EP0373550A2 - Flugzeit(massen)spektrometer mit hoher Auflösung und Transmission - Google Patents

Flugzeit(massen)spektrometer mit hoher Auflösung und Transmission Download PDF

Info

Publication number
EP0373550A2
EP0373550A2 EP89122805A EP89122805A EP0373550A2 EP 0373550 A2 EP0373550 A2 EP 0373550A2 EP 89122805 A EP89122805 A EP 89122805A EP 89122805 A EP89122805 A EP 89122805A EP 0373550 A2 EP0373550 A2 EP 0373550A2
Authority
EP
European Patent Office
Prior art keywords
marked
spectrometer according
ion source
focusing
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89122805A
Other languages
English (en)
French (fr)
Other versions
EP0373550A3 (de
Inventor
Paul Dr. Bechthold
Matija Dr. Mihelcic
Kurt Wingerath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0373550A2 publication Critical patent/EP0373550A2/de
Publication of EP0373550A3 publication Critical patent/EP0373550A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/40Time-of-flight spectrometers
    • H01J49/403Time-of-flight spectrometers characterised by the acceleration optics and/or the extraction fields

Definitions

  • the invention relates to time-of-flight (mass) spectrometers with an ion source generating a pulsed ion beam and potential-shaping devices, possibly a reflector with speed focusing by beam reversal and a detector.
  • the flight time (mass) spectrometry offers the essential advantage of being able to observe ions of a very large mass range simultaneously. For this reason, it has recently been used frequently in the mass analysis of cluster beams and the analysis of fragments of large organic molecules. An analysis of particles that are emitted during combustion processes also appears possible. In these areas of application, the low density of the particles to be analyzed is problematic and must be taken into account in addition to the resolution.
  • mass spectrometers of the type mentioned at the beginning usually contain wire networks which form potential in the ion source as well as in the reflector and, if appropriate, on the detector. The transmission of the devices is reduced by these and disruptive secondary effects can occur.
  • the aim of the invention is therefore a device with an improved transmission compared to a high one Mass resolution and avoidance of interference effects and high detection sensitivity.
  • the device of the type mentioned at the outset which was developed for this purpose, is characterized by a gridless ion source with a series of at least three preferably parallel hole electrodes with a beam-focusing, space-focusing potential distribution.
  • an ion source which does not have a grating in the direction of flight, but rather a sequence of coaxial perforated electrodes with a programmed potential distribution applied to them, by means of which beam bundling is achieved in such a way that practically all of the ions produced are directed in the beam direction.
  • Parallel perforated electrodes are particularly simple, but can also be wholly or partially conical or spherical shell-like or the like. shaped coaxial electrodes can be provided.
  • each aperture acts like an ion-optical lens.
  • the number of apertures and the applied voltages of the ion-optical system are varied so that they result in a potential distribution which - despite the absence of a grating - causes beam formation with additional spatial focusing, and in particular the chromatic aberration the ion source minimized.
  • the field penetrations are used for beam shaping and beam guidance. It a practically 100% transmission of the ion-optical system can be achieved. This is especially the case with an ionization volume of a few 100 mm3.
  • the number of apertures and the voltages for the electrostatic reflector are determined in a corresponding manner.
  • the necessary potential distribution can be calculated in different ways, such as. B. according to a charge density method (calculation based on the density of the influential charges on the surfaces) or according to a matrix method, however, programming that proves to be particularly expedient is based on a relaxation method, in particular over-relaxation method, while optimizing the electrostatic potential by solving the Laplace's equation declines.
  • the number of parallel electrodes, their hole diameter, distance and the voltages to be applied are included as variables.
  • a very large ionization volume is permitted (for example 0.1-1 cm 3), so that an evaluable signal still results at the detector even with a very low particle density.
