EP0370920B1 - Procédé de préparation de quinone à partir d'hydroquinone par électrolyse - Google Patents

Procédé de préparation de quinone à partir d'hydroquinone par électrolyse Download PDF

Info

Publication number
EP0370920B1
EP0370920B1 EP89420383A EP89420383A EP0370920B1 EP 0370920 B1 EP0370920 B1 EP 0370920B1 EP 89420383 A EP89420383 A EP 89420383A EP 89420383 A EP89420383 A EP 89420383A EP 0370920 B1 EP0370920 B1 EP 0370920B1
Authority
EP
European Patent Office
Prior art keywords
hydroquinone
quinone
electrolysis
cosolvent
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89420383A
Other languages
German (de)
English (en)
Other versions
EP0370920A1 (fr
Inventor
Olivier Le Roux
Jean Bachot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhone Poulenc Chimie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie SA filed Critical Rhone Poulenc Chimie SA
Priority to AT89420383T priority Critical patent/ATE87040T1/de
Publication of EP0370920A1 publication Critical patent/EP0370920A1/fr
Application granted granted Critical
Publication of EP0370920B1 publication Critical patent/EP0370920B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Definitions

  • the present invention relates to a process for the preparation of quinone from hydroquinone by electrolysis.
  • the present invention presents a new electrolytic process making it possible to prepare, with industrial yields, a quinone by electrolysis of an aqueous medium containing a hydroquinone; this new process is characterized in that one carries out the electrolysis of an aqueous dispersion or emulsion containing, in addition to said aqueous solution of hydroquinone, a stable co-solvent poorly soluble in water which is a good solvent for quinone and a poor solvent for hydroquinone.
  • the cosolvent must allow easy recovery of the quinone produced.
  • relatively high-boiling cosolvents may be of interest, since electrolysis will be possible at high temperatures, it is generally desirable to choose a relatively low-boiling product as co-solvent as this may facilitate the subsequent recovery of the quinone by simple evaporation of the cosolvent.
  • co-solvents having such properties, mention may be made of aromatic carbides (in particular toluene and benzene), cycloalkanes, alkanes and halogenated aliphatic carbides (such as methylene chloride and 1,2-dichloroethane). These halogenated aliphatic carbides seem to be the most interesting solvents.
  • aromatic carbides in particular toluene and benzene
  • cycloalkanes such as methylene chloride and 1,2-dichloroethane
  • halogenated aliphatic carbides seem to be the most interesting solvents.
  • the solubilities of para-benzoquinone in various solvents will be mentioned below, by way of examples: whereas, in these same solvents, hydroquinone is only soluble at a rate of a few g / l. Mixtures of these cosolvents may also be used
  • the relative amounts of water and of cosolvent can vary with the nature of the cosolvent and possibly of the reactants (hydroquinone and quinone).
  • these relative quantities should be adjusted to take into account, on the one hand, the conductivity of the emulsion (which would require a high proportion of aqueous phase) and, on the other hand, the amount of p-benzoquinone to be extracted (which would require a high proportion of organic phase).
  • the ratio, by volume, of the aqueous and organic phases is from 0.1 to 50 and preferably from 0.5 to 10. When said ratio is less than 0.1, the aqueous phase being in very low proportion, the conductivity of the mixture is poor. When said ratio is greater than 50, the possibilities of solubilization of the quinone are insufficient.
  • the "quality" (that is to say in fact the fineness and the stability) of the dispersion of the cosolvent in the aqueous phase can play a role in the yield of the reaction. It will be easy for the specialist, taking into account the preparation processes used to produce the dispersion or the emulsion (for example using a pump or a static mixer), to optimize said dispersion, possibly in it. adding inert emulsifiers or surfactants, to obtain maximum yield.
  • the temperature at which electrolysis takes place has a known influence (the increase in temperature improving the conductivity of the emulsion, improving the solubility of the reagents in their media and improving the kinetics of the reaction); however, if for quinone recovery problems a cosolvent with a relatively low boiling point is used, one will be limited by the boiling point of this cosolvent. In practice, temperatures of 10 to 80 ° C will be used.
  • the concentration of hydroquinone in water does not seem to be a decisive factor concerning the rate of conversion of hydroquinone to quinone with equal electrical yield, but any increase in said concentration (within the limit of the solubility of hydroquinone ) will promote volume yield.
