WO2005028876A1 - Verdichterreinigung - Google Patents

Verdichterreinigung Download PDF

Info

Publication number
WO2005028876A1
WO2005028876A1 PCT/CH2004/000597 CH2004000597W WO2005028876A1 WO 2005028876 A1 WO2005028876 A1 WO 2005028876A1 CH 2004000597 W CH2004000597 W CH 2004000597W WO 2005028876 A1 WO2005028876 A1 WO 2005028876A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
compressor
liquid
gas inlet
inlet housing
Prior art date
Application number
PCT/CH2004/000597
Other languages
English (en)
French (fr)
Inventor
Martin Thiele
Henning Fuhrmann
Ralf Strümpler
Joachim Glatz-Reichenbach
Original Assignee
Abb Research Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Research Ltd. filed Critical Abb Research Ltd.
Priority to EP04761937A priority Critical patent/EP1664546A1/de
Publication of WO2005028876A1 publication Critical patent/WO2005028876A1/de
Priority to US11/389,109 priority patent/US7524166B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/512Hydrophobic, i.e. being or having non-wettable properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/611Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/915Pump or portion thereof by casting or molding

Definitions

  • the invention relates to a compressor with a device for wet cleaning the diffuser of a compressor according to the preamble of patent claim 1 and a method for producing a compressor according to the preamble of patent claim 9.
  • exhaust gas turbochargers to increase the performance of internal combustion engines is widespread today.
  • the exhaust gas turbine of the turbocharger is acted upon by the exhaust gases of the internal combustion engine and its kinetic energy is used for the intake and compression of air for the internal combustion engine.
  • the temperature and the pressure of the air rise due to the compression. As a result, temperatures of 180 ° C or higher can occur on the guide vanes of the diffuser and the diffuser walls.
  • blow-by gases This problem occurs increasingly in internal combustion engines with crankcase ventilation.
  • combustion gases pass between the piston rings and the air sleeve into the crankcase.
  • air gets into the crankcase via the oil return line of the turbocharger.
  • These gases are called blow-by gases. So that the pressure in the crankcase does not rise excessively, the blow-by gases are discharged, fed to the intake air upstream of the compressor wheel and compressed together with the intake air in the compressor.
  • the blow-by gases contain oil particles, which typically have a diameter of 0.1 to 10 ⁇ m (micrometers) and are present in a concentration of 5 to 10 mg / m 3 .
  • compressors are cleaned regularly.
  • the cleaning is carried out under partial load.
  • the compressor wheel is rotated at a reduced rotational speed and a liquid is supplied to the flow in front of the compressor wheel.
  • a device of the type mentioned is known from US 4,196,020. It proposes connecting a removable cleaning spray device to the gas inlet housing of a gas turbine for cleaning purposes.
  • the cleaning spray device also includes manifolds with spray nozzles. For cleaning, the device is placed on the gas inlet housing, the gas turbine is switched on, and a spray for cleaning is sprayed evenly onto the side of the gas inlet housing facing the medium to be compressed and the compressor wheel via spray nozzles. With this cleaning spray device, the compressor wheel is mainly cleaned. Stuck deposits are hardly removed in the non-moving diffuser by the finely sprayed liquids.
  • part of the sprayed water already evaporates on the blades and the gas inlet casing, which were warmed up by the operation of the compressor, and the diffuser thus becomes insufficient cleaned.
  • the operation of the compressor must be interrupted before and after each cleaning in order to place the cleaning spray device on the compressor or to remove it again after cleaning.
  • US 5,385,014 describes a method for cleaning a compressor of an aircraft.
  • the compressor wheel is cleaned by spraying a water-containing liquid upstream of the compressor wheel and rotating the compressor wheel at a low rotational speed without starting the ignition.
  • the compressor wheel is mainly cleaned. Cleaning cannot be carried out during normal operation, since the compressor wheel must be rotated at a low rotational speed, because otherwise even with the smallest water droplets, severe erosion would occur at the corners and edges of the compressor wheel.
  • means are provided in the compressor through which a liquid can be introduced into the diffuser in the flow channel downstream of the compressor wheel. Cleaning can be carried out while the compressor is operating at full speed.
  • the operation of the compressor advantageously does not need to be reduced or even interrupted in order to carry out the cleaning of the diffuser.
  • the liquid for cleaning is water. If the device for cleaning a diffuser in a Exhaust gas turbocharger is used with an internal combustion engine, an advantage is that after cleaning, the water gets into the combustion chambers of the internal combustion engine, and water does not undergo chemical reactions with elements of the combustion chambers, such as lubricating films in the cylinders of the internal combustion engine.
  • the device for cleaning the diffuser includes at least one opening through which the liquid can be introduced into the diffuser for cleaning.
  • Each guide vane forms a diffuser channel with part of a diffuser wall.
  • the at least one opening can be arranged in such a way that each diffuser channel can be supplied with liquid for cleaning from at least one opening.
  • the advantage of this embodiment is that all parts of the diffuser are cleaned evenly.
  • At least one liquid line which in turn is connected to a pump, is connected to the at least one opening.
  • a pressure of the liquid can be built up via the pump, through which the liquid can be introduced into the flow channel.
  • the diffuser is provided with a dirt-repellent coating, so that the contaminants adhere less firmly to the surface of the diffuser and are therefore easier to remove by the liquid for cleaning.
  • a pump presses the liquid for cleaning under pressure through lines which connect the pump to the openings.
  • the liquid is introduced into the flow channel from the openings at a pressure which is higher than the pressure prevailing in the flow channel.
  • the cleaning liquid strikes the side of the diffuser walls and / or the guide vanes facing the medium to be compressed and removes the deposits there.
  • the pressure is only so great that the liquid flows along the diffuser walls and / or the guide vanes.
  • the pressure can also be increased to such an extent that the liquid splashes against the walls and / or the guide vanes. This allows the liquid to be sprayed selectively onto parts of the diffuser and the pressure of the liquid can assist in cleaning the diffuser.
  • Figure 1 in section along its machine axis a section of a turbocharger with a compressor according to the prior art
  • FIG. 2 top view of the diffuser (section through the plane A - A of Figure 1);
  • Figure 3 section of a compressor with a diffuser and a device for cleaning a diffuser in the event of a subsequent installation of the device for cleaning in an existing compressor.
  • Figure 1 shows a section along the machine axis of a turbocharger a compressor-side section of a turbocharger with a compressor (1).
  • the compressor (1) has a gas inlet housing (2), a compressor wheel on a shaft (7) with rotor blades (31) and a hub (32) and a diffuser (4).
  • a turbine wheel is also mounted on the shaft (6) (not shown in the figure).
  • the gas inlet housing (2) has an inside (21) which faces the medium to be compressed and along which the medium to be compressed flows and an outside (22) which faces away from the medium to be compressed and which is further away from the shaft.
  • a flow channel (5) is delimited on the outside by the inside of the gas inlet housing and on the inside by the hub (32) of the compressor wheel (3).
  • the direction of flow of the medium (7) to be compressed goes along the flow channel (5) from the opening of the gas inlet housing in the direction of a diffuser (4) (represented by arrows in FIG. 1). Downstream from the blades, the gas inlet housing (2) merges into a diffuser wall (41) of the diffuser (4).