  • a programmed axis potential distribution with at least two local extreme values in the axis direction is particularly expedient within the scope of the invention, which results in a minimization of the chromatic aberration simultaneously with the spatial focusing (compensation of the time-of-flight differences resulting from the finite ionization volume), which occurs in conventional Devices with the help of ion-optical grids (with reduced transmission; see above) is achieved (WC Wiley and IH McLaren, Rev.Sci.Instr. 26 (1955) 1150).
  • the ions are formed in the ion source in particular by laser-pulsed ion generation.
  • FIG. 1 shows the shape of the ion packet of a mass (of, for example, 560 amu) in time increments of 500 ns.
  • a pulsed ion beam generated in the ion source (originating from an injected neutral particle beam, surface sputtering or the like) is spatially created by a sequence of electrodes 2 and concentrated in time and reaches the reflector 3 (for which an optimization example is shown in FIG. 4), which likewise has a sequence of electrodes and in which speed differences are compensated for by reversing the direction, so that ions with the same z / m arrive at the detector 4 at the same time.
  • such a spectrometer can also be operated for special examinations without a reflector, which, however, is usually provided and is then preferably also equipped with a series of perforated electrodes in the context of the present invention.
  • both the ion source and the reflector usually contain potential-forming wire networks and often a further network is also provided on the detector.
  • such networks are now completely dispensed with, thus achieving both improved transmission and suppression of disruptive secondary effects.
  • the field penetrations that arise on the electrodes are used for beam guidance and beam shaping by taking this into account bearing programmed potential distribution is provided on the electrodes 2, such as. B. is shown in Figure 2 and / or an electrode shape adapted to the desired optimization is provided, as indicated in Figure 3.
  • the detector is biased slightly negatively in particular with respect to the flight tube in order to keep secondary electrons away.
  • the detector is preferably a channel plate detector with adjustment means for setting up the position of the detector incident surface and its angle relative to the beam.
  • the ion sources shown in FIGS. 1 to 3 each have 15 hole electrodes which, for the sake of simplicity, are shaped essentially the same (FIGS. 1 and 2) or can also have a different hole diameter (FIG. 3).
  • (at least) two electrodes upstream of the ionization site and located at the same potential are preferably provided as repeller electrodes (see FIG. 2), which serve to homogenize the potential at the ionization site.
  • the number of electrodes in an ion source is variable. At least three electrodes are provided. There is expediently a series of 8 to 20 perforated electrodes which are arranged essentially at the same distance from one another, but can also have different distances, which must then be taken into account in the voltages to be applied.
  • FIG. 5 A comparison of Figures a and b of Figure 5 shows the effect of a rotatable and movable adjusted channel plate detector, through its adjustment an optimization of the resolution and sensitivity is additionally achieved.
  • the channel plate (s) is or are only indicated schematically.
  • the hatched area only indicates the position of the plate (s).
  • FIG. 6 The result of an ion cluster investigation of iron cluster ions is shown in FIG. 6, from which the excellent mass resolution can be seen. According to the invention, a resolution m / ⁇ m of a few thousand is achieved with practically 100% transmission.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

Ein Flugzeit(massen)spektrometer hoher Empfindlichkeit und Auflösung wird mit einer Ionenquelle (für einen gepulsten Ionenstrahl) vorgesehen, die in Flugrichtung anstelle sonst üblicher Gitter eine Serie von parallelen Lochelektroden mit einer strahlbündelnden, raumfokussierenden Potentialverteilung aufweist. Eine Minimierung der chromatischen Aberration wird dabei durch eine Potentialverteilung erreicht, deren erste Ableitung in Achsrichtung zumindest zwei Null-Werte durchläuft. Vorzugsweise umfaßt der für die Geschwindigkeitsfokussierung wichtige Reflektor ebenfalls eine Folge von Lochelektroden anstelle sonst üblicher Gitter. Als Detektor dient insbesondere ein Kanalplattendetektor mit Justierungsmitteln für Position und Winkel der Einfallsfläche relativ zum Strahl.

