EP0357743B1 - Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide - Google Patents
Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide Download PDFInfo
- Publication number
- EP0357743B1 EP0357743B1 EP89903172A EP89903172A EP0357743B1 EP 0357743 B1 EP0357743 B1 EP 0357743B1 EP 89903172 A EP89903172 A EP 89903172A EP 89903172 A EP89903172 A EP 89903172A EP 0357743 B1 EP0357743 B1 EP 0357743B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- alloys
- temperature
- magnesium
- extrusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000007712 rapid solidification Methods 0.000 title claims abstract description 12
- 229910000861 Mg alloy Inorganic materials 0.000 title abstract description 14
- 230000008569 process Effects 0.000 title abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 20
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 12
- 238000007596 consolidation process Methods 0.000 claims abstract description 11
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 5
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- 238000001125 extrusion Methods 0.000 claims abstract 6
- 229910045601 alloy Inorganic materials 0.000 claims description 84
- 239000000956 alloy Substances 0.000 claims description 84
- 239000011575 calcium Substances 0.000 claims description 39
- 239000011701 zinc Substances 0.000 claims description 29
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 24
- 239000011572 manganese Substances 0.000 claims description 22
- 229910052782 aluminium Inorganic materials 0.000 claims description 19
- 229910052749 magnesium Inorganic materials 0.000 claims description 16
- 239000011777 magnesium Substances 0.000 claims description 16
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 239000004411 aluminium Substances 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 229910021323 Mg17Al12 Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 2
- 150000002739 metals Chemical class 0.000 claims 1
- 238000009987 spinning Methods 0.000 description 37
- 239000000047 product Substances 0.000 description 23
- 238000012360 testing method Methods 0.000 description 17
- 238000005266 casting Methods 0.000 description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 11
- 238000007792 addition Methods 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 7
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000000889 atomisation Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000005056 compaction Methods 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 241001417494 Sciaenidae Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- UQCVYEFSQYEJOJ-UHFFFAOYSA-N [Mg].[Zn].[Zr] Chemical compound [Mg].[Zn].[Zr] UQCVYEFSQYEJOJ-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- YFXPPSKYMBTNAV-UHFFFAOYSA-N bensultap Chemical compound C=1C=CC=CC=1S(=O)(=O)SCC(N(C)C)CSS(=O)(=O)C1=CC=CC=C1 YFXPPSKYMBTNAV-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000009690 centrifugal atomisation Methods 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- IOUVKUPGCMBWBT-QNDFHXLGSA-N phlorizin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC(O)=CC(O)=C1C(=O)CCC1=CC=C(O)C=C1 IOUVKUPGCMBWBT-QNDFHXLGSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/04—Alloys based on magnesium with zinc or cadmium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/005—Amorphous alloys with Mg as the major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/06—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
Definitions
- the present invention relates to magnesium-based alloys with high mechanical strength, as well as a process for obtaining these alloys by rapid solidification and consolidation by spinning. It relates in particular to alloys containing Al, at least Zn and / or Ca and which can contain manganese whose weight composition is situated within the following limits: Al: 2 - 11% Zn: 0 - 12% Mn: 0 - 0.6% Ca: 0 - 7% but always with the presence of Zn and / or Ca with the following content of impurities: If: 0.1 - 0.6 Cu: ⁇ 0.2 Fe: ⁇ 0.1 Ni: ⁇ 0.01 the rest being magnesium.
- alloys with high mechanical strength having a composition corresponding to that of the basic commercial alloys of the prior art, listed under the names AZ31, AZ61, AZ80 (wrought alloys) and AZ91, AZ92 (casting alloys), according to ASTM standard, or G-A3Z1, G-A6Z1, G-A8Z, G-A9Z1 and G-A9Z2 respectively according to French standard NE A 02-004; it also relates to alloys having a composition corresponding to those of said basic commercial alloys to which calcium is added. It should be noted that these alloys contain Mn as an addition element.
- the alloys used comprise, on a magnesium basis, from 0 to 11 atom% of aluminum, from 0 to 4 atom% of zinc and from 0.5 to 4 atom% of an addition element such as silicon, germanium, cobalt, tin or antimony.