  • the diffuser includes guide vanes (44) and diffuser walls (41), each diffuser wall (41) having an inside (42) which faces the medium to be compressed and which limits the flow channel to the outside and an outside (43) which faces the compressing medium is facing away and which is opposite each inside (42) of the diffuser walls.
  • FIG. 2 shows a top view of a diffuser as a section through the plane A - A from FIG. 1.
  • Diffuser channels (45) are formed in the diffuser (4) and are delimited by two guide vanes (44) and part of a diffuser wall (41).
  • the guide blades (44) can directly adjoin the rotor blades of the compressor wheel, but it is also possible for a radially widened gap to be provided between the rotor blades and the guide blades.
  • the device according to the invention for wet cleaning a diffuser is located downstream of the compressor wheel (3). It is arranged in such a way that the liquid can be introduced into the diffuser (4) downstream of the compressor wheel (3) for cleaning.
  • At least one opening is provided in the gas inlet housing (2) and / or at least one diffuser wall (41), which is designed as a bore and passes through the wall.
  • the at least one bore goes from the inside of the gas inlet housing (21) to an outside of the gas inlet housing (22) and / or from the inside of the at least one diffuser wall (42) to the outside of the at least one diffuser wall (43).
  • the diffuser (4) has no guide vanes. With these diffusers (4), the cross section of the diffuser, which is delimited by the inside of the diffuser walls (42), increases in the direction of flow (7).
  • the at least one opening can be arranged such that liquid can be supplied to each diffuser channel from at least one opening.
  • the at least one opening has a round cross section, but openings with other cross sections are also conceivable. These can be oval, square or rectangular cross sections, for example.
  • the cross section of the at least one bore along the longitudinal axis of the bore is unchangeable.
  • the cross section of the at least one bore can also taper from the outside of the gas inlet housing (22) and / or the outside of at least one diffuser wall (43) to the inside of the gas inlet housing (21) and / or at least one diffuser wall (42), so that the Fluid for cleaning in the bore is accelerated towards the flow channel.
  • the size of the at least one opening can be selected depending on the pressure with which the liquid is to be guided into the flow channel (5). If liquid is supplied to the diffuser (4) from a plurality of openings, the openings can be located in a cross-sectional plane of the diffuser (4). In a variant, the openings are arranged in different cross-sectional planes of the diffuser (4), so that the liquid for cleaning can be supplied in a targeted manner to different areas of the diffuser (4), such as the downstream end area.
  • the at least one bore is connected to at least one liquid line on the outside of the diffuser wall (43).
  • This at least one liquid line can open into a collecting line which is connected to a pump (not shown in the figure) or the at least one liquid line can be connected directly to the pump.
  • the longitudinal axis of the bores is perpendicular to the surface of the part of the gas inlet housing (2) surrounding it and / or the diffuser wall (41).
  • the longitudinal axis of the at least one bore forms an angle with the inside of the part of the gas inlet housing (2) surrounding it and / or the inside of the at least one diffuser wall (41) which is not equal to 90 °. It is thereby achieved that the liquid for cleaning hits the inside of the diffuser walls (42) and / or the gas inlet housing (21) at an angle.
  • the angles between the longitudinal axis of the bore and the inside of the part of the gas inlet housing surrounding it and / or the at least one diffuser wall can vary.
  • the longitudinal axes of the bores can be designed such that the liquid can be introduced into the diffuser (4) in a fan shape for cleaning.
  • Water can be used as the liquid for cleaning.
  • Additives can be added to the water to enhance the cleaning process.
  • the diffuser (4) can be at least partially provided with an anti-stick coating.
  • a coating can also on the inside of the Gas inlet housing (21) and be provided on the compressor wheel (3).
  • the coating should be permanently temperature-resistant up to the temperatures that occur during the operation of the compressor. Typically, temperatures up to 260 ° C form in the diffusers of compressors, whereby the coating should also be suitable for a short-term temperature rise up to 290 ° C. For special applications or future turbo charging, higher temperatures are also conceivable and coatings with a correspondingly higher resistance are required.
  • the coating is water and / or oil-repellent. If the sucked-in air still contains caustic substances that attack the walls, a coating can be selected that is also corrosion-resistant.
  • a polymeric nanocomposite consisting of a polymeric coating with a fluorine-containing surface and embedded hard particles, the size of which is in the nanometer range, is suitable as a coating.
  • a coating of perfluoroalkoxy copolymer (Teflon PFA), hard chrome coatings or nickel plating are also possible. This list is not intended to be exhaustive.
  • the extent of coking can be reduced by cooling the walls of the compressor on which coking takes place. Due to the lower temperatures on the walls, the coking layer builds up less quickly and adheres less firmly to the walls and can therefore be removed more easily.
  • the walls can be cooled by existing cavities in the compressor or by specially designed cavities or cooling hoses. Cooling can be achieved using air, water or oil.
  • the liquid can be introduced into the diffuser (4) such that it flows along the inside of the diffuser wall (42) and / or the guide vanes (44) after the opening. But it is also possible to increase the pressure of the liquid so that the liquid only against the inside of the gas inlet housing (21), the inside of the diffuser wall (42) and / or the guide vanes (44), which extend the longitudinal axis of the bore to spray where at least part of the liquid bounces off and is atomized.
  • the liquid can also be introduced into the flow channel (5) against the direction of flow of the medium (7) to be compressed.
  • Compressors which are operated in exhaust gas turbochargers of an internal combustion engine, can be equipped with an air auxiliary drive system which facilitates the starting of an internal combustion engine.
  • air is introduced in front of the diffusers with a pump through feed lines into an annular chamber and introduced into the flow channel via bores in the gas inlet housing.
  • the holes in the gas inlet housing can be sealed and new holes can be drilled in such a way that a liquid can be introduced into the diffuser downstream of the compressor wheel for cleaning.
  • the liquid for cleaning is transported through the feed lines into the annular chamber and introduced into the diffuser at a pressure which is higher than the pressure prevailing in the flow channel of the compressor.
  • FIG. 3 shows a channel (81) which is connected to an annular chamber (82) which runs around the compressor wheel parallel to the diffuser (4). Sealing means (83) seal this chamber against the gas inlet housing (2). Bores (84) extend from the annular chamber to the diffuser (4). To fix the positions of the parts in the circumferential direction, bolts or other fixing means (85) are provided. A liquid is introduced through the channel (81) into the annular chamber (82) and from there to the diffuser (4).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

Ein Verdichter umfasst ein Verdichterrad (3), einen Diffusor (4) und eine Vorrichtung zum Nassreinigen des Diffusors eines Verdichters, wobei der Diffusor (4) in Strömungsrichtung des zu verdichtenden Mediums (7) stromabwärts des Verdichterrades (3) angeordnet ist. Die Vorrichtung umfasst Mittel zum Einspritzen einer Flüssigkeit, welche derart angeordnet sind, dass die Flüssigkeit stromabwärts des Verdichterrades (3) auf den Diffusor (4) einführbar ist. Eine derartige Vorrichtung ist geeignet, festsitzende Ablagerungen auf der Oberfläche des Diffusors zu entfernen.

