte que le couple maximum est constant sur pratiquement 1500 tours, soit de -3500 à 4500 tours, ce qui est tout à fait remarquable.
D'autre part, ce maximum de couple coïncide sensiblement avec le maximum de puissance, le maximum de puissance étant également sensiblement plat. Ainsi, ce système de moteur donne des accélérations franches avec une puissance et un couple exceptionnels.
Un moteur actuellement soumis à l'essai, du type
3 Diesel avec un cylindre de volume utile 300 cm donne une puissance de 30 chevaux à 3500 tours en comparaison avec un moteur de même cylindrée du commerce qui ne fournit qu'une puissance de 6 à 9 chevaux suivant la marque, pour la même consommation. On observera en outre que les bons moteurs du commerce du type Diesel donnent de 30 à 35 chevaux au litre, les moteurs turbo en Diesel donnant quant à eux de
30 à 45 au litre. Le moteur selon la présente invention donne un minimum de 100 chevaux au litre pour une consommation égale à un moteur de même cylindrée, mais trois fois moins performant.
On peut attribuer ces performances à l'injection directe de carburant dans la chambre de combustion 2, à l'alimentation de l'air sous pression constante au cours du même cycle avec les durées d'admission et d'échappement critiques mentionnées précédemment.
Dans l'exemple représenté, la hauteur de chaque orifice d'admission est de 39 mm, celle de chaque orifice d'échappement est de 34 mm, le bord inférieur de chaque orifice d'admission 6 d'échappement 7 coïncidant avec le point mort bas, la surface totale d'admission étant de
2 15,38 mm et celle correspondant de l'échappement étant de 2 7,69 mm . La course du piston est de 72 mm.
On comprendra également que le graissage des pièces en mouvement dans le bas carter est réalisé soit par barbottage ou par pression d'une pompe à huile. Dans le moteur, le graissage se limite à la lubrification des paliers, du villebrequin et de la bielle (pied et tête) des roulements. L'étanchéité du bas du piston et du bas carter est réalisée par un segment racleur 28 empêchant la remontée d'huile et qui se situe au-dessous de l'orifice d'échappement 7 et donc l'admission 6 au point mort haut. Pour cette raison, la hauteur du piston est supérieure à la course du segment racleur.
D'autres segments 30, 32 d'étanchéité sont également prévus, de manière classique pour l'étanchéité des gaz de la chambre de combustion 2. Le piston peut avoir une forme traditionnelle pour l'utilisation d'un carburant lourd tandis que dans les cas d'un carburant léger, le piston peut être plat ou bombé, selon la compression désirée.
Naturellement, l'invention comprend tous les moyens constituant des équivalents techniques des moyens décrits ainsi que leurs diverses combinaisons.