  • the electric current density it is generally of the order of 5 to 40 A / dm2.
  • the reaction is carried out in a conventional electrolysis cell preferably comprising a separator.
  • a separator the latter is preferably of the cationic type such as for example a membrane of registered trademark NAFION.
  • the cathode compartment as known, reduction of water made conductive by an acid such as sulfuric acid is carried out (but it is also possible to carry out, in this cathode compartment any other electrochemical reduction reaction); the cathode must be non-corrodible and with as low an overvoltage as possible.
  • the dispersion or emulsion according to the invention is therefore admitted, comprising therefore an aqueous phase, the conductivity of which has been improved by the addition of an inert acid with respect to the reactants (such as the acid sulfuric, phosphoric acid or nitric acid) and / or a salt and an organic phase dispersed or emulsified in said aqueous phase.
  • the anode is made of a stable material (that is to say non-corrodible) which is advantageously an oxide or an alloy of lead or, preferably, a stop metal such as, for example, titanium whose surface is covered with metals or metal oxides, one or less of which belongs to the platinum family.
  • the structure of the anode can be very diverse; we will use anodes deployed or perforated, or full.
  • hydroquinones which can be used according to the invention can be defined as all those which, in an aqueous medium give rise, in the presence of the corresponding quinone, to a quinhydrone.
  • Examples 1 to 16 were carried out batchwise, that is to say by carrying out the electrolysis of a certain volume of dispersion (or emulsion), this dispersion being either contained in the suitably agitated anode compartment of the electrolyser , or put into circulation in a closed loop on said anode compartment.
  • Example 17 was carried out continuously.
  • a cell comprising a NAFION 423 separation membrane, a catholyte consisting of an aqueous solution of H2SO4 at 0.5 N, an INCOLOY 825 cathode an anode which is either made of coated titanium or of lead ; an amount of cosolvent has always been used in the anolyte such that the ratio, by volume, of the organic phase to the aqueous phase is 0.5, said aqueous phase being at 0.1 N of sulfuric acid.
  • Example 1 The results obtained in the transformation of hydroquinone into para-benzoquinone are collated in Table 1;
  • Example 1 was carried out with a titanium anode coated with solid platinum;
  • Examples 2 to 7 were carried out using an anode in expanded titanium covered with platinum;
  • Examples 8 to 11 were carried out using a perforated titanium anode on which oxides of iridium, cobalt and tantalum were simultaneously deposited;
  • Example 12 was carried out with a perforated lead electrode;
  • Example 13 was carried out with an aperture in palladium titanium covered with platinum-iridium.
  • Example 2 In Examples 2, 3, 5, 6, and 7, the voltage ⁇ V varied during the test from approximately 6 to approximately 8 V; this voltage remained constant and equal to 4.5 V in Example 4; at 4.25 V in Example 8; at 5 V in Example 9; at 2.8 V in Examples 10 and 11; at 4.9 V in Example 12 and at 3.2 V in Example 13.
  • Example 2 The conditions of Example 2 were reproduced using, in place of hydroquinone, toluhydroquinone in a concentration of 10 g / l. The corresponding toluquinone was obtained with a faradic yield of 84% and a chemical yield of 88%.
  • the other experimental conditions are the following:
  • the faradic yield was 85%.
  • a titanium anode coated with platinum and an anolyte were used, the aqueous phase of which has an acidity of 0.1 N in sulfuric acid.
  • the other experimental conditions are the following: Volume ratio of the organic phase to the aqueous phase: 1.2.
  • the faradic yield of the reaction was 68.5% and the chemical yield 100%.
  • the installation includes an electrolyser with two compartments separated by a cationic type separator (NAFION brand membrane).
  • NAFION brand membrane a cationic type separator
  • a mixture of 0.1 N sulfuric acid, dichloromethane (ratio of the organic phase to the aqueous phase of 0.5) and hydroquinone (hydroquinone concentration 20 g / l) is sent.
  • the mixture is decanted, the organic phase is evacuated in order to recover the quinone produced there, and the aqueous phase is recycled (and supplemented by a supply of water, hydroquinone and dichloromethane).
  • the anode is made of titanium coated with platinum and iridium.
  • the temperature is 35 ° C, the current density of 10A / dm2 and the potential difference of 4.25 V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Cosmetics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