Description

Verdichterreϊnigung
Beschreibung
Technisches Gebiet
Die Erfindung betrifft einen Verdichter mit einer Vorrichtung zum Nassreinigen des Diffusors eines Verdichters gemäss Oberbegriff des Patentanspruchs 1 und ein Verfahren zum Herstellen eines Verdichters gemäss Oberbegriff des Patentanspruchs 9.
Stand der Technik
Die Verwendung von Abgasturboladern zur Leistungssteigerung von Brennkraftmaschinen ist heute weit verbreitet. Die Abgasturbine des Turboladers wird von den Abgasen der Brennkraftmaschine beaufschlagt und deren kinetische Energie zum Ansaugen und Verdichten von Luft für die Brennkraftmaschine verwendet. Durch die Verdichtung steigen die Temperatur und der Druck der Luft an. Es können dadurch Temperaturen von 180 °C oder höher an den Leitschaufeln des Diffusors und den Diffusorwänden auftreten.
Durch das Ansaugen von verschmutzter Luft können sich Verunreinigungen auf der dem zu verdichtenden Medium zugewandten Seite des Gaseintrittsgehäuses, auf dem Verdichterrad oder dem Diffusor niederschlagen. Wenn die verunreinigte Luft noch Ölpartikel enthält, setzen sich die Ölpartikel verstärkt fest bedingt durch die niedrige Oberflächenspannung von Öl. Oberhalb von 150 °C verflüchtigen sich die leichtflüchtigen Bestandteile des Öls. Bei Temperaturen von etwa 180 bis 260 °C tritt zusätzlich eine Verkokung ein. Diese Effekte führen zu Rückständen auf den Oberflächen der Wände. Die Rückstände bilden eine dicke Schicht mit rauher Oberfläche. Die Effizienz des Verdichters kann dadurch innerhalb kurzer Zeit um mehrere Prozent abnehmen.
Dieses Problem tritt verstärkt bei Brennkraftmaschinen mit Kurbelgehäuse- Entlüftung auf. Bei aufgeladenen Brennkraftmaschinen treten Verbrennungsgase zwischen Kolbenringen und Luftbüchse in das Kurbelgehäuse über. Ausserdem gelangt Luft über die Ölrückführleitung des Turboladers in das Kurbelgehäuse. Diese Gase werden als Blow-By Gase bezeichnet. Damit der Druck im Kurbelgehäuse nicht übermässig ansteigt, werden die Blow-By Gase abgeführt, stromaufwärts des Verdichterrades der angesaugten Luft zugeführt und zusammen mit der angesaugten Luft im Verdichter verdichtet. Die Blow-By Gase enthalten Ölpartikel, welche typischerweise einen Durchmesser von 0.1 bis 10 μrn (Mikrometer) haben und in einer Konzentration von 5 bis 10 mg/m3 vorhanden sind.
Um die eingangs genannten Effekte zu vermeiden, werden Verdichter regelmässig gereinigt. Die Reinigung wird unter Teillast durchgeführt. Das Verdichterrad wird bei reduzierter Umdrehungsgeschwindigkeit rotiert und eine Flüssigkeit vor dem Verdichterrad der Strömung zugeführt.
Eine Vorrichtung der eingangs genannten Art ist aus der Druckschrift US 4,196,020 bekannt. Darin wird vorgeschlagen, eine abnehmbare Reinigungssprühvorrichtung zu Reinigungszwecken an das Gaseintrittsgehäuse einer Gasturbine anzuschliessen. Die Reinigungssprühvorrichtung beinhaltet auch Sammelleitungen mit Sprühdüsen. Zum Reinigen wird die Vorrichtung auf das Gaseintrittsgehäuse aufgesetzt, die Gasturbine eingeschaltet und über Sprühdüsen eine Flüssigkeit zum Reinigen gleichmässig auf die dem zu verdichtenden Medium zugewandten Seite des Gaseintrittsgehäuses und das Verdichterrad gesprüht. Mit dieser Reinigungssprühvorrichtung wird daher hauptsächlich das Verdichterrad gereinigt. Festsitzende Ablagerungen werden in dem sich nicht bewegenden Diffusor durch die fein versprühte Flüssigkeiten kaum entfernt. Zudem verdunstet ein Teil des versprühten Wassers schon auf den Laufschaufeln und dem Gaseintrittsgehäuse, die durch den Betrieb des Verdichters erwärmt wurden, und somit wird der Diffusor nur unzureichend gereinigt. Ausserdem muss der Betrieb des Verdichters vor und nach jeder Reinigung unterbrochen werden, um die Reinigungssprühvorrichtung auf den Verdichter aufzusetzen, bzw. nach erfolgter Reinigung wieder zu entfernen.
US 5,385,014 beschreibt ein Verfahren zur Reinigung eines Verdichters eines Flugzeuges. Das Verdichterrad wird gereinigt, indem eine wasserhaltige Flüssigkeit stromaufwärts des Verdichterrades gesprüht wird und das Verdichterrad auf niedriger Umdrehungsgeschwindigkeit rotiert wird, ohne dass die Zündung gestartet wird. Wie auch beim oben beschriebenen Verfahren wird hauptsächlich das Verdichterrad gereinigt. Die Reinigung kann nicht während des Normalbetriebes durchgeführt werden, da das Verdichterrad mit niedriger Umdrehungsgeschwindigkeit rotiert werden muss, weil sonst selbst bei noch so kleinen Wassertröpfchen starke Erosion an den Ecken und Kanten des Verdichterrades auftreten würde.
Darstellung der Erfindung
Es ist deshalb Aufgabe der vorliegenden Erfindung, einen Verdichter mit einer Vorrichtung zum Nassreinigen eines Diffusors des Verdichters anzugeben, welche Vorrichtung geeignet ist, festsitzende Ablagerungen auf der Oberfläche des Diffusors zu entfernen und ein Verfahren dazu anzugeben.
Diese Aufgabe löst ein Verdichter mit einer Vorrichtung zum Nassreinigen eines Diffusors des Verdichters mit den Merkmalen des Patentanspruchs 1 und ein Verfahren mit den Merkmalen des Patentanspruchs 9.
Erfindungsgemäss sind in dem Verdichter Mittel vorgesehen, durch welche eine Flüssigkeit im Strömungskanal stromabwärts des Verdichterrades in den Diffusor einführbar ist. Die Reinigung kann während des Betriebs des Verdichters bei voller Umdrehungsgeschwindigkeit durchgeführt werden. Vorteilhafterweise braucht der Betrieb des Verdichters nicht reduziert oder sogar unterbrochen zu werden, um die Reinigung des Diffusors durchzuführen.
In einer Ausführungsform handelt es sich bei der Flüssigkeit zum Reinigen um Wasser. Wenn die Vorrichtung zum Reinigen eines Diffusors in einem Abgasturbolader mit Brennkraftmaschine eingesetzt wird, besteht ein Vorteil darin, dass das Wasser nach der Reinigung in die Brennkammern der Brennkraftmaschine gelangt, und Wasser keine chemischen Reaktionen eingeht mit Elementen der Brennkammern wie beispielsweise Schmierfilmen in den Zylindern der Brennkraftmaschine.
In einer Ausführungsform beinhaltet die Vorrichtung zum Reinigen des Diffusors mindestens eine Öffnung, durch welche die Flüssigkeit zum Reinigen in den Diffusor einführbar ist.
Jede Leitschaufel bildet mit einem Teil einer Diffusorwand je einen Diffusorkanal. Die mindestens eine Öffnung kann derart angeordnet sein, dass jedem Diffusorkanal Flüssigkeit zum Reinigen aus mindestens einer Öffnung zuführbar ist. Vorteil dieser Ausführungsform ist, dass die Reinigung aller Teile des Diffusors gleichmässig erfolgt.
In einer weiteren Ausführungsform wird an die mindestens eine Öffnung mindestens eine Flüssigkeitsleitung angeschlossen, die wiederum mit einer Pumpe verbunden ist. Über die Pumpe kann ein Druck der Flüssigkeit aufgebaut werden, durch den die Flüssigkeit in den Strömungskanal einführbar ist.
In einer weiteren Ausführungsform ist der Diffusor mit einer schmutzabweisenden Beschichtung versehen, damit die Verunreinigungen weniger fest auf der Oberfläche des Diffusors anhaften und somit leichter durch die Flüssigkeit zum Reinigen entfernbar sind.