- Aluminum or zinc can also be replaced up to 4% by neodymium, praseodymium, yttrium, cerium or manganese.
- the alloys thus obtained have a breaking load of the order of 414 to 482 MPa, an elongation of up to 5% and good resistance to corrosion by aqueous solutions containing 3% NaCl.
- magnesium alloys with high mechanical strength, obtained by rapid solidification which contain, as alloying elements, from 0 to 15 atom% of aluminum, and from 0 to 4 atom% of zinc (with a total of both between 2 and 15%) and a complementary addition of 0.2 to 3 atom% of at least one element chosen from the group comprising Mn, Ce, Nd, Pr, Y , Ag.
- This process requires the use of non-standard magnesium alloys comprising certain elements of addition of high price and often difficult solution, and grinding of the ribbons, obtained during rapid solidification, prior to the compaction.
- a first object of the present invention relates to magnesium-based alloys, consolidated after rapid solidification, with high mechanical characteristics, having a breaking load at least equal to 290 MPa, but more particularly at least 330 MPa and an elongation at break at least equal to 5% and having, in combination, the following characteristics: - a weight composition located within the following limits: Aluminum 2-11% Zinc 0-12%, preferably 0.2 to 12% Manganese 0-0.6%, preferably 0.1 to 0.2% Calcium 0-7% but with at least the presence of Zn and / or Ca. with the following contents of main impurities: Silicon 0.1 to 0.6% Copper ⁇ 0.2% Iron ⁇ 0.1% Nickel ⁇ 0.1% the rest being magnesium.
- the alloy must contain at least one of the elements Zn or Ca or a mixture of the two; when Zn is present, its content is preferably at least 0.2%.
- Mn When Mn is present, it is an at least quaternary element and its minimum weight content is preferably 0.1%.
- the added quantities by weight are between 0.5 and 7%. This addition then makes it possible to improve the characteristics of the alloys based on Mg, in particular those containing Al and / or Zn and / or Mn, obtained after rapid quenching and consolidation by spinning, including for a spinning temperature between 250 and 350 ° C.
- the sum of the contents of Al, Zn and / or Ca does not usually exceed 20%.
- a second object of the present invention is a process for obtaining these alloys characterized in that said alloy, in the liquid state is added to rapid cooling, at a speed at least equal to 104 Ks-l, so as to obtain a solidified product of which at least one of the dimensions is less than 150 mm, in that this solidified product is then compacted by spinning at a temperature between 200 and 350 ° C.
- a characteristic of the invention is that it applies to magnesium alloys of the conventional type, normally intended for foundry (casting) or for working, without any additional addition of alloying element (s) intended to modify its structure as is the case in the prior art.
- alloys of the types G-A3Z1, G-A6Z1, G-A8Z, G-A9Z1, G-A9Z2 (according to French standard NF A 02704), including the chemical composition intervals, were preferably used. have been given previously; they contain in particular additions of Mn.
- Ca can also be added to it to improve their mechanical characteristics obtained during consolidation at a higher temperature.
- the magnesium ribbons can either be directly introduced into the container of a press and spun, or pre-compacted cold or warm (temperature below, for example 250 ° C.), using a press, in the form of a billet whose density is close to 99% of the theoretical density of the alloy, this billet being subsequently spun, or introduced by cold pre-compacting them to 70% the theoretical density, in a sheath made of magnesium or magnesium alloy or aluminum or aluminum alloy, itself introduced into the container of the spinning press; it is then possible, after spinning, to remove the sheath by machining.
- the sheath can be thin-walled (less than 1 mm) or thick (up to 4 mm). In all cases, it is preferable that the alloy constituting the sheath has a flow limit not exceeding the order of magnitude of that of the product to be spun, at the spinning temperature.
- a rotating electrode is melted by an electron beam or an electric arc (atomization by rotating electrode), or a liquid jet is mechanically divided in contact with a rotating body and the fine droplets are projected onto a strongly cooled, renewed, or fixed surface, but kept clear, that is to say without adhesion of the solidified metal particles on said surface; the droplets can also be projected into a stream of inert gas, at low temperature (centrifugal atomization).
- the parameters of the operation must be chosen so that at least one of the dimensions of the metal particles is less than 150 ⁇ m.
