EP0368753B1 - Elektrophoretischer verschleissfester metallkeramischer Überzug, verfestigt durch elektrolytische Vernickelung - Google Patents

Elektrophoretischer verschleissfester metallkeramischer Überzug, verfestigt durch elektrolytische Vernickelung Download PDF

Info

Publication number
EP0368753B1
EP0368753B1 EP89403069A EP89403069A EP0368753B1 EP 0368753 B1 EP0368753 B1 EP 0368753B1 EP 89403069 A EP89403069 A EP 89403069A EP 89403069 A EP89403069 A EP 89403069A EP 0368753 B1 EP0368753 B1 EP 0368753B1
Authority
EP
European Patent Office
Prior art keywords
nickel
metal
carried out
ceramic
bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89403069A
Other languages
English (en)
French (fr)
Other versions
EP0368753A1 (de
Inventor
Martine Descamp
Yves Christian Louis Alain Honnorat
Michel Meyer Ruimi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0368753A1 publication Critical patent/EP0368753A1/de
Application granted granted Critical
Publication of EP0368753B1 publication Critical patent/EP0368753B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/91Earth boring fluid devoid of discrete aqueous phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12139Nonmetal particles in particulate component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12931Co-, Fe-, or Ni-base components, alternative to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component

Definitions

  • the present invention relates to steel or superalloy engine parts comprising a coating preventing wear in alternating friction at medium temperature, that is to say close to 700 ° C., as well as the process for obtaining such coatings.
  • turbomachines for example, in particular those intended for aviation, a certain number of parts subjected to temperatures of 400 ° to 800 ° undergo alternating friction against which they must be protected.
  • the invention aims to solve this problem to provide an anti-wear coating which remains effective above 700 ° C continuously.
  • the duration of step a) is between 5 and 60 seconds to obtain an electrophoretic deposit with a thickness between 10 and 40 microns depending on the particle size of the powders used.
  • step b) of electrolytic pre-nickel plating is carried out in an electrolyte bath containing ammonium lactate and having its pH maintained between 6.8 and 7 by adding sodium hydroxide.
  • test pieces After a preparation of known type comprising polishing and cleaning, the test pieces are mounted in the cathode position in a device of known type allowing electrophoretic deposition.
  • the bath used is based on isopropanol / nitromethane with a metallic or organometallic salt soluble in the electrolyte.
  • the metalloceramic mixture to be deposited consists in the following examples of 80% by weight of cobalt-based superalloy or of powder of M-Cr Al Y type and of 20% by weight of ceramic powder.
  • KC25NW (AFNOR standard) was used, sold under the trade name HS 31, whose weight composition is Co: Base; Cr 24-26%; Ni 10 to 12%; W 7 to 9%.
  • the filing conditions were as follows: U: 500 V, duration between 5 and 60 seconds with magnetic stirring.
  • test pieces are finally subjected to a nickel stress relieving treatment, at 600 ° C. under vacuum for 4 hours.
  • Table 1 summarizes the different operating conditions tested during the pre-nickel plating and nickel plating operations. In each case, two or three stacks (each comprising an electrophoretic deposition, a pre-stripping in a bath close to neutral and a nickel plating in an acid bath) were carried out.
  • Electrophoretic deposition of a mixture of powders Co Ni Cr Al Y Ta plus 20% by weight of Al2O3 alumina, each powder having a particle size of less than 25 microns, is carried out on a Z 12 C 13 substrate as indicated above.
  • the pre-nickel plating in a near-neutral bath with ammonium lactate is carried out at 30 ° C for 20 minutes under a d.d.c. 0.1 A / dm2.
  • nickel plating in a sulfamate bath is carried out for a period of 60 min. It is separated into two stages with different parameters (temperature and ddc).
  • a first step (C1) the temperature is 30 ° C and the ddc of 0.5 A / dm2.
  • C2 the bath temperature is brought to 50 ° C and the ddc to 1A / dm2.
  • two consecutive stacks each comprising an electrophoretic metalloceramic deposit, a pre-nickel plating and a nickel plating as described above, are carried out and then a stress relieving treatment of the nickel at 600 ° C. under vacuum for 4 hours is carried out.
  • the final composition of the coating is an alloy comprising approximately 50% metalloceramic powder and 50% electrolytic nickel.
  • Figure 1 shows that the coating is uniform and that its thickness varies from 35 to 50 microns.
  • the photo in FIG. 2, at a higher magnification, carried out on an area with an average thickness of 35 microns shows a good distribution of the alumina particles in the electrolytic nickel.
  • the figure in Figure 3, at the same magnification, carried out on an area 50 microns thick, also shows the good distribution of metallic and ceramic particles in the thickness of the coating.
  • Sample 326 has received a single stack and will be used for comparative grid resistance tests.
  • the metal powder used here is identical to that of the example and with the same particle size.
  • the ceramic powder is a chromium carbide Cr3 C2 with a particle size between 20 and 45 microns (20% by weight of the mixture).
  • the operating conditions are the same as in the previous example. It can be seen that after two stackings (sample 331), a homogeneous coating with a thickness of between 40 and 70 microns is obtained (FIG. 4).
  • the photos in FIGS. 5 and 6 show that the substrate / metallo-ceramic alloy interface is chemically healthy, as in the previous example (FIGS. 2 and 3) but has a few pores, as well as within the alloy formed. , a certain number of pores are not filled during nickel plating.