Description

  • Die Erfindung bezieht sich auf Flugzeit(massen)spek­trometer mit einer einen gepulsten Ionenstrahl erzeu­genden Ionenquelle und potentialformenden Einrich­tungen, ggf. einem Reflektor mit Geschwindigkeitsfo­kussierung durch Strahlumkehr und einem Detektor.
  • Die Flugzeit(massen)spektrometrie bietet als wesent­lichen Vorteil die Möglichkeit Ionen eines sehr großen Massenbereichs simultan zu beobachten. In jüngster Zeit wird sie deshalb häufig angewandt bei der Massen­analyse von Clusterstrahlen und der Analyse von Bruch­stücken großer organischer Moleküle. Auch eine Analyse von Teilchen, die bei Verbrennungsprozessen ausgestoßen werden, erscheint möglich. Bei diesen Anwendungsge­bieten ist die geringe Dichte der zu analysierenden Teilchen problematisch und zusätzlich zur Auflösung zu beachten.
  • Im Handel erhältliche Massenspektrometer der eingangs genannten Art enthalten üblicherweise sowohl in der Ionenquelle als auch im Reflektor sowie ggf. am Detek­tor potentialformende Drahtnetze. Durch solche wird die Transmission der Geräte vermindert und es können störende Sekundäreffekte auftreten.
  • Ziel der Erfindung ist daher ein Gerät mit demgegen­über verbesserter Transmission bei gleichzeitig hoher Massenauflösung und Vermeidung von Störeffekten und hoher Nachweisempfindlichkeit.
  • Das zu diesem Zweck entwickelte erfindungsgemäße Gerät der eingangs genannten Art ist gekennzeichnet durch eine gitterlose Ionenquelle mit einer Serie von mindestens drei vorzugsweise parallelen Lochelek­troden mit einer strahlbündelnden, raumfokussierenden Potentialverteilung.
  • Weitere Besonderheiten der Erfindung ergeben sich aus den Unteransprüchen.
  • D. h., gemäß der Erfindung wird eine Ionenquelle verwendet, die in Flugrichtung kein Gitter aufweist, sondern eine Folge von koaxialen Lochelektroden mit daran angelegter programmierter Potentialverteilung, durch die eine solche Strahlbündelung erreicht wird, daß praktisch alle erzeugten Ionen in Strahlrichtung gelenkt werden. Besonders einfach sind parallele Lochelektroden, jedoch können auch ganz oder teilweise kegel- oder kugelschalenartig odgl. geformte koaxiale Elektroden vorgesehen sein.
  • Es ist zu berücksichtigen, daß bei fortlassen der Gitter jede Apertur wie eine ionenoptische Linse wirkt. Gemäß vorliegender Erfindung werden nun die Zahl der Aperturen und die angelegten Spannungen des ionenoptischen Systems (zur Potentialformung) so variiert, daß sie eine Potentialverteilung ergeben, die - trotz fehlender Gitter - eine Strahlformung mit zusätzlicher Raumfokussierung bewirkt, und insbeson­dere wird darüber hinaus die chromatische Aberration der Ionenquelle minimiert. Die Feldurchgriffe werden zur Strahlformung und Strahlführung ausgenutzt. Es kann eine praktisch 100 %-ige Transmission des ionen­optischen Systems erreicht werden. Dies insbesondere bei einem Ionisationsvolumen von einigen 100 mm³. In entsprechender Weise werden die Anzahl der Aperturen und die Spannungen für den elektrostatischen Reflek­tor ermittelt.