  • La présente invention concerne un procédé de préparation de quinone, à partir d'hydroquinone, par électrolyse.
  • On sait que l'électrolyse d'une solution aqueuse d'une hydroquinone peut conduire à la formation de la quinone correspondante. Mais, cela est notamment le cas lorsqu'on réalise l'électrolyse d'une solution aqueuse de l'hydroquinone, on constate que le rendement de cette réaction est très faible du fait de la précipitation d'un composé résultant de l'addition d'une molécule d'hydroquinone sur une molécule de quinone, ledit composé étant dénommé quinhydrone.
  • On a cherché à diminuer les risques de formation de cette molécule d'addition (quinhydrone) en opérant soit dans des solutions très diluées, ce qui conduit à des rendements faradiques très faibles, soit à température élevée mais il y a alors risque de dégradation de la quinone obtenue.
  • La présente invention présente un procédé électrolytique nouveau permettant de préparer, avec des rendements industriels, une quinone par électrolyse d'un milieu aqueux contenant une hydroquinone ; ce procédé nouveau est caractérisé en ce que l'on réalise l' électrolyse d'une dispersion ou émulsion aqueuse contenant, outre ladite solution aqueuse de l'hydroquinone, un cosolvant stable peu soluble dans l'eau qui est un bon solvant de la quinone et un mauvais solvant de l'hydroquinone.
  • Pour sélectionner le cosolvant à utiliser, il conviendra donc de tenir compte des nécessités suivantes :
    • ledit cosolvant doit être stable ; il s'agit bien entendu d'une stabilité chimique vis-à-vis de l'ensemble des produits présents et d'une stabilité électrochimique dans les conditions opératoires utilisées. Cette stabilité du cosolvant est importante dans la mesure où toute instabilité de ce produit se traduira par l'apparition d'impuretés (qu'il faudra ultérieurement éliminer) et par une baisse du rendement,
    • ledit cosolvant doit être peu soluble dans l'eau et réciproquement ; ledit cosolvant est en effet employé pour constituer une phase indépendante de la phase aqueuse, la solubilité de ce cosolvant dans l'eau doit donc être aussi faible que possible. Cette faible solubilité du cosolvant dans l'eau implique que l'électrolyse s'effectuera sur un milieu présentant deux phases (émulsion),
    • ledit cosolvant doit être un mauvais solvant pour l'hydroquinone, et un bon solvant pour la quinone. En effet, un des rôles de ce cosolvant sera d'assurer, au cours de l'électrolyse, une séparation effective de l'hydroquinone d'avec la quinone de façon à éviter la formation, connue, d'un produit d'addition du type quinhydrone.
  • Outre ces propriétés essentielles à la bonne marche du procédé selon l'invention, le cosolvant doit permettre de réaliser une récupération facile de la quinone produite. Bien que les cosolvants à point d'ébullition relativement élevé puissent être intéressants, du fait qu'il sera possible d'effectuer l'électrolyse à des températures élevées, il est généralement souhaitable de choisir comme cosolvant un produit à point d'ébullition relativement bas car cela pourra faciliter la récupération ultérieure de la quinone par simple évaporation du cosolvant.
  • Parmi les cosolvants possédant de telles propriétés, on pourra citer des carbures aromatiques (notamment toluène et benzène) des cycloalcanes, des alcanes et des carbures aliphatiques halogénés (tels que le chlorure de méthylène et le dichloro-1,2-éthane). Ces carbures aliphatiques halogénés semblent être les solvants les plus intéressants. On mentionnera ci-après, à titre d'exemples, les solubilités de la para-benzoquinone dans divers solvants :
    Figure imgb0001