  • the distribution of M-Cr Al Y and chromium carbide particles in the metalloceramic alloy is regular and homogeneous.
  • Sample 333 coated with a single stack, will be used for comparative tests of resistance to the grid.
  • the same powder Co Ni Cr AI Y Ta is used, which is incorporated 20% by weight of boron nitride BN, the latter having a particle size between 30 and 60 microns.
  • the new alloy made up contains 49% of a mixture of Co Ni Cr Al Y Ta - BN and 51% of electrolytic nickel.
  • the anti-wear coating layer ( Figure 7) has a uniform thickness between 60 and 70 microns.
  • the grains of BN larger than those of M-Cr Al Y are nevertheless distributed regularly in the layer and the nickel has diffused homogeneously towards the substrate.
  • Co Ni Cr Al Y Ta powder is used to which 20% by weight of titanium diboride TiB2 is mixed, the latter having a particle size of less than 4 microns.
  • Three stacks are produced under operating conditions strictly identical to those of the previous example.
  • the new alloy formed contains a little more than 50% of M Cr Al Y Ta - Ti B2 and a little less than 50% of electrolytic nickel.
  • the thickness of the anti-wear layer ( Figure 10) is constant over the entire surface of the sample, close to 54 microns.
  • the particles of titanium diboride of very small particle size are particularly well distributed as well as the grains of M - Cr Al Y Ta in the middle of electrolytic nickel.
  • the cobalt-based superalloy KC25NW (trade name HS31) is used with a particle size of less than 25 microns.
  • FIGS. 13 to 15 also show the regularity of the thickness of the deposit of between 70 and 80 microns and the homogeneous distribution of the particles of HS®31 and of alumina in the electrolytic nickel.
  • the M-Cr Al Y powder from Examples 1 to 4 was used mixed with 20% by weight of alumina with a particle size of less than 25 microns.
  • alumina with a particle size of less than 25 microns.
  • the pre-nickel plating is carried out at room temperature for 6 min under a d.d.c. between 4 and 4.5 A / dm2.
  • the deposition of the nickel flash is followed by an electrolytic deposition of nickel in a sulfamate bath under the conditions indicated above for the sulfamate nickel-plating operations of step (c) of the invention.
  • the metalloceramic deposition according to the invention is carried out under conditions identical to those of Examples 3 to 5, that is to say with three stacks, the last stack being followed by stress relieving under vacuum for 4 hours at 600 ° C.
  • the electrolytic nickel sublayer has a thickness close to 25 microns while the thickness of the metalloceramic layer is between 80 and 90 microns.
  • the particles of M-Cr Al Y and alumina are regularly distributed and the interdiffusion of the electrolytic nickel and the anti-wear layer has produced a particularly effective bonding of the metalloceramic layer.
  • an electrolytic nickel undercoat was produced under the same conditions by increasing the duration of nickel plating in order to obtain an undercoat of approximately 45 microns thick.
  • a metalloceramic deposition was then carried out comprising 70% by weight of the same M-Cr Al Y powder and 30% alumina with a particle size less than 4 microns.
  • the anti-wear deposit then has a thickness of between 50 and 60 microns. Given the thickness of the nickel sublayer, a coating with a thickness of between 95 and 105 microns is obtained.
  • the metalloceramic coating always comprises approximately 50% of nickel, the latter being distributed in a slightly less homogeneous manner than in the previous deposits.
  • test pieces consist of pins 1 having a diametral boss 2 of convex shape which receives an anti-wear deposit according to the invention according to two of the grades represented in examples 1 and 2 and corresponding respectively to samples 325 (Ni Co Cr Al Y Ta + 20% Al2 O3) and 331 (Ni Co Cr Al Y Ta + 20% Cr3C2).
  • Two identical test pieces 1 are screwed face to face on two arms 3a and 3b articulated on axes 4.
  • the arm 3a is actuated according to an alternating angular movement of angle alpha by means of an eccentric 5, while the arm 3b is held resting against the arm 3a by a leaf spring 6 exerting a load which can vary from 1.7 to 70 daN.
  • the extreme part of the arms 3a and 3b comprising the test pieces 2 is disposed inside a heated enclosure 7 making it possible to conduct the friction tests according to a temperature range from 20 ° C to 600 ° C.
  • the frequency of the friction can be adjusted between 0 and 50 Hz and the amplitude of the movement can vary from 0.1 to 2 mm.
  • FIG. 27, taken from Table 3, is a comparison of the volumes used in running-in as a function of the temperature for the five tests mentioned above. Curves 1 to 5 show the values of tests No. 1 to 5 above.
  • the deposit according to the invention containing 20% alumina (lot 325) has, due to its low wear in running in and the relatively high critical wear pressure, a very good wear resistance, superior or at least equivalent to other comparison coatings.
  • the deposit according to the invention comprising chromium carbide (lot 331 - curve N ° 2) has characteristics of the same quality from 400 ° C, temperature beyond which the wear resistance becomes higher than that of Amdry 996 + Al2O3 (curve N ° 3) and Tribomet 104C (curve 5) and close to that of the HS 31 plasma (curve N ° 4).
  • FIG. 27 therefore shows the great advantage of consolidation by low temperature electrolytic nickel plating, the results of which are much higher than those of the high temperature heat treatment (1150 ° / 4 h) of curve 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Claims (14)