  • Grundsätzlich kann die notwendige Potentialverteilung auf verschiedene Weise berechnet werden, wie z. B. nach einer Ladungsdichte-Methode (Berechnung über die Dichte der Influenzladungen auf den Oberflächen) oder nach einer Matrix-Methode, als besonders zweckmäßig erweist sich jedoch eine Programmierung, die auf ein Relaxationsverfahren, insbesondere Overrelaxationsver­fahren, unter Optimierung des elektrostatischen Poten­tials durch Lösung der Laplace-Gleichung zurückgeht.
  • Als Variable gehen dabei die Zahl der parallelen Elektroden, ihr Lochdurchmesser, Abstand und die daran anzulegenden Spannungen ein.
  • Es hat sich gezeigt, daß zusammen mit der Strahlbün­delung gleichzeitig eine Raumfokussierung resultiert, die eine außerordentliche Empfindlichkeitssteigerung mit sich bringt:
  • Gemäß der Erfindung wird ein sehr großes Ionisations­volumen zugelassen (von z. B. 0,1 - 1 cm³) , so daß am Detektor auch bei sehr geringer Teilchendichte noch ein auswertbares Signal resultiert.
  • Bei einem bekannten neueren Flugzeit(massen)spektro­meter (R. Frey u. a. Z. Naturforsch. 40a (1985) 1349) werden dagegen sehr viel kleinere Ionisationsvolumina (z. B. 0,1 mm φ Fokusvolumen) vorausgesetzt, so daß insgesamt die Nachweisempfindlichkeit wesentlich geringer ist.
  • Besonders zweckmäßig ist im Rahmen der Erfindung eine programmierte Achsenpotentialverteilung mit mindestens zwei lokalen Extremwerten in Achsrichtung (wie in Figur 2 ersichtlich), woraus eine Minimierung der chromatischen Aberration resultiert gleichzeitig mit der Raumfokussierung (Kompensation der aus dem end­lichen Ionisationsvolumen resultierenden Flugzeit­unterschiede), die in konventionellen Geräten mit Hilfe von ionenoptischen Gittern (mit verminderter Transmission; s. o.) erreicht wird (W. C. Wiley u. I. H. McLaren, Rev.Sci.Instr. 26 (1955) 1150).
  • Die Ionen werden in der Ionenquelle insbesondere durch eine lasergepulste Ionenerzeugung gebildet.
  • Nachfolgend wird die Erfindung anhand der beigefügten schematischen Zeichnungen erläutert. Es zeigen:
    • Figur 1 die grundsätzliche Anordnung eines Flugzeit(massen)spektrometers mit erfindungsgemäß optimiertem Strahlverlauf;
    • Figur 2 eine optimierte Potentialverteilung in der Ionenquelle;
    • Figur 3 eine abgewandelte Elektrodengeometrie in der Ionenquelle;
    • Figur 4 Potential- und Strahlverlauf im erfindungsgemäßen elektrostatischen Reflektor;
    • Figur 5 einen üblichen (a) und einen erfin­dungsgemäßen (b) Detektor und
    • Figur 6 die Signalverteilung für eine Unter­suchung von Eisenclustern (Fe₁₀) im erfindungsgemäßen Gerät.
  • Figur 1 zeigt die Form des Ionenpakets einer Masse (von z. B. 560 amu) in Zeitschritten von 500 ns. Wie man sieht, wird beim Flugzeit(massen)spektrometer (das im übrigen auch für Flugzeitspektrometrie unab­hängig von der Massenerkennung dienen kann) ein in der Ionenquelle erzeugter gepulster Ionenstrahl (her­stammend von einem eingeschossenen Neutralteilchen­strahl, Oberflächensputterung oder dergleichen) durch eine Folge von Elektroden 2 räumlich und zeitlich gebündelt und gelangt zum Reflektor 3 (für den ein Optimierungsbeispiel in Figur 4 gezeigt ist), der ebenfalls eine Folge von Elektroden aufweist und in dem Geschwindigkeitsunterschiede durch Richtungsum­kehr kompensiert werden, so daß Ionen mit gleichem z/m gleichzeitig am Detektor 4 eintreffen.