Claims

REVENDICATIONS
1.- Procédé d'amélioration du fonctionnement d'un moteur à combustion interne, à cycle court, comprenant au moins un cylindre, définissant une chambre de combustion, pourvu d'au moins un orifice d'admission d'air et d'au moins un orifice d'échappement des gaz de combustion, lesdits orifices étant disposés dans la paroi latérale du cylindre, un piston à déplacement alternatif entre un point mort haut et un point mort bas étant agencé dans ledit cylindre et obturant ou dégageant lors de son déplacement chacun desdits orifices, ledit piston étant relié à un villebrequin par un système de bielle classique, comprenant une compression et une explosion à chaque remontée du piston vers le point mort haut, une injection d'air dans le cylindre sous pression, dite injection suralimentée, et une injection de carburant, caractérisé en ce que, en vue de simplifier radicalement la conception du moteur notamment en limitant au minimum les pièces en mouvement, on prévoit chaque cylindre sans soupape, obturateur, régulateur ou analogue, de telle sorte que l'orifice d'admission et l'orifice d'échappement soient librement ouverts, on injecte en permanence de l'air sous pression en direction de l'orifice d'admission, on injecte le carburant directement dans le cylindre indé- pendamment de l'air, on prévoit la position de l'orifice d'admission relativement à l'orifice d'échappement de sorte que l'orifice d'admission soit dégagé par le piston pendant un angle de rotation du villebrequin supérieur à l'angle de rotation du villebrequin villebrequin pour lequel l'orifice d'échappement est également dégagé par le piston, de manière en outre à débuter d'admission d'air avant l'échappement et à terminer l'admission d'air après l'échappement, de préférence l'angle de rotation du villebrequin pendant lequel l'orifice d'admission est dégagé par le piston étant supérieur à 180°.
2.- Procédé selon la revendication 1, caractérisé en ce que l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'admission est dégagé par le piston est compris entre environ 200 et 220° , tout en étant symétrique par rapport au point mort bas.
3.- Procédé selon la revendication 2, caractérisé en ce que l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston est inférieur d'environ 10 à 60°, de préférence d'environ 20 à 40° à l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'admission d'air est dégagé par le piston.
4.- Procédé selon la revendication 3, caractérisé en ce que l'angle de rotation de l'arbre villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston est compris entre 170 et moins de 180° tout en étant symétrique par rapport au point mort bas.
5.- Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on réalise la compression de l'air à l'aide d'un compresseur ou surpresseur, de préférence entraîné par le villebrequin de sorte que la pression d'air soit fonction de la vitesse de rotation du moteur.
6.- Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'au point mort- bas, le piston se trouve au voisinage du bord inférieur de l'orifice d'é¬ chappement, et de préférence également simultanément du bord inférieur de l'orifice d'admission.
7.- Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la section totale du ou des orifices d'admission d'air est sensiblement égale à deux fois celle du ou des orifices 'échappement.
8.- Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le rapport de la hauteur de chaque orifice d'admission relativement à la course du piston est compris entre environ 0,45 et environ 0,65 tandis que le rapport de la hauteur de chaque orifice d'échappement relativement à "la course du piston est compris entre environ 0,40 et environ 0,55, le rapport relatif à l'orifice d'échappement est inférieur au rapport relatif à l'orifice d'admission.
9.- Moteur à combustion interne à fonctionnement amélioré, à cycle court, et à structure simplifiée, com¬ prenant au moins un cylindre (1), définissant une chambre de combustion (2), pourvu d'au moins un orifice d'admis¬ sion d'air (6) et d'au moins un orifice d'échappement (7) des gaz de combustion, lesdits orifices étant disposés dans la paroi latérale du cylindre, un piston (3) à déplacement alternatif entre un point mort haut et un point mort bas étant agencé dans ledit cylindre, ledit piston étant relié à un villebrequin (4) par un système de bielle (5) classique, l'orifice d'admission d'air (6) étant décalé vers le haut du cylindre par rapport à l'ori ice d'échappement, des moyens d'injection d'air (1O) étant prévus, réalisant une injection d'air sous pression dans le cylindre, dite injection suralimentée ; et des moyens d'injection de carburant (18)-sont également prévus, caractérisé en ce que chaque cylindre (1) est dépourvu de soupape, d'obturateur ou de régulateur ou analogue, de sorte que l'orifice d'admission (6) et l'orifice d'échappement (7) soient en permanence librement ouverts, les moyens d'injection d'air (10) alimentant en permanence de l'air sous pression en direction de l'orifice d'admission (6), l'angle de rotation du villebrequin (4) pendant lequel l'orifice d'admission (6) est dégagé par le piston (3) est supérieur à l'angle de rotation du villebrequin pendant lequel l'orifice d'échappement (7) est dégage par le piston (3).
10.- Moteur selon la revendication 9, caractérisé en ce que 1'angle de rotation du villebrequin pendant lequel l'orifice d'admission est dégagé par le piston est supérieur d'environ 10 à environ 60° à l'angle de rotation du villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston, l'angle de rotation du villebrequin pendant lequel l'orifice d'admission est dégagé par le piston étant supérieur à 180°.
11.- Moteur selon la revendication 10, caractérisé en ce que l'angle de rotation du villebrequin pendant lequel l'orifice d'admission est dégagé par le piston est compris entre 200 et 220° et est disposé de manière symétrique par rapport au point mort bas tandis que l'angle de rotation du villebrequin pendant lequel l'orifice d'échappement est dégagé par le piston est compris entre environ 170° et moins de 180°.
12.- Moteur selon l'une des revendications 9 à 11, caractérisé en ce que le bord inférieur 57a) de l'orifice d'échappement (7) ainsi que de préférence le bord inférieur (6a) de l'orifice d'admission (6) sont prévus de manière à se trouver au voisinage du point mort bas du piston.
PCT/FR1985/000156 1984-06-20 1985-06-17 Procede d'amelioration du fonctionnement d'un moteur a combustion interne a deux temps WO1986000374A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR84/09685 1984-06-20
FR8409685A FR2566459B1 (fr) 1984-06-20 1984-06-20 Procede d'amelioration du fonctionnement d'un moteur a combustion interne et moteur a combustion interne a fonctionnement ameliore et structure simplifiee

Publications (1)

Publication Number Publication Date
WO1986000374A1 true WO1986000374A1 (fr) 1986-01-16

Family

ID=9305242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1985/000156 WO1986000374A1 (fr) 1984-06-20 1985-06-17 Procede d'amelioration du fonctionnement d'un moteur a combustion interne a deux temps

Country Status (4)