    alors que, dans ces mêmes solvants, l'hydroquinone n'est soluble qu'à raison de quelques g/l. On pourra également utiliser des mélanges de ces cosolvants
  • Dans le procédé selon l'invention, les quantités relatives d'eau et de cosolvant peuvent varier avec la nature du cosolvant et éventuellement des réactifs (hydroquinone et quinone). Pour des réactifs donnés (par exemple l'électrolyse de l'hydroquinone donnant naissance à la p-benzoquinone), il conviendra d'ajuster ces quantités relatives pour tenir compte, d'une part, de la conductibilité de l'émulsion (qui nécessiterait une proportion élevée de phase aqueuse) et, d'autre part, de la quantité de p-benzoquinone à extraire (ce qui nécessiterait une proportion élevée de phase organique). Dans la pratique, le rapport, en volume, des phases aqueuse et organique est de 0,1 à 50 et de préférence de 0,5 à 10. Lorsque ledit rapport est inférieur à 0,1, la phase aqueuse se trouvant en très faible proportion, la conductibilité du mélange est mauvaise. Lorsque ledit rapport est supérieur à 50, les possibilités de solubilisation de la quinone sont insuffisantes.
  • On notera également que la "qualité" (c'est-à-dire en fait la finesse et la stabilité) de la dispersion du cosolvant dans la phase aqueuse peut jouer un rôle sur le rendement de la réaction. Il sera aisé pour le spécialiste, compte tenu des procédés de préparation utilisés pour réaliser la dispersion ou l'émulsion (par exemple à l'aide d'une pompe ou d'un mélangeur statique), d'optimiser ladite dispersion, éventuellement en lui ajoutant des agents émulsifiants ou tensio-actifs inertes, pour obtenir un rendement maximum.
  • La température à laquelle a lieu l'électrolyse a une influence connue (l'augmentation de la température améliorant la conductivité de l'émulsion, améliorant la solubilité des réactifs dans leurs milieux et améliorant la cinétique de la réaction) ; cependant, si pour des problèmes de récupération de la quinone on utilise un cosolvant à point d'ébullition relativement bas, on sera limité par le point d'ébullition de ce cosolvant. Dans la pratique, on utilisera des températures de 10 à 80°C.
  • La concentration de l'hydroquinone dans l'eau ne paraît pas être un facteur décisif concernant le taux de conversion de l'hydroquinone en quinone à rendement électrique égal, mais toute augmentation de ladite concentration (dans la limite de la solubilité de l'hydroquinone) favorisera le rendement volumique.
  • En ce qui concerne la densité de courant électrique, elle est généralement de l'ordre de 5 à 40 A/dm².
  • La réaction est effectuée dans une cellule d'électrolyse classique comportant, de préférence, un séparateur. Lorsque ladite cellule comporte un séparateur, celui-ci est de préférence de type cationique tel que par exemple une membrane de marque déposée NAFION. Dans le compartiment cathodique, on réalise, comme connu, la réduction d'une eau rendue conductrice par un acide tel que l'acide sulfurique (mais il est aussi possible de réaliser, dans ce compartiment cathodique toute autre réaction de réduction électrochimique) ; la cathode doit être non corrodable et avec une surtension aussi faible que possible. Dans le compartiment anodique, on admet la dispersion ou l'émulsion selon l'invention comportant donc une phase aqueuse dont on a amélioré la conductibilité grâce à l'addition d'un acide inerte vis-à-vis des réactifs (comme l'acide sulfurique, l'acide phosphorique ou l'acide nitrique) et/ou d'un sel et une phase organique dispersée ou émulsionnée dans ladite phase aqueuse. L'anode est réalisée en un matériau stable (c'est-à-dire non corrodable) qui est avantageusement un oxyde ou un alliage de plomb ou, de préférence, un métal d'arrêt tel que, par exemple, du titane dont la surface est recouverte de métaux ou d'oxydes métalliques dont l'un ou moins appartient à la famille du platine. La structure de l'anode peut être très diverse ; on utilisera des anodes déployées ou trouées, ou pleines.
  • On peut opérer, bien évidemment, en discontinu ou en continu, ce dernier mode de mise en oeuvre étant préféré ; on peut également, pour optimiser les rendements, utiliser plusieurs réacteurs montés en série dans chacun desquels les conditions opératoires pourront être adaptées aux mélanges à traiter.