  • Grundsätzlich kann ein solches Spektrometer für spe­zielle Untersuchungen auch ohne Reflektor betrieben werden, der jedoch üblicherweise vorgesehen ist und dann im Rahmen der vorliegenden Erfindung vorzugsweise ebenfalls mit einer Serie von Lochelektroden bestückt ist.
  • Bei bekannten Anordnungen enthalten sowohl die Ionen­quelle als auch der Reflektor üblicherweise potential­formende Drahtnetze und häufig ist auch am Detektor ein weiteres Netz vorgesehen.
  • Erfindungsgemäß wird nun auf solche Netze (insbeson­dere in Ionenquelle und Reflektor) vollständig ver­zichtet und damit sowohl eine verbesserte Transmission erreicht als auch eine Unterdrückung störender Sekun­däreffekte. Dabei werden die an den Elektroden ent­stehenden Felddurchgriffe zur Strahlführung und Strahl­formung ausgenutzt, indem eine diesem Umstand Rechnung tragende programmierte Potentialverteilung an den Elektroden 2 vorgesehen wird, wie z. B. in Figur 2 gezeigt ist und/oder eine der gewollten Optimierung angepaßte Elektrodenform vorgesehen wie in Figur 3 angedeutet ist. Der Detektor ist insbesondere gegen­über dem Flugrohr geringfügig negativ vorgespannt, um Sekundärelektronen abzuhalten.
  • Vorzugsweise ist der Detektor ein Kanalplattendetektor mit Justierungsmitteln zur Einrichtung der Position der Detektoreinfallsfläche und ihres Winkels relativ zum Strahl.
  • Die in Fig. 1 bis 3 gezeigten Ionenquellen haben jeweils 15 Lochelektroden, die der Einfachheit halber im wesentlichen gleich geformt sind (Fig. 1 und 2) oder auch einen unterschiedlichen Lochdurchmesser haben können (Fig. 3). Dabei sind vorzugsweise jeweils (zumindest) zwei dem Ionisationsort vorgelagerte, auf gleichem Potential befindliche Elektroden als Repeller­Elektroden vorgesehen (siehe Fig. 2), die der Homoge­nisierung des Potentials am Ionisationsort dienen.
  • Die Zahl der Elektroden einer Ionenquelle ist variabel. Zumindest werden drei Elektroden vorgesehen. Zweck­mäßigerweise existiert eine Serie von 8 bis 20 Loch­elektroden, die im wesentlichen in gleichem Abstand untereinander angeordnet sind, aber auch unterschied­liche Abstände haben können, was dann bei dem anzu­legenden Spannungen zu berücksichtigen ist.
  • Ein Vergleich der Figuren a und b von Figur 5 zeigt die Wirkung eines dreh- und verfahrbar justierten Kanalplattendetektors, durch dessen Einjustierung eine Optimierung der Auflösung und Empfindlichkeit zusätzlich erreicht wird. Die Kanalplatte(n) ist bzw. sind nur schematisch angedeutet. Die schraffierte Fläche gibt lediglich die Lage der Platte(n) an.
  • Das Ergebnis einer Ionenclusteruntersuchung von Eisen­clusterionen ist in Figur 6 dargestellt, aus der die hervorragende Massenauflösung erkennbar ist. Erfin­dungsgemäß wird eine Auflösung m/Δm von einigen Tau­send bei praktisch 100%-iger Transmission erreicht.