Wenn es im Verdichter nicht genutzte Hohlräume, Angüsse oder Kanäle gibt, können von ihnen aus Bohrungen bis zu dem Strömungskanal stromabwärts des Verdichterrades vorgesehen sein, durch die eine Flüssigkeit zum Reinigen in den Diffusor einführbar ist. Vorteil dieser Ausführung ist, dass bestehende Bauteile benutzt werden können, um die Vorrichtung zum Reinigen des Diffusors herzustellen und eine solche Lösung in einem bestehenden Verdichter nachrüstbar ist. ln einer weiteren Ausführungsform presst eine Pumpe die Flüssigkeit zum Reinigen unter Druck durch Leitungen, welche die Pumpe mit den Öffnungen verbinden. Die Flüssigkeit wird mit einem Druck, welcher höher liegt als der im Strömungskanal herrschende Druck, aus den Öffnungen in den Strömungskanal eingeführt. Die Reinigungsflüssigkeit trifft auf die dem zu verdichtenden Medium zugewandten Seite der Diffusorwände und/oder die Leitschaufeln auf und entfernt dort die Ablagerungen. In einer Variante ist der Druck nur so gross, dass die Flüssigkeit entlang der Diffusorwände und/oder der Leitschaufeln fliesst. Der Druck kann auch soweit erhöht werden, dass die Flüssigkeit gegen die Wände und/oder die Leitschaufeln spritzt. Dadurch kann die Flüssigkeit gezielt auf Teile des Diffusors gespritzt werden und der Druck der Flüssigkeit kann die Reinigung des Diffusors unterstützen.
Weitere vorteilhafte Varianten und Ausführungsformen gehen aus den abhängigen Patentansprüchen hervor.
Kurze Beschreibung der Zeichnungen
Im folgenden wird das erfindungsgemässe Verfahren und der Erfindungsgegenstand anhand eines bevorzugten Ausführungsbeispiels, welches in den beiliegenden Zeichnungen dargestellt ist, näher erläutert. Es zeigen:
Figur 1 im Schnitt entlang seiner Maschinenachse einen Ausschnitt aus einem Turbolader mit einem Verdichter gemäss dem Stand der Technik;
Figur 2 Aufsicht auf Diffusor (Schnitt durch die Ebene A - A aus Figur 1);
Figur 3 Ausschnitt aus einem Verdichter mit Diffusor und einer Vorrichtung zum Reinigen eines Diffusors im Falle eines nachträglichen Einbaus der Vorrichtung zum Reinigen in einen bestehenden Verdichter.
Die in den Zeichnungen verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Die beschriebenen Ausführungsformen stehen beispielhaft für den Erfindungsgegenstand und haben keine beschränkende Wirkung.
Wege zur Ausführung der Erfindung
Figur 1 zeigt im Schnitt entlang der Maschinenachse eines Turboladers einen verdichterseitigen Ausschnitt eines Turboladers mit einem Verdichter (1). Der Verdichter (1) weist ein Gaseintrittsgehäuse (2), ein auf einer Welle (7) gelagertes Verdichterrad mit Laufschaufeln (31 ) und einer Nabe (32) sowie einen Diffusor (4) auf. Auf der Welle (6) ist ebenfalls ein Turbinenrad gelagert (nicht in der Figur dargestellt). Das Gaseintrittsgehäuse (2) hat eine Innenseite (21 ), welche dem zu verdichtenden Medium zugewandt ist und entlang der das zu verdichtende Medium strömt und eine Aussenseite (22), welche dem zu verdichtenden Medium abgewandt ist und welche weiter von der Welle entfernt liegt. Ein Strömungskanal (5) wird nach aussen begrenzt durch die Innenseite des Gaseintrittsgehäuses und nach innen durch die Nabe (32) des Verdichterrades (3). Die Strömungsrichtung des zu verdichtenden Mediums (7) geht entlang des Strömungskanals (5) von der Öffnung des Gaseintrittsgehäuses in Richtung eines Diffusors (4) (durch Pfeile in Figur 1 dargestellt). Stromabwärts von den Laufschaufeln geht das Gaseintrittsgehäuse (2) über in eine Diffusorwand (41) des Diffusors (4). Der Diffusor beinhaltet Leitschaufeln (44) sowie Diffusorwände (41 ), wobei jede Diffusorwand (41) eine Innenseite (42) aufweist, welche dem zu verdichtenden Medium zugewandt ist und die den Strömungskanal nach aussen begrenzt und eine Aussenseite (43), welche dem zu verdichtenden Medium abgewandt ist und die jeder Innenseite (42) der Diffusorwände gegenüberliegt.
Figur 2 zeigt in Aufsicht einen Diffusor als Schnitt durch die Ebene A - A aus Figur 1. Im Diffusor (4) sind Diffusorkanäle (45) ausgebildet, welche begrenzt sind durch je zwei Leitschaufeln (44) und einen Teil einer Diffusorwand (41). Die Leitschaufeln (44) können direkt an die Laufschaufeln des Verdichterrades angrenzen, es ist aber auch möglich, dass zwischen den Laufschaufeln und den Leitschaufeln ein radial ausgedehnter Spalt vorgesehen ist. Die erfindungsgemässe Vorrichtung zum Nassreinigen eines Diffusors befindet sich stromabwärts des Verdichterrades (3). Sie ist derart angeordnet, dass die Flüssigkeit zum Reinigen stromabwärts des Verdichterrades (3) in den Diffusor (4) einführbar ist. In dem Gaseintrittsgehäuse (2) und / oder mindestens einer Diffusorwand (41) ist mindestens eine Öffnung vorgesehen, die als Bohrung ausgebildet ist und durch die Wand hindurchgeht. Die mindestens eine Bohrung geht von der Innenseite des Gaseintrittsgehäuses (21) zu einer Aussenseite des Gaseintrittsgehäuses (22) und / oder von der Innenseite der mindestens einen Diffusorwand (42) zu der Aussenseite der mindestens einen Diffusorwand (43).
In einer Ausführungsform hat der Diffusor (4) keine Leitschaufeln. Bei diesen Diffusoren (4) vergrössert sich der Querschnitt des Diffusors, der begrenzt wird durch die Innenseite der Diffusorwände (42), in Strömungsrichtung (7).
Die mindestens eine Öffnung kann derart angeordnet sein, dass jedem Diffusorkanal aus mindestens einer Öffnung Flüssigkeit zuführbar ist.
In einer Variante der erfindungsgemässen Erfindung hat die mindestens eine Öffnung einen runden Querschnitt, aber es sind auch Öffnungen mit anderen Querschnitten denkbar. Dies können beispielsweise ovale, quadratische oder rechteckige Querschnitte sein.
In einer Ausführungsform ist der Querschnitt der mindestens einen Bohrung entlang der Längsachse der Bohrungen unveränderlich. Der Querschnitt der mindestens einen Bohrung kann sich aber auch von der Aussenseite des Gaseintrittsgehäuses (22) und / oder der Aussenseite mindestens einer Diffursorwand (43) zur Innenseite des Gaseintrittsgehäuses (21) und / oder mindestens einer Diffusorwand (42) verjüngen, so dass die Flüssigkeit zum Reinigen in der Bohrung zum Strömungskanal hin beschleunigt wird.
Die Grosse der mindestens einen Öffnung kann abhängig von dem Druck gewählt werden, mit welchem die Flüssigkeit in den Strömungskanal (5) geführt werden soll. Wenn dem Diffusor (4) aus mehreren Öffnungen Flüssigkeit zugeführt wird, können sich die Öffnungen in einer Querschnittsebene des Diffusors (4) befinden. In einer Variante sind die Öffnungen in verschiedenen Querschnittsebenen des Diffusors (4) angeordnet, so dass die Flüssigkeit zum Reinigen gezielt verschiedenen Bereichen des Diffusors (4) wie beispielsweise dem stromabwärtigen Endbereich zugeführt werden kann.