- the alloy particles are obtained by atomization of liquid alloy in a jet of inert gas. This operation is also well known in itself and is not part of the invention. It makes it possible to provide particles of dimensions less than a hundred microns. These particles are generally spherical in shape, while those obtained in the previous variant are rather in the form of thin plates. The compaction of these particles is also carried out according to the same scheme as in the first and the second embodiment.
- the products obtained can, before spinning, be degassed at a temperature not exceeding 350 ° C.
- the procedure can be as follows: the ribbons are cold pre-compacted in a box and all placed in a vacuum oven. The box is vacuum sealed and then spun. But degassing can also be done dynamically: the divided products are degassed and then compacted under vacuum in the form of a billet with closed porosities which is then spun.
- Table II gives the characteristics of alloys of equivalent compositions, obtained in a conventional manner: TABLE II Test No. Alloy type (1) Method of obtaining Hv kg / mm2 TYS (0.2) MPa UTS MPa e% 14 AZ 31 Gross spinning 170 250 5
- AZ31 has 2.5-3.5% Al and 0.5-1.5% Zn, and AZ91 8.3-10.3% Al and 0.2-1% Zn as main elements, and 0.15% from Mn.
- the hardness, the elastic limit and the breaking load very strongly depend on the spinning conditions.
- Table III brings together a certain number of mechanical characteristics of products in AZ91 alloys solidified quickly then compacted by spinning, according to the invention. The parameters were varied: spinning ratio (from 12 to 30), temperature and spinning speed (resp. 200-350 ° C and 0.5-3 mm / s). TABLE III Mechanical characteristics of the AZ91 treated according to the invention T. Wire ° C R. Wire V Wire. mm / sec Hardness Hv kg / mm2 Elast.limit. Charge rupt. UTS, MPa All.
- the mechanical characteristics decrease when the spinning temperature increases, that the hardness increases when the spinning ratio increases to reach a plateau, more or less quickly, depending on the temperature.
- a spinning ratio 20.
- the elastic limit CYS in compression is at least equal (and sometimes higher) to the elastic limit in tension, which is quite exceptional since the same alloys, in classical transformation, have a limit in compression about 0.7 times the tensile limit. This means that, in the design of parts added to compressive stresses, the alloys according to the invention will bring a significant gain of around 30%.
- the remarkable mechanical properties of the alloys according to the invention are essentially due to the fact that the process used leads to a very fine grain structure, of the order of a micrometer (0.7 to 1.5 on average).
- the optical microscope does not make it possible to resolve the structure and it is only by electron microscopy that it can be verified that the products according to the invention are in fact constituted by a homogeneous matrix reinforced by particles of intermetallic compounds Mg17Al12 of size less than 0.5 mum, precipitated at the grain boundaries and also of Al2Ca, under certain conditions mentioned above.
- the presence, in the grains, of precipitates ⁇ 0.2 mum of compound based on Al Mn Zn is also noted.
- the general structure is granular equiaxed.
- the precipitates do not have the same morphology as the structural hardening precipitates observed on samples of the same alloys obtained by conventional metallurgy.
- This structure also has remarkable thermal stability, since it remains unchanged after 24 hours of holding at 200 ° C for alloys containing no Ca and up to 350 ° C for those containing it. No softening or hardening is manifested, which is not the case for conventional magnesium alloys with structural hardening.
- the corrosion resistance is evaluated by a measurement of weight loss in an aqueous solution at 5% (by weight) of NaCl, the result of which is expressed in "mcd" (milligrams per square centimeter per day).
- the tests carried out on a set of products according to the invention give results of between 0.4 and 0.6 while the same alloys, transformed into conventional metallurgy, give results of between 0.6 and 2 mcd. It can therefore be said that the corrosion resistance of the alloys according to the invention is at least equal to that of conventional alloys, and is in fact placed at the level of the resistance of high purity alloys, such as AZ91E produced by the Company DOW CHEMICAL. It is found that the alloys according to the invention generally exhibit corrosion without pitting and more homogeneous than that of said AZ91E alloys.
- the presence of Ca further improves the resistance to corrosion; it becomes very slow and extremely homogeneous.