Claims (8)

1. Flugzeit(massen)spektrometer mit einer einen ge­pulsten Ionenstrahl erzeugenden Ionenquelle und potentialformenden Einrichtungen, ggf. einem Re­flektor mit Geschwindigkeitsfokussierung durch Strahlumkehr und einem Detektor,
gekennzeichnet durch
eine gitterlose Ionenquelle mit einer Serie von mindestens drei vorzugsweise parallelen Lochelek­troden mit einer strahlbündelnden, raumfokussieren­den Potentialverteilung.
2. Spektrometer nach Anspruch 1,
gekennzeichnet durch
eine axiale Potentialverteilung, deren erste Ab­leitung zumindest zwei Nullwerte durchläuft.
3. Spektrometer nach Anspruch 1 oder 2,
dadurch gekennzeichnet
daß die Potentialverteilung nach einem Relaxations­verfahren unter Optimierung des elektrostatischen Potentials durch Lösung der Laplace-Gleichung errechnet ist.
4. Spektrometer nach einem der Ansprüche 1 bis 3,
gekennzeichnet durch
eine lasergepulste Ionenerzeugung.
5. Spektrometer nach einem der Ansprüche 1 bis 4,
gekennzeichnet durch
einen gitterlosen Reflektor.
6. Spektrometer nach einem der vorangehenden Ansprüche,
gekennzeichnet durch
einen Kanalplattendetektor mit Justierungsmitteln zur Einrichtung der Position der Detektoreinfalls­fläche und ihres Winkels relativ zum Strahl.
7. Spektrometer nach einem der vorangehenden Ansprüche,
gekennzeichnet durch
eine Ionenquelle mit einer Serie von 8 bis 20 im wesentlich gleichen Lochelektroden mit im wesent­lichen gleichem Abstand.
8. Spektrometer nach einem der vorangehenden Ansprüche,
gekennzeichnet durch
zumindest zwei im wesentlichen auf gleichem Poten­tial befindliche, in der Ionenquelle dem Ionisa­tionsort vorgelagerte Lochelektroden als Repeller­Elektroden.
EP19890122805 1988-12-14 1989-12-11 Flugzeit(massen)spektrometer mit hoher Auflösung und Transmission Withdrawn EP0373550A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3842044A DE3842044A1 (de) 1988-12-14 1988-12-14 Flugzeit(massen)spektrometer mit hoher aufloesung und transmission
DE3842044 1988-12-14

Publications (2)

Publication Number Publication Date
EP0373550A2 true EP0373550A2 (de) 1990-06-20
EP0373550A3 EP0373550A3 (de) 1991-05-22

Family

ID=6369123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890122805 Withdrawn EP0373550A3 (de) 1988-12-14 1989-12-11 Flugzeit(massen)spektrometer mit hoher Auflösung und Transmission

Country Status (3)

Country Link
US (1) US5065018A (de)
EP (1) EP0373550A3 (de)
DE (1) DE3842044A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2355129A1 (de) * 2010-01-29 2011-08-10 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Reflektor für ein Flugzeitmassenspektrometer