Country Link
JP (1) JPS61502480A (fr)
DE (1) DE3590313T1 (fr)
FR (1) FR2566459B1 (fr)
WO (1) WO1986000374A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250497B1 (fr) * 1985-12-23 1990-08-01 BARTSCH, Christian Moteur a combustion interne fonctionnant selon un procede a deux temps
DE3837660A1 (de) * 1988-11-05 1990-05-10 Ernst G Mueller Hubkolbenverbrennungsmotor mit einer zwangsweisen be- und entlueftung waehrend einer kurbelwellenumdrehung
CN2424304Y (zh) * 2000-06-15 2001-03-21 韩晓静 新型二冲程发动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE282290C (fr) *
FR568086A (fr) * 1922-09-20 1924-03-14 Moteur à deux temps
FR611730A (fr) * 1925-09-05 1926-10-09 Moteur à combustion interne à deux temps
US2149793A (en) * 1935-10-14 1939-03-07 Messerschmitt Boelkow Blohm Internal combustion engine
US2522649A (en) * 1945-10-06 1950-09-19 William L Tenney Two-stroke cycle engine cylinder and pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH102605A (de) * 1922-08-25 1923-12-17 Salis Eduard Von Zweitaktverbrennungsmotor.
US1750201A (en) * 1927-07-23 1930-03-11 Gardner A B Spencer Two-cycle engine
FR760305A (fr) * 1932-11-03 1934-02-20 Siemens Ag Moteur aérien à deux temps avec balayage et charge complémentaire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE282290C (fr) *
FR568086A (fr) * 1922-09-20 1924-03-14 Moteur à deux temps
FR611730A (fr) * 1925-09-05 1926-10-09 Moteur à combustion interne à deux temps
US2149793A (en) * 1935-10-14 1939-03-07 Messerschmitt Boelkow Blohm Internal combustion engine
US2522649A (en) * 1945-10-06 1950-09-19 William L Tenney Two-stroke cycle engine cylinder and pump

Also Published As

Publication number Publication date
DE3590313T1 (de) 1986-07-17
FR2566459B1 (fr) 1988-01-29
JPS61502480A (ja) 1986-10-30
FR2566459A1 (fr) 1985-12-27

Similar Documents

Publication Publication Date Title
BE1013791A5 (fr) Moteur a combustion interne a cinq temps.
EP0376909B1 (fr) Moteur à combustion interne
EP1084334B1 (fr) Procede de fonctionnement et dispositif de moteur a injection d'air comprime additionnel fonctionnat en mono-energie, ou en bi-energie bi ou tri modes d'alimentation
EP0075502B1 (fr) Procédé d'aménagement des conditions de fonctionnement d'un moteur à combustion interne et moteur ainsi aménagé
FR2500063A1 (fr) Moteur thermique a quatre temps susceptible de surpuissance temporaire
FR2748776A1 (fr) Procede de moteur a combustion interne cyclique a chambre de combustion independante a volume constant
EP0648314B1 (fr) Procédé et dispositifs de contrÔle de combustion d'un moteur quatre temps
WO1986000374A1 (fr) Procede d'amelioration du fonctionnement d'un moteur a combustion interne a deux temps
FR2583108A2 (fr) Procede d'amelioration du fonctionnement d'un moteur a combustion interne, a cycle court, et moteur a combustion interne a fonctionnement ameliore a cycle court et a structure simplifiee
EP0358655B1 (fr) Procede et dispositif d'amenagement d'un moteur a deux temps a post-remplissage
EP1290326B1 (fr) Moteur a combustion interne sans refroidissement exterieur
FR2655378A1 (fr) Systeme de moteur a 2 temps ayant 4 cycles.
FR2957631A1 (fr) Element de moteur a combustion interne a detente prolongee et moteur a combustion interne comprenant un ou plusieurs de ces elements
FR2973447A1 (fr) Procede de demarrage d'un moteur thermique a pistons en utilisant de l'air comprime et moteur
WO1986006789A1 (fr) Moteur deux temps a soupapes commandees
BE421068A (fr)
FR2538031A2 (fr) Moteur deux temps a pistons complementaires et chambres independantes en zone de point mort haut
FR2539457A1 (fr) Moteur diesel a regime rapide franchement suralimente avec dispositif limitant la pression maximale de combustion
BE1001582A3 (fr) Moteur a combustion interne deux temps a un ou plusieurs pistons, essence ou diesel a haut rendement.
BE1007955A6 (fr) Moteur a combustion interne avec un cycle a 2 temps fonctionnant sans huile ajoutee dans le carburant, dans l'admission ou dans le melange gazeux.
CH539776A (fr) Moteur thermique
FR2531139A1 (fr) Dispositif de controle d'un circuit de gaz d'une chambre de combustion
FR2640317A1 (fr) Piston multietage a soupapes-fourreaux pour une alimentation quasi continue de monocylindres applicable notamment a une pompe et a un moteur deux temps a compression externe
FR2810077A1 (fr) Perfectionnements aux moteurs a deux temps
WO1999057425A1 (fr) Moteur a quatre temps a combustion interne

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): DE JP US

RET De translation (de og part 6b)

Ref document number: 3590313

Country of ref document: DE

Date of ref document: 19860717

WWE Wipo information: entry into national phase

Ref document number: 3590313

Country of ref document: DE