- the weight loss is 0.075 mg / cm2.day while for an AZ91 without calcium in test 4 it is 0.4 mg / cm2.day.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Forging (AREA)
- Powder Metallurgy (AREA)
- Continuous Casting (AREA)
- Extrusion Of Metal (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8802885 | 1988-02-26 | ||
FR8802885A FR2627780B1 (fr) | 1988-02-26 | 1988-02-26 | Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide |
FR8901913 | 1989-02-01 | ||
FR898901913A FR2642439B2 (enrdf_load_stackoverflow) | 1988-02-26 | 1989-02-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0357743A1 EP0357743A1 (fr) | 1990-03-14 |
EP0357743B1 true EP0357743B1 (fr) | 1993-09-29 |
Family
ID=26226539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP89903172A Expired - Lifetime EP0357743B1 (fr) | 1988-02-26 | 1989-02-23 | Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide |
Country Status (6)
Country | Link |
---|---|
US (1) | US4997622A (enrdf_load_stackoverflow) |
EP (1) | EP0357743B1 (enrdf_load_stackoverflow) |
JP (1) | JPH02503331A (enrdf_load_stackoverflow) |
DE (1) | DE68909544T2 (enrdf_load_stackoverflow) |
FR (1) | FR2642439B2 (enrdf_load_stackoverflow) |
WO (1) | WO1989008154A1 (enrdf_load_stackoverflow) |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5074936A (en) * | 1989-04-05 | 1991-12-24 | The Dow Chemical Company | Amorphous magnesium/aluminum-based alloys |
JP2511526B2 (ja) * | 1989-07-13 | 1996-06-26 | ワイケイケイ株式会社 | 高力マグネシウム基合金 |
FR2651244B1 (fr) * | 1989-08-24 | 1993-03-26 | Pechiney Recherche | Procede d'obtention d'alliages de magnesium par pulverisation-depot. |
FR2662707B1 (fr) * | 1990-06-01 | 1992-07-31 | Pechiney Electrometallurgie | Alliage de magnesium a haute resistance mecanique contenant du strontrium et procede d'obtention par solidification rapide. |
JP2705996B2 (ja) * | 1990-06-13 | 1998-01-28 | 健 増本 | 高力マグネシウム基合金 |
US5078807A (en) * | 1990-09-21 | 1992-01-07 | Allied-Signal, Inc. | Rapidly solidified magnesium base alloy sheet |
US5087304A (en) * | 1990-09-21 | 1992-02-11 | Allied-Signal Inc. | Hot rolled sheet of rapidly solidified magnesium base alloy |
US5552110A (en) * | 1991-07-26 | 1996-09-03 | Toyota Jidosha Kabushiki Kaisha | Heat resistant magnesium alloy |
DE69214735T2 (de) * | 1991-07-26 | 1997-03-20 | Toyota Motor Co Ltd | Hitzebeständiges Magnesiumlegierung |
JP2730847B2 (ja) * | 1993-06-28 | 1998-03-25 | 宇部興産株式会社 | 高温クリープ強度に優れた鋳物用マグネシウム合金 |
AU3708495A (en) * | 1994-08-01 | 1996-03-04 | Franz Hehmann | Selected processing for non-equilibrium light alloys and products |
WO1996025529A1 (en) * | 1995-02-17 | 1996-08-22 | Institute De La Technologie Du Magnesium, Inc. | Creep resistant magnesium alloys for die casting |
JP3415987B2 (ja) * | 1996-04-04 | 2003-06-09 | マツダ株式会社 | 耐熱マグネシウム合金成形部材の成形方法 |
KR970070222A (ko) * | 1996-04-25 | 1997-11-07 | 박병재 | 고압주조용 마그네슘 합금 |
US5855697A (en) * | 1997-05-21 | 1999-01-05 | Imra America, Inc. | Magnesium alloy having superior elevated-temperature properties and die castability |
JP2000104137A (ja) * | 1998-09-30 | 2000-04-11 | Mazda Motor Corp | マグネシウム合金鍛造素材、及び鍛造部材並びに該鍛造部材の製造方法 |
DE19915277A1 (de) * | 1999-04-03 | 2000-10-05 | Volkswagen Ag | Magnesiumlegierungen hoher Duktilität, Verfahren zu deren Herstellung und deren Verwendung |
US6264763B1 (en) | 1999-04-30 | 2001-07-24 | General Motors Corporation | Creep-resistant magnesium alloy die castings |