Die mindestens eine Bohrung ist auf der Aussenseite der Diffusorwand (43) mit mindestens einer Flüssigkeitsleitung verbunden. Diese mindestens eine Flüssigkeitsleitung kann in eine Sammelleitung münden, die an eine Pumpe angeschlossen ist (nicht in der Figur dargestellt) oder die mindestens eine Flüssigkeitsleitung kann direkt an die Pumpe angeschlossen werden.
In einer Ausführungsform der Erfindung steht die Längsachse der Bohrungen senkrecht zur Oberfläche des sie umgebenden Teils des Gaseintrittsgehäuses (2) und / oder der Diffusorwand (41).
In einer weiteren Ausführungsform bildet die Längsachse der mindestens einen Bohrung mit der Innenseite des sie umgebenden Teils des Gaseintrittsgehäuses (2) und / oder der Innenseite der mindestens einen Diffusorwand (41 ) einen Winkel, der ungleich 90 ° ist. Dadurch wird erreicht, dass die Flüssigkeit zum Reinigen schräg auf die Innenseite der Diffusorwände (42) und / oder des Gaseintrittsgehäuses (21) trifft. In dem Fall, dass jedem Diffusorkanal aus mehreren Öffnungen Flüssigkeit zuführbar ist, können die Winkel zwischen der Längsachse der Bohrung und der Innenseite des sie umgebenden Teils des Gaseintrittsgehäuses und / oder der mindestens einen Diffusorwand variieren. Dabei können die Längsachsen der Bohrungen so ausgebildet sein, dass die Flüssigkeit zum Reinigen fächerförmig in den Diffusor (4) einführbar ist.
Als Flüssigkeit zum Reinigen kann Wasser eingesetzt werden. Dem Wasser können noch Zusatzstoffe beigefügt werden, die den Reinigungsprozess verstärken.
Der Diffusor (4) kann zumindest teilweise mit einer antihaftenden Beschichtung versehen sein. Eine derartige Beschichtung kann auch auf der Innenseite des Gaseintrittsgehäuses (21) und auf dem Verdichterrad (3) vorgesehen sein. Die Beschichtung sollte dauerhaft temperaturbeständig bis zu solchen Temperaturen sein, wie sie während des Betriebs des Verdichters auftreten. Typischerweise bilden sich in Diffusoren von Verdichtern Temperaturen bis 260 °C aus, wobei die Beschichtung auch für einen kurzfristigen Temperaturanstieg bis 290 °C geeignet sein sollte. Bei speziellen Einsätzen oder zukünftigen Turboladem sind aber auch höhere Temperaturen denkbar und Beschichtungen mit einer entsprechend höheren Beständigkeit erforderlich.
Abhängig von den auftretenden Verschmutzungen und dem Einsatzgebiet des Verdichters kann es vorteilhaft sein, wenn die Beschichtung wasser- und / oder ölabweisend ist. Wenn in der angesaugten Luft noch ätzende Substanzen enthalten sind, welche die Wände angreifen, kann eine Beschichtung gewählt werden, die zudem noch korrosionsbeständig ist.
Als Beschichtung ist ein polymerisches Nanocomposit, das aus einer polymerischen Beschichtung mit einer fluorhaltigen Oberfläche und eingebetteten harten Teilchen, deren Grosse im Nanometerbereich liegt, geeignet. Auch eine Beschichtung aus Perfluoralkoxy - Copolymer (Teflon PFA), Hartchrombeschichtungen oder Vernickelungen sind möglich. Diese Aufzählung soll keineswegs abschliessend sein.
Das Ausmass der Verkokung kann verringert werden, indem die Wände des Verdichters, an welchen eine Verkokung stattfindet, gekühlt werden. Durch die niedrigeren Temperaturen an den Wänden baut sich die Verkokungsschicht weniger schnell auf und haftet weniger fest an den Wänden und kann daher besser entfernt werden. Die Kühlung der Wände kann durch bestehende Hohlräume im Verdichter oder speziell dafür vorgesehene Hohlräume oder Kühlschläuche geschehen. Die Kühlung kann mittels Luft, Wasser oder Öl erreicht werden.
In dem erfindungsgemässen Verfahren zum Reinigen eines Diffusors (4) eines Verdichters (1) wird Luft von einem Verdichterrad (3) angesaugt. Zusätzlich kann verunreinigte Luft aus einem Blow-By Kanal der angesaugten Luft zugeführt werden. Zur Reinigung des Diffusors (4) wird von einer Pumpe ein Flüssigkeitsdruck aufgebaut. Die Flüssigkeit wird von der Pumpe durch eine Sammelleitung zu den Öffnungen in dem Gaseintrittsgehäuse (2) und / oder der mindestens einen Diffusorwand (41 ) gepresst. Der dazu nötige Druck ist höher als der im Strömungskanal (5) des Verdichters herrschende Druck. Die Flüssigkeit wird in den Strömungskanal (5) eingeführt und gelangt so auf mindestens eine Diffusorwand (41) und / oder die Leitschaufeln (44).
Die Flüssigkeit kann derart in den Diffusor (4) eingeführt werden, dass sie nach der Öffnung an der Innenseite der Diffusorwand (42) und / oder den Leitschaufeln (44) entlang fliesst. Es ist aber auch möglich, den Druck der Flüssigkeit soweit zu erhöhen, dass die Flüssigkeit erst gegen die Innenseite des Gaseintrittsgehäuses (21), die Innenseite der Diffusorwand (42) und / oder die Leitschaufeln (44), die in Verlängerung der Längsachse der Bohrung liegen, zu spritzen, wo zumindest ein Teil der Flüssigkeit abprallt und vernebelt wird. Dabei kann die Flüssigkeit auch entgegen der Strömungsrichtung des zu verdichtenden Mediums (7) in den Strömungskanal (5) eingeführt werden.
Verdichter, die in Abgasturboladern einer Brennkraftmaschine betrieben werden, können mit einem Lufthilfsantriebssystem ausgestattet sein, welches das Anlaufen einer Brennkraftmaschine erleichtert. Dazu wird Luft vor den Diffusoren mit einer Pumpe durch Zuleitungen in eine Ringkammer eingeleitet und über Bohrungen in dem Gaseintrittsgehäuse in den Strömungskanal eingeführt. Wenn ein solches System nicht als Lufthilfsantriebssystem genutzt wird, können die Bohrungen in dem Gaseintrittsgehäuse abgedichtet werden und neue Bohrungen derart gebohrt werden, dass eine Flüssigkeit zum Reinigen stromabwärts des Verdichterrades in den Diffusor einführbar ist. Die Flüssigkeit zum Reinigen wird durch die Zuleitungen in die Ringkammer transportiert und mit einem Druck, der höher ist als der im Strömungskanal des Verdichters herrschende Druck, in den Diffusor eingeführt.
Auch andere bestehende Hohlräume, Angüsse oder Kanäle, die nicht für andere Zwecke benötigt werden, können für die Einführung von Flüssigkeiten in den Diffusor genutzt werden. Es ist aber auch möglich, solche Hohlräume zu schaffen. In Figur 3 ist ein Kanal (81) gezeigt, der mit einer ringförmigen Kammer (82) verbunden ist, welche um das Verdichterrad parallel zum Diffusor (4) herumläuft. Dichtungsmittel (83) dichten diese Kammer gegen das Gaseintrittsgehäuse (2) ab. Von der ringförmigen Kammer aus gehen Bohrungen (84) bis zum Diffusor (4). Zur Fixierung der Positionen der Teile in Umfangsrichtung sind Bolzen oder andere Fixiermittel (85) vorgesehen. Durch den Kanal (81) wird eine Flüssigkeit in die ringförmige Kammer (82) eingeführt und von dort dem Diffusor (4) zugeführt.
Bezugszeichenliste
1 Verdichter
2 Gaseintrittsgehäuse
21 Innenseite des Gaseintrittsgehäuses
22 Aussenseite des Gaseintrittsgehäuses
3 Verdichterrad
31 Laufschaufeln
32 Nabe
4 Diffusor
41 Diffusorwand
42 Innenseite der Diffusorwand
43 Aussenseite der Diffusorwand
44 Leitschaufeln
45 Diffusorkanal
5 Strömungskanal
6 Welle
7 Strömungsrichtung
81 Kanal
82 ringförmige Kammer
83 Dichtungsmittel
84 Bohrung
85 Fixiermittel