  • Les hydroquinones, utilisables selon l'invention, peuvent être définies comme toutes celles qui, en milieu aqueux donnent naissance, en présence de la quinone correspondante, à une quinhydrone.
  • Le cas particulier type est celui où l'on prépare la para-benzoquinone à partir de l'hydroquinone. C'est essentiellement ce cas particulier qui sera illustré ci-après.
  • Les exemples non limitatifs illustrent l'invention. Les exemples 1 à 16 ont été réalisés en discontinu, c'est-à-dire en effectuant l'électrolyse d'un certain volume de dispersion (ou émulsion), cette dispersion étant soit contenue dans le compartiment anodique convenablement agité de l'électrolyseur, soit mise en circulation en une boucle fermée sur ledit compartiment anodique. L'exemple 17 a été effectué en continu.
  • EXEMPLE 1 A 13
  • Dans tous les exemples, on a utilisé une cellule comportant une membrane de séparation NAFION 423, un catholyte constitué par une solution aqueuse de H₂SO₄ à 0,5 N, une cathode en INCOLOY 825 une anode qui est soit en titane revêtu, soit en plomb ; on a toujours utilisé dans l'anolyte une quantité de cosolvant telle que le rapport, en volume, de la phase organique sur la phase aqueuse est 0,5 ladite phase aqueuse étant à 0,1 N d'acide sulfurique.
  • Dans tous les essais, on a constaté que le rendement chimique, c'est-à-dire le pourcentage d'hydroquinone transformée que l'on retrouve sous forme de quinone (en moles), est très élevé de 91 à 100 %. Le rendement faradique, qui est très élevé (80 à 100 %) en début de réaction, diminue au bout d'un certain temps du fait de la diminution de la concentration de l'hydroquinone et du développement de réactions parasites (oxydation de l'eau).
  • Il faudrait donc, en toute logique, considérer les rendements de la réaction à chaque instant de la durée de cette réaction ; une telle étude, même si elle est intéressante pour optimiser la réaction sur le plan industriel, n'est pas actuellement terminée, on se contentera donc de fournir des résultats de rendements globaux en fin de réaction, ladite réaction ayant été arrêtée après qu'environ 70 à 95 % de l'hydroquinone de départ ont été consommés, c'est-à-dire après des durées de réaction de l'ordre de 50 à 80 minutes.
  • Les résultats obtenus dans la transformation de l'hydroquinone en para-benzoquinone sont rassemblés dans le tableau 1 ; l'exemple 1 a été réalisé avec une anode en titane revêtu de platine de forme pleine ; les exemples 2 à 7 ont été réalisés en utilisant une anode en titane déployé recouvert de platine ; les exemples 8 à 11 ont été réalisés en utilisant une anode trouée en titane sur lequel on a déposé simultanément des oxydes d'iridium, de cobalt et de tantale ; l'exemple 12 a été réalisé avec une électrode trouée en plomb ; l'exemple 13 a été réalisé avec une anode trouée en titane palladié recouvert de platine-iridium.
  • Dans les exemples 2, 3, 5, 6, et 7, la tension ΔV a varié au cours de l'essai d'environ 6 à environ 8 V ; cette tension est restée constante et égale à 4,5 V dans l'exemple 4 ; à 4,25 V dans l'exemple 8 ; à 5 V dans l'exemple 9 ; à 2,8 V dans les exemples 10 et 11 ; à 4,9 V dans l'exemple 12 et à 3,2 V dans l'exemple 13.
  • EXEMPLE 14
  • On a reproduit les conditions de l'exemple 2 en utilisant, à la place de l'hydroquinone, la toluhydroquinone en concentration de 10 g/l. On a obtenu la toluquinone correspondante avec un rendement faradique de 84 % et un rendement chimique de 88 %.
  • EXEMPLE 15
  • Dans cet exemple, on a utilisé une anode en titane palladié recouvert de platine et d'iridium et un anolyte dont la phase aqueuse a une acidité de 0,4 N en H₂SO₄.
  • Les autres conditions expérimentales sont les suivantes :
    Figure imgb0002
  • Le rendement faradique a été de 85 %.
  • EXEMPLE 16
  • Dans cet exemple, on a utilisé une anode en titane revêtu de platine et un anolyte dont la phase aqueuse a pour acidité 0,1 N en acide sulfurique.
  • Les autres conditions expérimentales sont les suivantes :
    Figure imgb0003