  1. Motorenteil aus Stahl oder einer Superlegierung mit einem verschleißfesten Schutzüberzug gegen eine alternierende reibende Bewegung bei einer mittleren Temperatur zwischen 400°C und 800°C,
    dadurch gekennzeichnet,
    daß der Schutzüberzug von einer metallkeramischen Struktur ist, die ausgehend von einer Superlegierung auf Cobaltbasis vom Typ KC 25 NW mit der gewichtsmäßigen Zusammensetzung: Co-Grundlage, 24 bis 26 % Cr, 10 bis 12 % Ni und 7 bis 9 % W oder einer Mischung von Metallpulvern vom Typ M-CrAlY, worin M ein aus der Gruppe Ni, Co, Fe oder einer Mischung derselben mit einem eventuellen Zusatz von Ta ausgewähltes Metall ist, und Keramikpulvern, ausgewählt aus der Gruppe der Oxide, insbesondere nach Art des Al₂ 0₃ oder Cr₂ 0₃, der Carbide, insbesondere nach Art des BN oder TiN und der Boride, insbesondere nach Art des TiB₂, gebildet wird durch eine elektrophoretische Abscheidung mit nachfolgender Konsolidierung und Bindung an das Substrat durch eine elektrolytische Vernickelung und thermische Behandlung zum Spannugsfreimachen bei einer Temperatur unterhalb von 700°C.
  2. Motorenteil gemäß Anspruch 1,
    dadurch gekennzeichnet,
    daß der gewichtsmäßige Anteil des Keramikpulvers in der metallkeramischen Mischung zwischen 15 und 50 % beträgt und die Kornklassierung von einem jeden der Pulver in der metalkeramischen Mischung unterhalb von 60 µm (mikron) liegt.
  3. Motorenteil gemäß Anspruch 2,
    dadurch gekennzeichnet,
    daß die Kornklassierung der Mischung der metallkeramischen Pulver unterhalb von 25 µm (mikron) liegt.
  4. Motorenteil gemäß einem der Ansprüche 1 bis 3,
    wobei das Metallpulver die folgende gewichtsmäßige Zusammensetzung aufweist:
    Cr: 23 bis 25 %, Ni: 8,5 bis 11 %, Al: 6 bis 8 %, Ta: 4 bis 6 %, Y: 0,4 bis 0,8 %, Co: Restmenge, und dieses mit 15 bis 50 % des Keramikpulvers vermischte Metallpulver auf das Substrat unter den nachstehenden Bedingungen elektrophoretisch aufgetragen wurde:
       Bad: Mischung aus Isopropanol und Nitromethan,
       Elektrolyt: metallisches oder metallorganisches Salz, das im Badmilieu zu mindestens 0,1 g/l löslich ist,
       Gehalt am hier beschriebenen metallkeranischen Pulver:
       40 bis 100 g/l,
       Elektrisches Feld: 100 bis 500 V/cm,
       Dauer: unterhalb von 60 Sekunden,
    sowie der metallkeramische Auftrag durch einen galvanischen Auftrag nach Art einer elektrolytischen Vernickelung konsolidiert und anschließend noch durch thermische Behandlung spannungsfrei gemacht wurde.
  5. Motorenteil gemäß einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    daß zwischen dem Substrat und dem verschleißfesten Überzug noch eine elektrolytische Nickelschicht vorliegt, die erhalten wurde durch eine Wood'sche Vorvernickelung bei einer Stromdichte von 4 bis 5 A/dm² während 5 bis 6 Minuten, gefolgt von einer Vernickelung in einem Sulfamatbad bei einer Stromdichte von 3 bis 5 A/dm² während 20 bis 40 Minuten.