Claims

PA TEN TA NS P R UE C HE
1. Verdichter (1), umfassend ein Verdichterrad (3), einen Diffusor (4) und eine Vorrichtung zum Nassreinigen eines Diffusors eines Verdichters, wobei der Diffusor (4) in Strömungsrichtung des zu verdichtenden Mediums stromabwärts des Verdichterrades (3) angeordnet ist, und die Vorrichtung Mittel zum Einspritzen einer Flüssigkeit umfasst, dadurch gekennzeichnet, dass die Mittel derart angeordnet sind, dass die Flüssigkeit stromabwärts des Verdichterrades (3) in den Diffusor (4) einführbar ist.
2. Verdichter nach Anspruch 1 , dadurch gekennzeichnet, dass der Verdichter (1 ) ein Gaseintrittsgehäuse (2) umfasst und der Diffusor (4) Diffusorwände (41) umfasst und das Gaseintrittsgehäuse (2) und/oder mindestens eine Diffusorwand (41) mindestens eine Öffnung als Mittel zum Einspritzen der Flüssigkeit aufweist.
3. Verdichter nach Anspruch 2, dadurch gekennzeichnet, dass der Diffusor (4) Leitschaufeln (44) und Diffusorkanäle (45) umfasst, wobei jeder Diffusorkanal (45) durch eine Leitschaufel (44) und einen Teil einer Diffusorwand (41 ) begrenzt wird, und die Flüssigkeit jedem Diffusorkanal (45) aus mindestens einer Öffnung zuführbar ist.
4. Verdichter nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Öffnungen als Bohrungen in der dem zu verdichtenden Medium zugewandten Seite des Gaseintrittsgehäuses (21) und/oder mindestens einer der Diffusorwände (43) ausgebildet sind und eine Längsachse aufweisen, welche Längsachse senkrecht zu der dem zu verdichtenden Medium zugewandten Seite des sie umgebenden Teils des Gaseintrittsgehäuses oder Diffusorwand steht.
5. Verdichter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Diffusor (4) zumindest teilweise eine antihaftende Beschichtung aufweist.
6. Verdichter nach Anspruch 5, dadurch gekennzeichnet, dass die Beschichtung dauerhaft hitzebeständig ist.
7. Verdichter nach Anspruch 1 , dadurch gekennzeichnet, dass der Verdichter (1 ) ein Gaseintrittsgehäuse (2) umfasst und der Diffusor (4) Diffusorwände (41 ) umfasst und in dem Gaseintrittsgehäuse (2) und / oder mindestens einer Diffusorwand (41) Mittel zum Kühlen der Wände vorgesehen sind.
8. Turbolader, einen Verdichter (1) nach einem der Ansprüche 1 bis 7 enthaltend.
9. Verfahren zum Herstellen eines Verdichters (1) mit einem Gaseintrittsgehäuse (2) und einem Diffusor (4) mit Diffusorwänden (41), dadurch gekennzeichnet, dass in dem Gaseintrittsgehäuse (2) und / oder mindestens einer Diffusorwand (41) mindestens eine Öffnung zum Zuführen von Flüssigkeit zum Reinigen in den Diffusor angebracht wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die mindestens eine Öffnung durch eine Leitung mit einem Hohlraum verbunden werden zur Nutzung des Hohlraums als Flüssigkeitsspeicher.
PCT/CH2004/000597 2003-09-25 2004-09-22 Verdichterreinigung WO2005028876A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04761937A EP1664546A1 (de) 2003-09-25 2004-09-22 Verdichterreinigung
US11/389,109 US7524166B2 (en) 2003-09-25 2006-03-27 Compressor cleaning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US50571603P 2003-09-25 2003-09-25
US60/505,716 2003-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/389,109 Continuation US7524166B2 (en) 2003-09-25 2006-03-27 Compressor cleaning system