    Rapport en volume de la phase organique à la phase aqueuse : 1,2.
  • Le rendement faradique de la réaction a été de 68,5 % et le rendement chimique de 100 %.
  • EXEMPLE 17
  • Cet exemple a été réalisé "en continu".
  • L'installation comporte un électrolyseur à deux compartiments séparés par un séparateur de type cationique (membrane de marque NAFION).
  • Dans le compartiment cathodique on fait circuler une solution aqueuse d'acide sulfurique à 0,5 N.
  • Dans le compartiment anodique, on envoie un mélange d'acide sulfurique 0,1 N, de dichlorométhane (rapport de la phase organique à la phase aqueuse de 0,5) et d'hydroquinone (concentration en hydroquinone 20 g/l). A la sortie de ce compartiment, le mélange est décanté, la phase organique est évacuée afin d'y récupérer la quinone produite, et la phase aqueuse est recyclée (et complétée par un apport d'eau, d'hydroquinone et de dichlorométhane).
  • L'anode est en titane revêtu de platine et d'iridium.
  • La température est de 35°C, la densité de courant de 10A/dm² et la différence de potentiel de 4,25 V.
  • On a obtenu un rendement faradique de 100 % et un taux de conversion de 78 %.
    Figure imgb0004

Claims (5)

  1. Procédé de préparation de quinone à partir d'hydroquinone par électrolyse, caractérisé en ce que l'on réalise l'électrolyse, dans le compartiment anodique d'un électrolyseur, d'une dispersion ou émulsion comportant une solution aqueuse conductrice de l'hydroquinone et au moins un cosolvant stable, peu soluble dans l'eau, qui est un bon solvant de la quinone produite et un mauvais solvant de l'hydroquinone.
  2. Procédé selon la revendication 1, caractérisé en ce que l'on effectue l'électrolyse d'une solution d'hydroquinone en vue d'obtenir la para-benzoquinone.
  3. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que ledit cosolvant est choisi parmi les hydrocarbures aromatiques, les cycloalcanes, les alcanes et les hydrocarbures aliphatiques halogénés et leurs mélanges.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'électrolyseur comporte un séparateur de préférence de type cationique.
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'anode est constituée d'un métal stable qui est de préférence un métal d'arrêt tel que du titane dont la surface est recouverte de métaux ou d'oxydes métalliques dont l'un au moins appartient à la famille du platine.
EP89420383A 1988-10-14 1989-10-09 Procédé de préparation de quinone à partir d'hydroquinone par électrolyse Expired - Lifetime EP0370920B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89420383T ATE87040T1 (de) 1988-10-14 1989-10-09 Verfahren zur herstellung von chinon aus hydrochinon durch elektrolyse.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8814361A FR2637916B1 (fr) 1988-10-14 1988-10-14 Procede de preparation de quinone a partir d'hydroquinone par electrolyse
FR8814361 1988-10-14

Publications (2)

Publication Number Publication Date
EP0370920A1 EP0370920A1 (fr) 1990-05-30
EP0370920B1 true EP0370920B1 (fr) 1993-03-17

Family

ID=9371546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89420383A Expired - Lifetime EP0370920B1 (fr) 1988-10-14 1989-10-09 Procédé de préparation de quinone à partir d'hydroquinone par électrolyse

Country Status (9)

Country Link
US (1) US4963234A (fr)
EP (1) EP0370920B1 (fr)
JP (1) JPH02141592A (fr)
AT (1) ATE87040T1 (fr)
CA (1) CA1330773C (fr)
DE (1) DE68905443T2 (fr)
ES (1) ES2041436T3 (fr)
FR (1) FR2637916B1 (fr)
IE (1) IE893306L (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023161206A1 (fr) * 2022-02-25 2023-08-31 Dsm Ip Assets B.V. Procede de production de benzoquinones