  6. Verfahren zur Herstellung eines gegen alternierende reibende Bewegung bei mittleren Temperaturen verschleißfesten Schutzüberzugs auf einem Motorenteil aus Stahl oder einer Superlegierung auf'insbesondere Nickelbasis,
    dadurch gekennzeichnet,
    daß es die folgenden, in der angeführten Art und Weise durchgeführten Stufen umfaßt:
    a) eletrophoretisches Auftragen einer metallorganischen Struktur, die zusammengesetzt ist aus einer Mischung von 85 % bis 50 % eines metallischen Pulvers und 15 % bis 50 % eines keramischen Pulvers, woebei das metallische Pulver eine Cobalt-Superlegierung vom Typ KC NW mit folgendem gewichtsmäßigem Aufbau: Co-Basis mit 24 bis 26 % Cr, 10 bis 12 % Ni und 7 bis 9 % W ist oder dem Typ M-Cr Al Y entspricht, worin M ein Metall aus der Gruppe Ni, Co, Fe oder eine Mischung desselben mit einem eventuellen Zusatz von Ta darstellt und wobei das keramische Pulver aus der Gruppe der Oxide, besonders Al₂ 0₃ oder Cr₂ C₃, der Carbide, besonders SiC oder Cr₃ C₂, der Nitride, besonders BN oder TiN oder der Boride, besonders TiB₂ ausgewählt ist,
    b) elektrolytische Vorvernickelung in einem Elektrolytbad mit einem pH-Wert zwischen 6 und 8,
    c) elektrolytische Vernickelung in einem saurem Bad vom Sulfamattyp,
    d) thermische Behandlung bei einer Temperatur unterhalb von 700°C zum Spannugsfreimachen.
  7. Verfahren zur Herstellung eines verschleißfesten Schutzüberzugs gemäß Anspruch 6,
    dadurch gekennzeichnet,
    daß bei dem elektrophoretischen Auftragen in der Stufe a) des Verfahrens eine metallkeramische Pulvermischung verwendet wird, in der das Metallpulver die folgende Gewichtszusammensetzung aufweist: Cr: 23 bis 25 %, Ni: 8,5 bis 11 %, Al: 6 bis 8 %, Ta: 4 bis 6 %, Y: 0,4 bis 8 %, Co: Rest, und in der das keramische Pulver Cr₃ C₂, Al₂ 0₃ BN, oder TiB₂ ist, und bei dem die Mischung den folgenden Arbeitsbedingungen unterworfen wird:
       Bad: Mischung aus Isopropanol und Nitromethan,
       Elektrolyt: Metallsalz oder metallorganisches Salz mit einer Löslichkeit von mindestens 0,1 g/l im Bad,
       Anteil an metallkeramischen Pulver: 40 bis 100 g/l,
       Elektrisches Feld: 100 bis 500 V/cm,
       Dauer: unterhalb 60 Sekunden,
       magnetisches Rühren.
  8. Verfahren zur Herstellung eines Schutzüberzugs gemäß einem der Ansprüche 6 oder 7,
    dadurch gekennzeichnet,
    daß die Dauer der Stufe a) zwischen 5 und 60 Sekunden unter Gewinnung eines elektrophoretischen Auftrags mit einer Dicke unterhalb von 40 µm beträgt.
  9. Verfahren zur Herstellung eines Schutzüberzugs gemäß einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet,
    daß die elektrolytische Vorvernickelungsstufe gemäß b) in einen elektrolytischen Bad mit der Zusammensetzung:
       NiSO₄: 70 g/l, H₃BO₃: 15 g/l, NH₄Cl: 15 g/l,
       Ammoniumlaktat: 10 g/l (8,5 ml/l)