JP2001247926A (ja) * | 2000-03-03 | 2001-09-14 | Japan Steel Works Ltd:The | 流動性に優れたマグネシウム合金およびマグネシウム合金材 |
US6342180B1 (en) | 2000-06-05 | 2002-01-29 | Noranda, Inc. | Magnesium-based casting alloys having improved elevated temperature properties |
DE60045848D1 (de) | 2000-09-26 | 2011-05-26 | Kwang Seon Shin | Hochfeste magnesiumlegierung |
JP3592310B2 (ja) * | 2001-06-05 | 2004-11-24 | 住友電工スチールワイヤー株式会社 | マグネシウム基合金ワイヤおよびその製造方法 |
JP3592659B2 (ja) * | 2001-08-23 | 2004-11-24 | 株式会社日本製鋼所 | 耐食性に優れたマグネシウム合金およびマグネシウム合金部材 |
WO2003062481A1 (fr) * | 2002-01-03 | 2003-07-31 | Jsc 'avisma Titanium-Magnesium Works' | Alliage a base de magnesium |
IL147561A (en) * | 2002-01-10 | 2005-03-20 | Dead Sea Magnesium Ltd | High temperature resistant magnesium alloys |
AU2002315841A1 (en) * | 2002-01-11 | 2003-07-24 | Jsc "Avisma Titanium-Magnesium Works" | Magnesium-based alloy |
RU2220221C2 (ru) * | 2002-02-20 | 2003-12-27 | Открытое акционерное общество "АВИСМА титано-магниевый комбинат" | Сплав на основе магния |
AU2002950563A0 (en) * | 2002-08-02 | 2002-09-12 | Commonwealth Scientific And Industrial Research Organisation | Age-Hardenable, Zinc-Containing Magnesium Alloys |
US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
US8403037B2 (en) | 2009-12-08 | 2013-03-26 | Baker Hughes Incorporated | Dissolvable tool and method |
US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
US8123877B2 (en) * | 2003-01-31 | 2012-02-28 | Kabushiki Kaisha Toyota Jidoshokki | Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product |
JP4575645B2 (ja) * | 2003-01-31 | 2010-11-04 | 株式会社豊田自動織機 | 鋳造用耐熱マグネシウム合金および耐熱マグネシウム合金鋳物 |
US7029626B2 (en) * | 2003-11-25 | 2006-04-18 | Daimlerchrysler Corporation | Creep resistant magnesium alloy |
US20050194072A1 (en) * | 2004-03-04 | 2005-09-08 | Luo Aihua A. | Magnesium wrought alloy having improved extrudability and formability |
ATE360711T1 (de) * | 2004-03-11 | 2007-05-15 | Geesthacht Gkss Forschung | Verfahren zur herstellung von profilen aus magnesiumwerkstoff mittels strangpressen |
JP4862983B2 (ja) * | 2005-03-22 | 2012-01-25 | 住友電気工業株式会社 | マグネシウム溶接線の製造方法 |
AT503854B1 (de) * | 2006-05-19 | 2008-01-15 | Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh | Magnesium-basislegierung |
US20090196787A1 (en) * | 2008-01-31 | 2009-08-06 | Beals Randy S | Magnesium alloy |
JP5540415B2 (ja) * | 2008-06-03 | 2014-07-02 | 独立行政法人物質・材料研究機構 | Mg基合金 |
US20110203706A1 (en) * | 2008-10-22 | 2011-08-25 | Yukihiro Oishi | Formed product of magnesium alloy and magnesium alloy sheet |
US9227243B2 (en) | 2009-12-08 | 2016-01-05 | Baker Hughes Incorporated | Method of making a powder metal compact |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US9243475B2 (en) | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
US9090955B2 (en) | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
JP2012097309A (ja) * | 2010-10-29 | 2012-05-24 | Sanden Corp | マグネシウム合金部材、エアコン用圧縮機及びマグネシウム合金部材の製造方法 |
KR101080164B1 (ko) * | 2011-01-11 | 2011-11-07 | 한국기계연구원 | 발화저항성과 기계적 특성이 우수한 마그네슘 합금 및 그 제조방법 |
EP2701232B1 (en) * | 2011-04-18 | 2017-05-03 | Tohoku University | Magnesium fuel cell |
US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
US9133695B2 (en) | 2011-09-03 | 2015-09-15 | Baker Hughes Incorporated | Degradable shaped charge and perforating gun system |
US9347119B2 (en) | 2011-09-03 | 2016-05-24 | Baker Hughes Incorporated | Degradable high shock impedance material |