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3897319A (en) * 1971-05-03 1975-07-29 Carus Corp Recovery and recycle process for anodic oxidation of benzene to quinone
JPS57134581A (en) * 1981-02-13 1982-08-19 Shigeru Torii Production of 1, 4-naphthoquinone derivative
JPS57198283A (en) * 1981-05-27 1982-12-04 Asahi Glass Co Ltd Electrolytic oxidation method for organic compound

Also Published As

Publication number Publication date
ES2041436T3 (es) 1993-11-16
EP0370920A1 (fr) 1990-05-30
JPH034625B2 (fr) 1991-01-23
JPH02141592A (ja) 1990-05-30
FR2637916B1 (fr) 1990-12-07
ATE87040T1 (de) 1993-04-15
FR2637916A1 (fr) 1990-04-20
DE68905443T2 (de) 1993-06-24
US4963234A (en) 1990-10-16
IE893306L (en) 1990-04-14
CA1330773C (fr) 1994-07-19
DE68905443D1 (de) 1993-04-22

Similar Documents

Publication Publication Date Title
CA2105281C (fr) Electrosynthese indirecte par cerium
CH679158A5 (fr)
JPH0211673B2 (fr)
EP0288344B1 (fr) Procédé électrochimique pour récupérer le rhodium métallique à partir de solutions aqueuses de catalyseurs usagés
EP0370920B1 (fr) Procédé de préparation de quinone à partir d'hydroquinone par électrolyse
JP2509206B2 (ja) セリウム酸化剤
EP0332512B1 (fr) Procédé d'oxydation électrochimique du cérium 3+ en cérium 4+, en émulsion
FR2546910A1 (fr) Procede de preparation de l'acide squarique par tetramerisation electrolytique de monoxyde de carbone dans du nitrile aliphatique anhydre comme solvant
EP0914195A1 (fr) Procede de separation d'un catalyseur par electrodialyse membranaire
EP0203851B1 (fr) Procédé électrochimique de préparation de dérivés organiques trifluoro(ou chlorodifluoro ou dichlorofluoro) méthylés
EP1332242B1 (fr) Procede electrochimique de transformation selective des composes alkylaromatiques en aldehydes
FR2542763A1 (fr) Procede et appareillage pour l'electrolyse d'une solution aqueuse diluee d'alcali caustique
EP0188929B1 (fr) Nouvelles électrodes activées à l'aide d'hétéropolyacides, leur préparation et leur application, notamment comme cathodes pour l'électrolyse de l'eau en milieu acide
BE1014628A5 (fr) Procede de preparation de composes perfluoroorganiques par fluoration electrochimique.
FR2537557A1 (fr) Procede catalytique de production de peroxyde d'hydrogene en phase liquide
EP0179676B1 (fr) Procédé de préparation d'acide glyoxylique par oxydation électrochimique anodique du glyoxal
US5705049A (en) Indirect cerium mediated electrosynthesis
EP0245133A1 (fr) Fonctionnalisation de iodo-polyfluoroalcanes par réduction électrochimique et nouveaux composés fluorés ainsi obtenus
FR2462412A1 (fr) Procede de preparation d'anisaldehyde
FR2462411A1 (fr) Procede de preparation de p-tertiobutylbenzaldehyde
EP0100822B1 (fr) Procédé pour la préparation de cyclopentadéc-4-ynone et de son homologue 3-méthyle
FR2665715A1 (fr) Procede electrochimique pour la preparation de l'acide 4,4'-dinitrostilbene-2,2'-disulfonique et de ses sels.
BE638178A (fr)
WO2008034990A1 (fr) Procede de preparation d'une composition d'acide glucuronique ou d'un derive d'acide glucuronique comprenant une etape d'oxydation electrochimique
BE863048A (fr) Procede de preparation de disulfure de tetralkylthiuram

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900502

17Q First examination report despatched

Effective date: 19920525

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930317

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930317

REF Corresponds to:

Ref document number: 87040

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68905443

Country of ref document: DE

Date of ref document: 19930422

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930406

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930924

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930929

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19931009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19931011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931011

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931028

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931031

Ref country code: BE

Effective date: 19931031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2041436

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: RHONE POULENC CHIMIE

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941031

Ref country code: CH

Effective date: 19941031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19991007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051009