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4022061A1 (de) * 1990-07-11 1992-01-16 Wollnik Hermann Analysenvorrichtung mit elektrothermischem atomisator und massenspektrometer zur atom- und molekuelanalyse
US5168158A (en) * 1991-03-29 1992-12-01 The United States Of America As Represented By The United States Department Of Energy Linear electric field mass spectrometry
US5202563A (en) * 1991-05-16 1993-04-13 The Johns Hopkins University Tandem time-of-flight mass spectrometer
US5272338A (en) * 1992-05-21 1993-12-21 The Pennsylvania Research Corporation Molecular imaging system
CA2101237C (en) * 1992-09-11 1999-04-13 Stephen Ward Downey Apparatus comprising means for mass spectrometry
US6002127A (en) * 1995-05-19 1999-12-14 Perseptive Biosystems, Inc. Time-of-flight mass spectrometry analysis of biomolecules
US5625184A (en) * 1995-05-19 1997-04-29 Perseptive Biosystems, Inc. Time-of-flight mass spectrometry analysis of biomolecules
DE19547949C2 (de) * 1995-09-19 2000-04-06 Bruker Daltonik Gmbh Flugzeitmassenspektrometer
US5654545A (en) * 1995-09-19 1997-08-05 Bruker-Franzen Analytik Gmbh Mass resolution in time-of-flight mass spectrometers with reflectors
US5641959A (en) * 1995-12-21 1997-06-24 Bruker-Franzen Analytik Gmbh Method for improved mass resolution with a TOF-LD source
US5742049A (en) * 1995-12-21 1998-04-21 Bruker-Franzen Analytik Gmbh Method of improving mass resolution in time-of-flight mass spectrometry
US5847385A (en) * 1996-08-09 1998-12-08 Analytica Of Branford, Inc. Mass resolution by angular alignment of the ion detector conversion surface in time-of-flight mass spectrometers with electrostatic steering deflectors
DE19642261A1 (de) * 1996-10-11 1998-04-16 Hoechst Ag Verfahren und Vorrichtung zum Erkennen der katalytischen Aktivität von Feststoffen
US6037586A (en) * 1998-06-18 2000-03-14 Universite Laval Apparatus and method for separating pulsed ions by mass as said pulsed ions are guided along a course
DE10005698B4 (de) * 2000-02-09 2007-03-01 Bruker Daltonik Gmbh Gitterloses Reflektor-Flugzeitmassenspektrometer für orthogonalen Ioneneinschuss
AU2001263385B2 (en) * 2000-05-12 2004-12-02 The Johns Hopkins University Microchannel plate detector assembly for a time-of-flight mass spectrometer
US6614020B2 (en) * 2000-05-12 2003-09-02 The Johns Hopkins University Gridless, focusing ion extraction device for a time-of-flight mass spectrometer
CA2409167C (en) * 2000-05-26 2006-02-07 Timothy J. Cornish Microchannel plate detector assembly for a time-of-flight mass spectrometer
GB0100862D0 (en) * 2001-01-11 2001-02-21 Scient Analysis Instr Ltd Reflactron
DE10156604A1 (de) * 2001-11-17 2003-05-28 Bruker Daltonik Gmbh Raumwinkelfokussierender Reflektor für Flugzeitmassenspektrometer
US8604423B2 (en) 2010-04-05 2013-12-10 Indiana University Research And Technology Corporation Method for enhancement of mass resolution over a limited mass range for time-of-flight spectrometry
GB201118270D0 (en) * 2011-10-21 2011-12-07 Shimadzu Corp TOF mass analyser with improved resolving power
CN103871830A (zh) * 2012-12-12 2014-06-18 中国科学院大连化学物理研究所 一种缩短离子回头峰时间的飞行时间质谱
CN113758990B (zh) * 2021-08-30 2024-09-17 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种用于团簇束流综合沉积的反射式tof装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3423394A1 (de) * 1983-11-30 1985-06-05 Shimadzu Corp., Kyoto Laufzeit-massenspektrometer
JPS60121662A (ja) * 1983-12-02 1985-06-29 Murata Mfg Co Ltd 質量分析装置
WO1986004732A1 (en) * 1985-01-30 1986-08-14 Hughes Aircraft Company Secondary ion collection and transport system for ion microprobe
EP0208894A2 (de) * 1985-07-10 1987-01-21 Bruker Analytische Messtechnik GmbH Flugzeit-Massenspektrometer mit einem Ionenreflektor
WO1988006060A1 (en) * 1987-02-13 1988-08-25 Arch Development Corp. Photo ion spectrometer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992632A (en) * 1973-08-27 1976-11-16 Hewlett-Packard Company Multiconfiguration ionization source
GB1488657A (en) * 1973-09-24 1977-10-12 Ion Tech Ltd Ion sources
US4072862A (en) * 1975-07-22 1978-02-07 Mamyrin Boris Alexandrovich Time-of-flight mass spectrometer
DE2540505A1 (de) * 1975-09-11 1977-03-24 Leybold Heraeus Gmbh & Co Kg Flugzeit-massenspektrometer fuer ionen mit unterschiedlichen energien
DE2844002A1 (de) * 1978-10-09 1980-05-14 Leybold Heraeus Gmbh & Co Kg Verfahren und vorrichtung zur analyse von fluiden
FR2560434B1 (fr) * 1984-02-29 1987-09-11 Centre Nat Rech Scient Spectrometre de masse a temps de vol
US4933551A (en) * 1989-06-05 1990-06-12 The United State Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Reversal electron attachment ionizer for detection of trace species