    erfolgt und das Bad einen durch Zusatz von NaOH zwischen 6,8 und 7 gehaltenen pH-Wert aufweist und nicht gerührt wird, die Stromdichte zwischen 0,1 und 0,5 A/dm² liegt, die Badtemperatur zwischen 25 und 35°C liegt und die Dauer zwischen 10 und 30 Minuten beträgt.
  10. Verfahren zur Herstellung eines Schutzüberzugs gemäß einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet,
    daß die Vernickelungsstufe c) durchgeführt wird in einem sauren Nickelsulfamat Bad mit einem pH-Wert um 4 unter Einhaltung der nachstehenden Arbeitsbedingungen:
       Temperatur: zwischen 20 und 50°C,
       Stromdichte: zwischen 0,5 und 1 A/dm²,
       Dauer: zwischen 10 und 60 Minuten.
  11. Verfahren zur Herstellung eines Schutzüberzugs gemäß einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet,
    daß die Vernickelung gemäß c) in zwei aufeinanderfolgende Arbeitsgänge in demselben Bad aufgeteilt wird, wobei der erste, c1, unter Einhaltung der folgenden Parameter durchgeführt wird:
       Temperatur: zwischen 25 und 55°C,
       Stromdichte: 0,5 A/dm²,
       Dauer: 30 Minuten,
    und bei dem zweiten, c2, die Bedingungen sind:
       Temperatur: zwischen 45 und 55°C,
       Stromdichte: 1 A/dm²m
       Dauer: 30 bis 60 Minuten.
  12. Verfahren zur Herstellung eines Schutzüberzugs gemäß einem der Ansprüche 6 bis 11,
    dadurch gekennzeichnet,
    daß die gemäß Stufe d) erfolgende Spannungsfreimachung vom Nickel in dem Überzug bei 600°C während 4 Stunden in Vakuum durchgeführt wird.
  13. Verfahren zur Herstellung eines Schutzüberzugs gemäß einem der Ansprüche 6 bis 11,
    dadurch gekennzeichnet,
    daß zum Erhalt eines Überzugs mit einer Dicke um 100 µm (mikron) die Stufen a), b) und c) mehrere Male bis zum Vorliegen der gewünschten Dicke wiederholt werden und die Endbehandlung zum Spannungsfreimachen bei 600°C während 48 Stunden in Vakuum vorgenommen wird.
  14. Verfahren zur Herstellung eines Schutzüberzugs gemäß einem der Ansprüche 6 bis 13,
    dadurch gekennzeichnet,
    daß zum Erhalt eines Überzugs mit einer Dicke um 100 µm (mikron) auf dem Substrat vor der Stufe a) mit den elektrophoretischen metallkeramischen Auftrag in einer Vorstufe eine Vorvernickelung während 5 bis 6 Minuten bei einer Stromdichte zwischen 4 und 5 A/dm² und danach in einer weiteren Stufe die Vernickelung in vorzugsweise einem Sulfamatbad bei einer Stromdichte zwischen 3 und 5 A/dm² während 20 bis 40 Minuten durchgeführt wird und dann bis zum Erhalt der gewünschten Dicke die Stufen a), b) und c) mehrmals wiederholt werden und die Endbehandlung zum Spannnungsfreimachen bei 600°C während 4 Stunden im Vakuum vorgenommen wird.
EP89403069A 1988-11-09 1989-11-08 Elektrophoretischer verschleissfester metallkeramischer Überzug, verfestigt durch elektrolytische Vernickelung Expired - Lifetime EP0368753B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8814607 1988-11-09
FR8814607A FR2638781B1 (fr) 1988-11-09 1988-11-09 Depot electrophoretique anti-usure du type metalloceramique consolide par nickelage electrolytique