Publications (1)

Publication Number Publication Date
WO2005028876A1 true WO2005028876A1 (de) 2005-03-31

Family

ID=34375583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2004/000597 WO2005028876A1 (de) 2003-09-25 2004-09-22 Verdichterreinigung

Country Status (3)

Country Link
US (1) US7524166B2 (de)
EP (1) EP1664546A1 (de)
WO (1) WO2005028876A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7352077B2 (en) 2005-08-08 2008-04-01 Ishikawajima-Harima Heavy Industries Co., Ltd. Motor-driven supercharger
US7367190B2 (en) * 2005-08-11 2008-05-06 Ihi Corp. Supercharger with electric motor
EP1925782A1 (de) * 2006-11-23 2008-05-28 Siemens Aktiengesellschaft Unbenetzbare Flächenbeschichtung von Nassdampfturbinenbauteilen
WO2008125563A1 (de) * 2007-04-16 2008-10-23 Napier Turbochargers Limited Abgasturbolader für oder in einem kraftfahrzeug mit einer verdichterseitig an einer inneren oberfläche vorgesehenen selbstreinigenden beschichtung
US7530230B2 (en) 2005-08-05 2009-05-12 Ihi Corporation Supercharger with electric motor
US7559751B2 (en) 2005-08-22 2009-07-14 Ihi Corporation Supercharger with electric motor
US7673452B2 (en) 2006-01-24 2010-03-09 Ishikawajima-Harima Heavy Industries Co., Ltd. Motor-driven supercharger
US7722316B2 (en) * 2005-09-13 2010-05-25 Rolls-Royce Power Engineering Plc Acoustic viscous damper for centrifugal gas compressor
US7837448B2 (en) 2006-01-26 2010-11-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Supercharger
US8001781B2 (en) 2006-06-02 2011-08-23 Ihi Corporation Motor-driven supercharger
US8096126B2 (en) 2006-06-02 2012-01-17 Ihi Corporation Motor-driven supercharger
US8152489B2 (en) 2006-08-18 2012-04-10 Ihi Corporation Motor-driven supercharger
US8157543B2 (en) 2006-03-23 2012-04-17 Ihi Corporation High-speed rotating shaft of supercharger
US8157544B2 (en) 2006-08-18 2012-04-17 Ihi Corporation Motor driven supercharger with motor/generator cooling efficacy
EP2562430A1 (de) * 2011-08-24 2013-02-27 Siemens Aktiengesellschaft Verfahren zum Waschen eines Axialverdichters
AT507450A3 (de) * 2008-10-23 2013-07-15 Man Diesel Se Verfahren zur entfernung von verunreinigungen aus dem diffuser eines turboladers und vorrichtung zu dessen durchführung
EP2722506A1 (de) * 2012-10-22 2014-04-23 Otics Corporation Turbolader
US8858720B2 (en) 2008-12-09 2014-10-14 Chevron Belgium Nv Method for cleaning deposits from turbocharger and supercharger compressors

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1878879A1 (de) * 2006-07-14 2008-01-16 Abb Research Ltd. Turbolader mit katalytischer Beschichtung
DE102006057383A1 (de) * 2006-12-04 2008-06-05 Voith Patent Gmbh Turbinenanlage zum Nutzen von Energie aus Meereswellen
GB0724022D0 (en) * 2007-12-07 2008-01-16 Cummins Turbo Tech Ltd Compressor
US20100247321A1 (en) * 2008-01-08 2010-09-30 General Electric Company Anti-fouling coatings and articles coated therewith
GB2488997A (en) * 2011-03-14 2012-09-19 O Gen Uk Ltd Engine with Turbocharger and Intake Cleaning Features
WO2013080600A1 (ja) * 2011-12-01 2013-06-06 トヨタ自動車株式会社 過給機付き内燃機関
US20140321979A1 (en) * 2013-04-24 2014-10-30 Hamilton Sundstrand Corporation Turbine nozzle piece parts with hvoc coatings
US9489819B2 (en) * 2014-10-21 2016-11-08 Anytransactions, Inc. Personal monitor and tracking system
US10006341B2 (en) 2015-03-09 2018-06-26 Caterpillar Inc. Compressor assembly having a diffuser ring with tabs
US10066639B2 (en) 2015-03-09 2018-09-04 Caterpillar Inc. Compressor assembly having a vaneless space
EP3985230A1 (de) * 2020-10-13 2022-04-20 ABB Switzerland Ltd. Radialturbine mit einer reinigungsvorrichtung zur reinigung eines leitschaufelrings und verfahren zur montage und demontage der reinigungsvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369533A (en) * 1965-01-04 1968-02-20 Bbc Brown Boveri & Cie Method of and apparatus for prevention of deposits of contaminants in the flow path of turbo-compressors
FR1563749A (de) * 1967-12-20 1969-04-18
US4695224A (en) * 1982-01-04 1987-09-22 General Electric Company Centrifugal compressor with injection of a vaporizable liquid
EP0566476A1 (de) 1992-04-14 1993-10-20 Esswein S.A. Laufradreinigung für eine Wasch/Trockenmaschine
US5385014A (en) 1992-09-11 1995-01-31 Aeronautical Accessories, Inc. Valve and method of valve use while washing a compressor in an aircraft engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2786626A (en) * 1952-08-07 1957-03-26 Gulf Oil Corp Process for the compression of gases
US3337427A (en) * 1966-06-27 1967-08-22 Whitfield Lab Inc Heat and chemical resistant metal alloy parts
US4196020A (en) * 1978-11-15 1980-04-01 Avco Corporation Removable wash spray apparatus for gas turbine engine
FR2638781B1 (fr) * 1988-11-09 1990-12-21 Snecma Depot electrophoretique anti-usure du type metalloceramique consolide par nickelage electrolytique
US5985454A (en) * 1990-02-05 1999-11-16 Sermatech International Incorporated Anti-fouling coating for turbomachinery
US6220234B1 (en) * 1999-03-04 2001-04-24 Cummins Engine Company Coated compressor diffuser
US6341747B1 (en) * 1999-10-28 2002-01-29 United Technologies Corporation Nanocomposite layered airfoil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3369533A (en) * 1965-01-04 1968-02-20 Bbc Brown Boveri & Cie Method of and apparatus for prevention of deposits of contaminants in the flow path of turbo-compressors
FR1563749A (de) * 1967-12-20 1969-04-18
US4695224A (en) * 1982-01-04 1987-09-22 General Electric Company Centrifugal compressor with injection of a vaporizable liquid
EP0566476A1 (de) 1992-04-14 1993-10-20 Esswein S.A. Laufradreinigung für eine Wasch/Trockenmaschine
US5385014A (en) 1992-09-11 1995-01-31 Aeronautical Accessories, Inc. Valve and method of valve use while washing a compressor in an aircraft engine