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3423394A1 (de) * 1983-11-30 1985-06-05 Shimadzu Corp., Kyoto Laufzeit-massenspektrometer
JPS60121662A (ja) * 1983-12-02 1985-06-29 Murata Mfg Co Ltd 質量分析装置
WO1986004732A1 (en) * 1985-01-30 1986-08-14 Hughes Aircraft Company Secondary ion collection and transport system for ion microprobe
EP0208894A2 (de) * 1985-07-10 1987-01-21 Bruker Analytische Messtechnik GmbH Flugzeit-Massenspektrometer mit einem Ionenreflektor
WO1988006060A1 (en) * 1987-02-13 1988-08-25 Arch Development Corp. Photo ion spectrometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 277 (E-355)(2000) 06 November 1985, & JP-A-60 121662 (MURATA SEISAKUSHO K K) 29 Juni 1985, *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2355129A1 (de) * 2010-01-29 2011-08-10 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Reflektor für ein Flugzeitmassenspektrometer
US8314381B2 (en) 2010-01-29 2012-11-20 Helmholtz-Zentrum Geesthacht Zentrum für Material-und Küstenforschung GmbH Reflector for a time-of-flight mass spectrometer

Also Published As

Publication number Publication date
DE3842044A1 (de) 1990-06-21
US5065018A (en) 1991-11-12
EP0373550A3 (de) 1991-05-22

Similar Documents

Publication Publication Date Title
EP0373550A2 (de) Flugzeit(massen)spektrometer mit hoher Auflösung und Transmission
DE69230174T2 (de) Flugzeitmassenspektrometer mit einer oeffnung zum ausgleich von uebertragungsvermoegen und aufloesung
DE3920566C2 (de)
EP0617451B1 (de) Abbildendes Elektronenenergiefilter
DE112011102323B4 (de) Ionendetektionsanordnung
DE3913965A1 (de) Direkt abbildendes sekundaerionen-massenspektrometer mit laufzeit-massenspektrometrischer betriebsart
DE1798021B2 (de) Einrichtung zur buendelung eines primaer-ionenstrahls eines mikroanalysators
DE102017000329B4 (de) Quadrupol-Massenspektrometer
DE69118492T2 (de) Massenspektrometer mit elektrostatischem Energiefilter
DE112010001856T5 (de) Gekrümmte ionenführung mit variierendem ionenablenkfeld unddarauf bezogene verfahren
DE102012202993B4 (de) Ionenschneider mit Beschleunigungs- und Verlangsamungs-Optik
EP1995758B1 (de) Monochromator und Teilchenstrahlquelle mit Monochromator
DE2647254C2 (de) Anordnung zum Bestrahlen eines Targets mit einem Strahl geladener Teilchen und Verwendung
DE3933317A1 (de) Saeule zur erzeugung eines fokussierten ionenstrahls
DE69623728T2 (de) Massenspektrometer
DE3231036C2 (de)
DE102020123567A1 (de) Vielzahl-Teilchenstrahl-System mit Kontrast-Korrektur-Linsen-System
DE2558107A1 (de) Vorfilter-ionisator-vorrichtung zur verwendung mit quadrupol-sekundaerionenmassenspektrometern
EP1386342A2 (de) Ablenksystem für ein teilchenstrahlgerät
DE102007013693A1 (de) Ionennachweissystem mit Unterdrückung neutralen Rauschens
DE2608958A1 (de) Vorrichtung zum erzeugen von strahlen aus geladenen teilchen
DE3522340A1 (de) Linsenanordnung zur fokussierung von elektrisch geladenen teilchen und massenspektrometer mit einer derartigen linsenanordnung
DE69121463T2 (de) Ionenbündelvorrichtung
DE69605053T2 (de) Kanonenlinse zur Partikelstrahlerzeugung
DE4041297A1 (de) Verfahren und vorrichtung zum waehlen der aufloesung eines ladungsteilchenstrahl-analysators

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19911122

17Q First examination report despatched

Effective date: 19931119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19951016

R18W Application withdrawn (corrected)

Effective date: 19951016