Publications (2)

Publication Number Publication Date
EP0368753A1 EP0368753A1 (de) 1990-05-16
EP0368753B1 true EP0368753B1 (de) 1993-05-26

Family

ID=9371704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89403069A Expired - Lifetime EP0368753B1 (de) 1988-11-09 1989-11-08 Elektrophoretischer verschleissfester metallkeramischer Überzug, verfestigt durch elektrolytische Vernickelung

Country Status (5)

Country Link
US (2) US5079100A (de)
EP (1) EP0368753B1 (de)
CA (1) CA2002467C (de)
DE (2) DE68906761D1 (de)
FR (1) FR2638781B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449063C1 (ru) * 2011-04-05 2012-04-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Электролит никелирования

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4028217A1 (de) * 1990-06-01 1991-12-05 Krupp Widia Gmbh Keramikverbundkoerper, verfahren zur herstellung eines keramikverbundkoerpers und dessen verwendung
US5384201A (en) * 1991-05-31 1995-01-24 Robert Bosch Gmbh Tool for treating surfaces of structural parts and carrier material for the same
FR2696760B1 (fr) * 1992-10-09 1994-11-04 Alsthom Gec Revêtement pour parties frottantes par rotation d'une pièce en acier matensitique.
US5413871A (en) * 1993-02-25 1995-05-09 General Electric Company Thermal barrier coating system for titanium aluminides
US5543029A (en) * 1994-04-29 1996-08-06 Fuji Oozx Inc. Properties of the surface of a titanium alloy engine valve
US5543183A (en) * 1995-02-17 1996-08-06 General Atomics Chromium surface treatment of nickel-based substrates
US6210791B1 (en) 1995-11-30 2001-04-03 General Electric Company Article with a diffuse reflective barrier coating and a low-emissity coating thereon, and its preparation
JPH11343564A (ja) * 1998-05-28 1999-12-14 Mitsubishi Heavy Ind Ltd 高温機器
US20040124231A1 (en) * 1999-06-29 2004-07-01 Hasz Wayne Charles Method for coating a substrate
US6451454B1 (en) * 1999-06-29 2002-09-17 General Electric Company Turbine engine component having wear coating and method for coating a turbine engine component
US6302318B1 (en) 1999-06-29 2001-10-16 General Electric Company Method of providing wear-resistant coatings, and related articles
JP4519387B2 (ja) * 1999-11-09 2010-08-04 Jfeスチール株式会社 耐ビルドアップ性に優れた溶射被覆用サーメット粉末と溶射被覆ロール
US6634781B2 (en) 2001-01-10 2003-10-21 Saint Gobain Industrial Ceramics, Inc. Wear resistant extruder screw
WO2003025258A1 (de) * 2001-09-20 2003-03-27 Technische Universität Ilmenau Verfahren zur beschichtung von elektrisch leitfähigen trägerwerkstoffen
JP3719971B2 (ja) * 2001-11-06 2005-11-24 株式会社椿本チエイン 耐摩耗性被覆物を被覆したサイレントチェーン
US6833203B2 (en) * 2002-08-05 2004-12-21 United Technologies Corporation Thermal barrier coating utilizing a dispersion strengthened metallic bond coat
DE60307041T2 (de) * 2003-03-21 2007-01-11 Alstom Technology Ltd. Verfahren zum Aufbringen einer dichten Verschleisschutzschicht und Dichtungsystem
US7247186B1 (en) * 2003-05-20 2007-07-24 Exxonmobil Research And Engineering Company Advanced erosion resistant carbonitride cermets
US7175686B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Erosion-corrosion resistant nitride cermets
US7175687B2 (en) * 2003-05-20 2007-02-13 Exxonmobil Research And Engineering Company Advanced erosion-corrosion resistant boride cermets