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7530230B2 (en) 2005-08-05 2009-05-12 Ihi Corporation Supercharger with electric motor
US7352077B2 (en) 2005-08-08 2008-04-01 Ishikawajima-Harima Heavy Industries Co., Ltd. Motor-driven supercharger
US7367190B2 (en) * 2005-08-11 2008-05-06 Ihi Corp. Supercharger with electric motor
US7559751B2 (en) 2005-08-22 2009-07-14 Ihi Corporation Supercharger with electric motor
US7722316B2 (en) * 2005-09-13 2010-05-25 Rolls-Royce Power Engineering Plc Acoustic viscous damper for centrifugal gas compressor
US7673452B2 (en) 2006-01-24 2010-03-09 Ishikawajima-Harima Heavy Industries Co., Ltd. Motor-driven supercharger
US7837448B2 (en) 2006-01-26 2010-11-23 Ishikawajima-Harima Heavy Industries Co., Ltd. Supercharger
US8157543B2 (en) 2006-03-23 2012-04-17 Ihi Corporation High-speed rotating shaft of supercharger
US8001781B2 (en) 2006-06-02 2011-08-23 Ihi Corporation Motor-driven supercharger
US8096126B2 (en) 2006-06-02 2012-01-17 Ihi Corporation Motor-driven supercharger
US8152489B2 (en) 2006-08-18 2012-04-10 Ihi Corporation Motor-driven supercharger
US8157544B2 (en) 2006-08-18 2012-04-17 Ihi Corporation Motor driven supercharger with motor/generator cooling efficacy
WO2008062051A1 (en) * 2006-11-23 2008-05-29 Siemens Aktiengesellschaft Non wetable surface coating of steam turbine parts which work in wet steam
EP1925782A1 (de) * 2006-11-23 2008-05-28 Siemens Aktiengesellschaft Unbenetzbare Flächenbeschichtung von Nassdampfturbinenbauteilen
WO2008125563A1 (de) * 2007-04-16 2008-10-23 Napier Turbochargers Limited Abgasturbolader für oder in einem kraftfahrzeug mit einer verdichterseitig an einer inneren oberfläche vorgesehenen selbstreinigenden beschichtung
AT507450A3 (de) * 2008-10-23 2013-07-15 Man Diesel Se Verfahren zur entfernung von verunreinigungen aus dem diffuser eines turboladers und vorrichtung zu dessen durchführung
AT507450B1 (de) * 2008-10-23 2014-02-15 Man Diesel Se Verfahren zur entfernung von verunreinigungen aus dem diffusor eines turboladers und vorrichtung zu dessen durchführung
AT513223B1 (de) * 2008-10-23 2014-12-15 Man Diesel Se Verfahren zum Entfernen von Verunreinigungen aus dem Diffusor eines Turboladers und Vorrichtung zu dessen Durchführung
AT513223A3 (de) * 2008-10-23 2014-07-15 Man Diesel Se Verfahren zum Entfernen von Verunreinigungen aus dem Diffusor eines Turboladers und Vorrichtung zu dessen Durchführung
US8858720B2 (en) 2008-12-09 2014-10-14 Chevron Belgium Nv Method for cleaning deposits from turbocharger and supercharger compressors
EP2562430A1 (de) * 2011-08-24 2013-02-27 Siemens Aktiengesellschaft Verfahren zum Waschen eines Axialverdichters
EP2722506A1 (de) * 2012-10-22 2014-04-23 Otics Corporation Turbolader

Also Published As

Publication number Publication date
US7524166B2 (en) 2009-04-28
EP1664546A1 (de) 2006-06-07
US20060245913A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
WO2005028876A1 (de) Verdichterreinigung
EP0848150B1 (de) Reinigungsvorrichtung für die Turbine eines Turboladers
EP2041400B1 (de) Turbolader mit katalytische beschichtung
EP1778953B1 (de) Reinigungsvorrichtung einer abgasturbine
DE102008017844A1 (de) Strömungsmaschine mit Fluid-Injektorbaugruppe
DE102015202946A1 (de) Pumpvorrichtung zum Antreiben von Blow-by-Gas
EP2565391B1 (de) Reinigunsvorrichtung einer Abgasturbine und zugehörige Abgasturbine, Nutzturbine und Abgasturbolader
WO2006021520A1 (de) Flüssigkeitseinspritzung in einer gasturbine während einer abkühlphase
EP2886931A1 (de) Vorrichtung eines Strahltriebwerks mit wenigstens einem in einem Gehäuse angeordneten und gegenüber dem Gehäuse drehbar ausgeführten Bauteil
DE102006018055A1 (de) Abgasturbolader für eine Brennkraftmaschine
EP2009288A2 (de) Turbolader mit integriertem Separator
EP2035669A1 (de) Sekundärluftsystem für turboladerturbine
DE102015202948A1 (de) Pumpvorrichtung zum Antreiben von Blow-by-Gas
DE1236855B (de) OElabdichtung fuer Turbolader od. dgl.
EP3267089A1 (de) Ölverteilungssystem und turbomaschine mit einem ölverteilungssystem
DE102018210600A1 (de) Mantelringanordnung für eine strömungsmaschine
WO2017133873A1 (de) Gasturbine mit axialschubkolben und radiallager
DE10390644B4 (de) Turboverdichter und Verfahren zum Betrieb eines Turboverdichters
EP1687512B1 (de) Turbolader mit einer reinigungsvorrichtung
DE102015202942A1 (de) Pumpvorrichtung zum Antreiben von Blow-by-Gas
AT513223B1 (de) Verfahren zum Entfernen von Verunreinigungen aus dem Diffusor eines Turboladers und Vorrichtung zu dessen Durchführung
DE102009022490B4 (de) Kolbenläufer für einen Rotationskolbenmotor und Rotationskolbenmotor
WO2001073278A1 (de) Radialturbine eines abgasturboladers
EP0690204A2 (de) Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses
DE102015202947A1 (de) Pumpvorrichtung zum Antreiben von Blow-by-Gas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004761937

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11389109

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004761937

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11389109

Country of ref document: US