US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
US9068428B2 (en) | 2012-02-13 | 2015-06-30 | Baker Hughes Incorporated | Selectively corrodible downhole article and method of use |
JP6013755B2 (ja) * | 2012-04-10 | 2016-10-25 | サンデンホールディングス株式会社 | 圧縮機能部材及びその製造方法 |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
WO2014001241A1 (en) * | 2012-06-26 | 2014-01-03 | Biotronik Ag | Magnesium-zinc-calcium alloy, method for production thereof, and use thereof |
RU2506337C1 (ru) * | 2012-11-13 | 2014-02-10 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Литейный магниевый сплав |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
CA2936851A1 (en) | 2014-02-21 | 2015-08-27 | Terves, Inc. | Fluid activated disintegrating metal system |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US10689740B2 (en) | 2014-04-18 | 2020-06-23 | Terves, LLCq | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US10865465B2 (en) | 2017-07-27 | 2020-12-15 | Terves, Llc | Degradable metal matrix composite |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
JP6596236B2 (ja) * | 2015-05-27 | 2019-10-23 | 本田技研工業株式会社 | 耐熱性マグネシウム合金及びその製造方法 |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
JP2019063835A (ja) * | 2017-10-04 | 2019-04-25 | 株式会社日本製鋼所 | マグネシウム合金からなる鍛造用素材の製造方法 |
CN109321794B (zh) * | 2018-10-31 | 2021-01-19 | 江苏理工学院 | Al2Ca颗粒和碳纳米管混杂增强超轻镁锂基复合材料及制备方法 |
JP2021063256A (ja) * | 2019-10-11 | 2021-04-22 | 三菱重工業株式会社 | 航空機部材の製造方法 |
CN115652157A (zh) * | 2022-10-19 | 2023-01-31 | 重庆理工大学 | 一种低铝含量az系高性能铸造镁合金及其制备方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB596102A (en) * | 1945-07-19 | 1947-12-29 | Rupert Martin Bradbury | A new magnesium base alloy |
US2264310A (en) * | 1940-03-09 | 1941-12-02 | Dow Chemical Co | Magnesium base alloy |
FR888973A (fr) * | 1942-03-25 | 1943-12-28 | Airal A G | Alliage de magnésium |
GB579654A (en) * | 1943-05-18 | 1946-08-12 | Magnesium Elektron Ltd | Improvements in or relating to magnesium base alloys |
US3094413A (en) * | 1960-09-14 | 1963-06-18 | Magnesium Elektron Ltd | Magnesium base alloys |
US3496035A (en) * | 1966-08-03 | 1970-02-17 | Dow Chemical Co | Extruded magnesium-base alloy |
SU395474A1 (ru) * | 1970-06-15 | 1973-08-28 | В П Т Ьf'^nup qj^nrssTn'iVUiiA Caiiit!-! SufsJ | |
US4675157A (en) * | 1984-06-07 | 1987-06-23 | Allied Corporation | High strength rapidly solidified magnesium base metal alloys |
US4718475A (en) * | 1984-06-07 | 1988-01-12 | Allied Corporation | Apparatus for casting high strength rapidly solidified magnesium base metal alloys |
JPS613863A (ja) * | 1984-06-15 | 1986-01-09 | Ube Ind Ltd | ダイカスト用マグネシウム基合金 |
US4765954A (en) * | 1985-09-30 | 1988-08-23 | Allied Corporation | Rapidly solidified high strength, corrosion resistant magnesium base metal alloys |
JP3240455B2 (ja) * | 1995-07-11 | 2001-12-17 | 株式会社ケンウッド | 音響再生装置 |
-
1989
- 1989-02-01 FR FR898901913A patent/FR2642439B2/fr not_active Expired - Lifetime
- 1989-02-23 US US07/427,133 patent/US4997622A/en not_active Expired - Fee Related
- 1989-02-23 DE DE89903172T patent/DE68909544T2/de not_active Expired - Fee Related
- 1989-02-23 EP EP89903172A patent/EP0357743B1/fr not_active Expired - Lifetime
- 1989-02-23 WO PCT/FR1989/000071 patent/WO1989008154A1/fr active IP Right Grant
- 1989-02-23 JP JP1503445A patent/JPH02503331A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