WO2005028876A1 (de) * 2003-09-25 2005-03-31 Abb Research Ltd. Verdichterreinigung
EP1526192A1 (de) * 2003-10-24 2005-04-27 Siemens Aktiengesellschaft Elektrolytisches Verfahren zum Abscheiden einer gradierten Schicht auf ein Substrat und Bauteil
ES2343741T3 (es) * 2006-03-15 2010-08-09 Explora Laboratories Sa Un proceso para la inmovilizacion de celulas en una resina.
FR2915495B1 (fr) * 2007-04-30 2010-09-03 Snecma Procede de reparation d'une aube mobile de turbomachine
EP2096194B1 (de) 2008-02-19 2016-06-01 Parker-Hannifin Corporation Schutzbeschichtung für Metalldichtungen
JP4564545B2 (ja) * 2008-03-25 2010-10-20 株式会社東芝 コーティング方法
US20100308517A1 (en) * 2009-06-04 2010-12-09 James Edward Goodson Coated spring and method of making the same
EP2623730A1 (de) * 2012-02-02 2013-08-07 Siemens Aktiengesellschaft Strömungsmaschinenkomponente mit Teilfuge und Dampfturbine mit der Strömungsmaschinenkomponente
US9573192B2 (en) * 2013-09-25 2017-02-21 Honeywell International Inc. Powder mixtures containing uniform dispersions of ceramic particles in superalloy particles and related methods
CN106086997A (zh) * 2016-06-17 2016-11-09 中国科学院金属研究所 一种热生长Al2O3或Cr2O3膜型M‑Cr‑Al纳米复合镀层及制备和应用
CN109137031B (zh) * 2018-09-07 2020-04-28 张惠海 一种金属基陶瓷复合材料
US11060608B2 (en) * 2019-02-07 2021-07-13 Tenneco Inc. Piston ring with inlaid DLC coating and method of manufacturing
EP4053222A1 (de) * 2021-03-03 2022-09-07 General Electric Company Verschleissschutzbeschichtungszusammensetzung und beschichtete komponenten
CN113319537A (zh) * 2021-06-15 2021-08-31 无锡市英迪机械有限公司 液压阀销轴座加工工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5929119B2 (ja) * 1976-10-12 1984-07-18 スズキ株式会社 多層複合メツキ層
US4124737A (en) * 1976-12-30 1978-11-07 Union Carbide Corporation High temperature wear resistant coating composition
US4401724A (en) * 1978-01-18 1983-08-30 Scm Corporation Spray-and-fuse self-fluxing alloy powder coating
US4275124A (en) * 1978-10-10 1981-06-23 United Technologies Corporation Carbon bearing MCrAlY coating
DE3568065D1 (en) * 1984-07-16 1989-03-09 Bbc Brown Boveri & Cie Process for the deposition of a corrosion-inhibiting layer, comprising protective oxide-forming elements at the base of a gas turbine blade, and a corrosion-inhibiting layer
US4741975A (en) * 1984-11-19 1988-05-03 Avco Corporation Erosion-resistant coating system
GB8706951D0 (en) * 1987-03-24 1988-04-27 Baj Ltd Overlay coating
FR2617510B1 (fr) * 1987-07-01 1991-06-07 Snecma Procede de codeposition electrolytique d'une matrice nickel-cobalt et de particules ceramiques et revetement obtenu
US4855188A (en) * 1988-02-08 1989-08-08 Air Products And Chemicals, Inc. Highly erosive and abrasive wear resistant composite coating system
US4873152A (en) * 1988-02-17 1989-10-10 Air Products And Chemicals, Inc. Heat treated chemically vapor deposited products
US4943487A (en) * 1988-07-18 1990-07-24 Inco Alloys International, Inc. Corrosion resistant coating for oxide dispersion strengthened alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2449063C1 (ru) * 2011-04-05 2012-04-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Электролит никелирования

Also Published As

Publication number Publication date
CA2002467A1 (fr) 1990-05-09
US5078837A (en) 1992-01-07
DE68906761T4 (de) 1993-11-11
US5079100A (en) 1992-01-07
CA2002467C (fr) 1999-11-02
DE68906761D1 (de) 1993-07-01
EP0368753A1 (de) 1990-05-16
DE68906761T2 (de) 1993-09-23
FR2638781A1 (fr) 1990-05-11
FR2638781B1 (fr) 1990-12-21

Similar Documents

Publication Publication Date Title
EP0368753B1 (de) Elektrophoretischer verschleissfester metallkeramischer Überzug, verfestigt durch elektrolytische Vernickelung
CA1315918C (en) Hard outer coatings deposited on titanium or titanium alloys
EP2240624B1 (de) Verfahren zur abscheidung von überzügen mit y-ni + y'ni3ai-phasenkonstitution
EP0567755B1 (de) Verbessertes Verfahren zur Diffusionsbeschichtung und Produkte
US5057196A (en) Method of forming platinum-silicon-enriched diffused aluminide coating on a superalloy substrate
FR2503189A1 (fr) Composition de revetement pour superalliages resistant a l'oxydation a haute temperature et superalliages revetus de cette composition
CA2130058C (en) Platinum group silicide modified aluminide coating process and product
JP2704878B2 (ja) オーバレイ・コーティング
CA1044643A (en) Ductile corrosion resistant coating on a superalloy substrate
EP0884403A1 (de) Mehrschichtenmaterial mit Erosions-Verschleiss-Korrosionsschutzschicht auf einem Substrat aus Aluminium, Magnesium und deren Legierungen
FR2571386A1 (fr) Revetements metalliques protecteurs
US20020094445A1 (en) Method for applying coatings on substrates
EP0328084A2 (de) Erosions- und verschleissfestes Verbundbeschichtungssystem
CA2205052C (en) Method of producing reactive element modified-aluminide diffusion coatings
EP0297982A1 (de) Verfahren zur galvanischen Abscheidung einer Nickel-Kobalt-Matrix mit keramischen Partikeln und dadurch erhaltene Dispersions-Beschichtung
EP0509875A1 (de) Verfahren zum Beschichten auf mindestens einem Werkstoff, insbesondere einem metallischen Werkstoff, eine Hartschicht aus pseudodiamantischem Kohlenstoff und ein so beschichteter Werkstoff
US20120213928A1 (en) Forming reactive element modified aluminide coatings with low reactive element content using vapor phase techniques
CA2355695C (fr) Procede pour produire une poudre d'alliage metallique de type mcraly et revetements obtenus avec cette poudre
EP0349044B1 (de) Verfahren zur Herstellung eines Schutzfilmes auf einem Substrat auf Magnesiumbasis, Anwendung zum Schutz von Magnesiumlegierungen, dabei erhaltene Substrate
CA2378908C (en) One-step noble metal-aluminide coatings
JPS61127872A (ja) 改良耐浸蝕性コ−テイング
CA2356305C (fr) Formation d'un revetement aluminiure incorporant un element reactif, sur un substrat metallique
EP0329085A1 (de) Hitzebehandelte, aus der Dampfphase chemisch beschichtete Produkte und Behandlungsmethode
FR2839729A1 (fr) Procede de protection d'un substrat en acier ou alliage d'aluminium contre la corrosion permettant de lui conferer des proprietes tribologiques, et substrat obtenu
JP2986715B2 (ja) 炭化物系複合皮膜の形成方法および複合皮膜

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891127

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19920325

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 68906761

Country of ref document: DE

Date of ref document: 19930701

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20061026

Year of fee payment: 18

Ref country code: FR

Payment date: 20061026

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20061108

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130