DE68909544T2 (de) | 1994-01-27 |
EP0357743A1 (fr) | 1990-03-14 |
WO1989008154A1 (fr) | 1989-09-08 |
US4997622A (en) | 1991-03-05 |
DE68909544D1 (de) | 1993-11-04 |
FR2642439A2 (enrdf_load_stackoverflow) | 1990-08-03 |
JPH02503331A (ja) | 1990-10-11 |
FR2642439B2 (enrdf_load_stackoverflow) | 1993-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0357743B1 (fr) | Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide | |
EP0419375B1 (fr) | Alliages de magnésium à haute résistance mécanique et procédé d'obtention par solidification rapide | |
EP0465376B1 (fr) | Alliage de magnésium à haute résistance mécanique contenant du strontium et procédé d'obtention par solidification rapide | |
EP0375571B1 (fr) | Procédé d'obtention par "pulvérisation-dépôt" d'alliages d'Al de la série 7000 et de matériaux composites à renforts discontinus ayant pour matrice ces alliages à haute résistance mécanique et bonne ductilité | |
EP0414620B1 (fr) | Procédé d'obtention d'alliages de magnésium par pulvérisation-dépôt | |
JP6393008B1 (ja) | 高強度アルミニウム合金積層成形体及びその製造方法 | |
JP5239022B2 (ja) | 高強度高靭性マグネシウム合金及びその製造方法 | |
KR100993840B1 (ko) | 고강도 마그네슘 합금 판재 및 그 제조방법 | |
EP4461439A1 (fr) | Procédé de fabrication d'une pièce en alliage d'aluminium | |
FR2645546A1 (fr) | Alliage a base d'al a haut module et a resistance mecanique elevee et procede d'obtention | |
FR2805828A1 (fr) | Alliage a base d'aluminium contenant du bore et son procede de fabrication | |
JP3358934B2 (ja) | 高融点金属含有Al基合金鋳塊のスプレーフォーミング法による製造方法 | |
JPH0635624B2 (ja) | 高強度アルミニウム合金押出材の製造法 | |
FR2661922A1 (fr) | Alliages de cuivre a decomposition spinodale et leur procede d'obtention. | |
FR2627780A1 (fr) | Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide | |
WO2006120322A1 (fr) | Agent d’affinage de grain comportant du nitrure de titane et procede de fabrication d’un tel agent | |
FR2688233A1 (fr) | Alliages de magnesium elabores par solidification rapide possedant une haute resistance mecanique a chaud. | |
FR2651245A2 (fr) | Alliages de magnesium a haute resistance mecanique et procede d'obtention par solidification rapide. | |
CH536672A (fr) | Procédé de fabrication d'un produit métallique et produit obtenu par ce procédé | |
RU2742874C1 (ru) | Способ получения композиционного материала на основе алюминия или его сплава, легированного титаном | |
EP4575027A1 (fr) | Alliage cunisn à décomposition spinodale et méthode d'élaboration | |
CN120443012A (zh) | 高强韧铝合金及采用粉末冶金法制备高强韧铝合金的方法 | |
CN119156461A (zh) | 铝合金及用于生产合金的方法 | |
CN119061301A (zh) | 一种用于塑性成形的低成本高强韧铝合金铸坯及其制备方法 | |
JPH0557344B2 (enrdf_load_stackoverflow) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19891013 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 19920211 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REF | Corresponds to: |
Ref document number: 68909544 Country of ref document: DE Date of ref document: 19931104 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19931015 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19970116 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19970118 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19970206 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19980228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19980223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19981103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |