WO2006120322A1 - Agent d’affinage de grain comportant du nitrure de titane et procede de fabrication d’un tel agent - Google Patents

Agent d’affinage de grain comportant du nitrure de titane et procede de fabrication d’un tel agent Download PDF

Info

Publication number
WO2006120322A1
WO2006120322A1 PCT/FR2006/001004 FR2006001004W WO2006120322A1 WO 2006120322 A1 WO2006120322 A1 WO 2006120322A1 FR 2006001004 W FR2006001004 W FR 2006001004W WO 2006120322 A1 WO2006120322 A1 WO 2006120322A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
alloy
metal
agent
magnesium
Prior art date
Application number
PCT/FR2006/001004
Other languages
English (en)
Inventor
Bernard Closset
Michel Jehan
Gérard Bienvenu
Original Assignee
Bernard Closset
Michel Jehan
Bienvenu Gerard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bernard Closset, Michel Jehan, Bienvenu Gerard filed Critical Bernard Closset
Priority to EP06743761A priority Critical patent/EP1877589A1/fr
Publication of WO2006120322A1 publication Critical patent/WO2006120322A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides

Definitions

  • Grain refining agent comprising titanium nitride and method of manufacturing such an agent
  • the invention relates to a grain refining agent for the treatment in the liquid state of a metal selected from aluminum and magnesium or a respective one of their alloys and to a process for producing the same.
  • grain refining agents to the metal or liquid alloy. This is generally achieved by the addition of parent alloys containing intermetallic compounds serving as nucleation seeds.
  • grain fining agents indeed improves the heterogeneous solidification and results in a fine macrostructure characterized by an equiaxial grain orientation.
  • One of the main effects is an improvement in the mechanical properties of the refined material.
  • titanium alloys have been used for refining aluminum and aluminum alloy grains. Indeed, at a content of the order of 0.2%, the titanium can form, during the solidification of an aluminum alloy, the intermetallic compound AI 3 Ti which acts as an inoculant of aluminum.
  • Al-Ti binary master alloys generally have a titanium content of between 5% and 15%. According to the phase diagram of the Al-Ti alloy, the intermetallic compound AbTi is present in this type of grain refining agent.
  • Ternary parent alloys such as Al-Ti-B and Al-Ti-C have also been developed. For example, in an Al-Ti-B parent alloy, the Ti: B ratio can vary from 1: 1 to 50: 1. The presence of boron and carbon significantly increases the refining power of these parent alloys. This is certainly due to the formation respectively of TiB2 and TiC particles which combine their refining power with that of the AI 3 Ti compound also present.
  • Al-Ti-B parent alloys are the most frequently used, especially for the treatment of foundry aluminum alloys. Because of their manufacturing process; which consists in reacting a mixture of K ⁇ TiFe-KBF 4 salts with pure aluminum melted at around 75O 0 C, then bringing the bath to a temperature close to 1250 0 C; Al-Ti-B parent alloys have a titanium content generally less than 10%.
  • the parent alloy AI-5% Ti-1% B contains intermetallic compounds such as AbTi and TiB 2 , the size of which can vary greatly depending on the method of preparation of the parent alloy and the shape of the product (son, bars , ingots, etc ).
  • the TiB 2 particles may have a size ranging from 1 to 10 microns while the AbTi compound, present in the form of needles, may have a larger size ranging from 20 to 60 microns.
  • Al-Ti-C type parent alloys having a carbon content of less than 1%.
  • any presence of oxides or other inclusions in the treated alloys is likely to have negative effects on the performance of these parent alloys used as refining agents.
  • any contamination added to that of the presence of dissolved hydrogen in the parent alloys, will be reflected after the refining treatment on the quality of aluminum and molten aluminum alloys. Therefore special precautions must be taken during the preparation, often at temperatures above 1000 0 C, of the parent alloys. At these high temperatures, production costs are substantial and the risk of contamination of parent alloys becomes very important.
  • the alloys-mothers it should be noted that aluminum, which serves as a vector for the affinants, is present in large quantities.
  • the AI-5% Ti-1% B parent alloy contains 94% aluminum.
  • the object of the invention is to avoid the drawbacks relating to the production and use of currently available grain fining agents and, more particularly, to propose a novel and highly efficient grain refining agent for treatment in the liquid state, aluminum, magnesium or one of their respective alloys, before casting, without the need to produce a parent alloy.
  • FIGS. 1 and 2 show polished samples observed under an optical microscope and corresponding to a cast Al-Si cast aluminum alloy, respectively before and after the use of a grain refining agent according to FIG. prior art.
  • FIGS. 3 and 4 represent polished samples observed under an optical microscope and corresponding to said cast aluminum alloy cast respectively before and after the use of a grain fining agent according to the invention. Description of particular embodiments
  • a grain refining agent suitable for use in the liquid state treatment of aluminum, magnesium or one of their respective alloys, comprises at least titanium nitride TiN.
  • the titanium nitride content in said agent is at least 5% by weight. It is preferably between 5% by weight and 90% by weight and more particularly between 15% by weight and 75% by weight.
  • the grain refining agent comprises a powder additive having a melting temperature below the temperature at which the metal or alloy, whose grain is to be refined, is treated in the liquid state.
  • the powdery additive is, more particularly, chosen so that the constituent chemical element (s) are capable of entering into the composition of the metal or alloy whose grain is to be refined.
  • the powdery additive preferably has an average size of between 0.5 mm and 5 mm.
  • the powder additive may be of any type and more particularly it may be in the form of a powder of one or more pure chemical elements or of one or more compounds such as metal alloys or intermetallic compounds.
  • the element or elements of said additive are likely to enter the composition of cast aluminum and magnesium products.
  • the powdery additive may consist of:
  • At least one chemical element chosen from titanium, manganese, boron and carbon and preferably from aluminum, magnesium, copper, silicon and zinc
  • the powdery additive is constituted by at least two chemical elements or when it is a metal alloy or an intermetallic compound, it is chosen so as to have a composition close to that of a corresponding eutectic and more particularly close to of the composition of a corresponding eutectic whose melting point is lower than the treatment temperature of the metal or alloy whose grain is to be refined.
  • the composition is preferably chosen to be close to that of a eutectic whose melting point is as low as possible.
  • the pulverulent agent may be formed of 40% by weight of aluminum and 60% by weight of magnesium, this agent possibly being a 40% Al-60% Mg alloy in the form of a powder. a mixture of 40% pure aluminum in powder form and 60% pure magnesium in powder form.
  • This agent has a melting temperature of the order of 455 ° C, which is close to the melting point of the 32% AI-68% Mg eutectic compound, which is 437 ° C.
  • Such an agent can then be mixed with titanium nitride, so as to obtain, for example, the following grain refining agent: 25% TiN-30% AI-45% Mg.
  • the fining agent is preferably in a compact form. It may, for example, be in the form of tablets, disks, bars, pellets, bricks. Thus, it can be manufactured by mixing at least 5% by weight of titanium nitride in the form of a fine powder with at least one predetermined powdery additive.
  • the choice of the powdery additive is, more particularly, carried out so that it consists of one or more chemical elements capable of entering into the composition of the metal or alloy whose grain is to be refined. Said mixture can then be compacted so as to obtain a compressed mixture of any type of shape. This makes it possible to treat aluminum, magnesium and alloys of aluminum and / or magnesium when these are maintained at a relatively low temperature.
  • the refining agent can be produced according to the following main steps, carried out at ambient temperature: a) use of a fine TiN powder whose average particle size varies, preferably between 0.1 and 20 microns and more particularly between 0.1 microns and 5 microns and advantageously between 0.1 and 2 microns, b) use of at least one more or less fine powder of additive such as aluminum, magnesium, copper, silicon, zinc, titanium and boron or any other powder obtained from a pure metal or an alloy, the element or elements of which may enter into the composition of cast products based on aluminum and magnesium; c) mechanical mixing and / or mechanical grinding, normal and / or intense in air or inert gas, of a predetermined amount of TiN powder and a predetermined amount of the additive in the form of of powder, so as to obtain a mixture of powders at least 5% by weight of TiN and for example between 10% and 90% by weight of TiN.
  • additive such as aluminum, magnesium, copper, silicon, zinc, titanium and boron or any other powder obtained from
  • samples were cast in a graphite mold specially designed for these tests and maintained at a temperature of about 250 ° C. C, before casting said alloy.
  • the samples are polished and then observed under an optical microscope to observe the size of primary aluminum grains in the hypoeutectic alloy Al-Si foundry.
  • the Al-5% Ti-1% B alloy, the grain refining agent currently the most commonly used, is here used as a reference for the tests carried out with the refining agents according to the invention.
  • the first fining agent according to the invention consists of a pellet of 5.5 g of a binary mixture of 25% of TiN and 75% of Al while the second agent is formed by a mixture of powders. compressed in the form of a pellet of 5.5 g whose composition is 25% TiN, 30% AI and 45% Mg.
  • the titanium content in the alloy goes from 0.068% for the untreated sample to 0.088% for the treated sample while the magnesium content remains unchanged.
  • the size of the primary aluminum grains varies from 600 to 800 microns, whereas for the sample cast and polished one hour after the refining treatment with the parent alloy, the grain size is in the range of 100 to 200 microns.
  • the reduction in the size of the primary aluminum grains by adding a parent alloy is confirmed by the observation of the micrographs obtained by optical microscopy and represented in FIGS. 1 and 2. However, FIG. 2 also confirms that the compounds The AbTi and TiE4 intermetallic dispersions are irregularly dispersed in the primary aluminum matrix.
  • a pellet of 5.5 g of a 25% TiN-75% AI binary mixture is used for the refining treatment of about 10 kg of the molten aluminum alloy.
  • the alloy is treated with 5.0 g of a mixture of compressed pellet powders whose composition is: 25% TiN -30% AI-45% Mg.
  • the powdery additive is thus formed by a mixture of 40% by weight of aluminum and 60% by weight of magnesium, with a melting temperature of 455 ° C., close to that of the European Union. % AI- 68% Mg (437 0 C) and lower than the treatment temperature of the aluminum alloy whose grain is to be refined (treatment temperature between 720 0 C and 74O 0 C).
  • treatment temperature between 720 0 C and 74O 0 C treatment temperature between 720 0 C and 74O 0 C.
  • the addition of approximately 100 ppm (0.01%) of TiN in the molten alloy results in a marked decrease in the size of the primary aluminum grains compared to an untreated alloy.
  • the grains go from an initial average size of 800 microns to a final average size of about 100 microns, one hour after the start of treatment.
  • the refining agent in the form of a compressed mixture comprising at least 5% by weight of titanium nitride is easily added and dissolved during the treatment in the liquid state of the alloy and it allows rapid dispersion and effective titanium nitride in the molten alloy, which allows to obtain a grain refining with low levels of addition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

L'invention concerne un agent d'affinage de grain pour le traitement à l'état liquide d'un métal choisi parmi l'aluminium et le magnésium ou d'un de leurs alliages respectifs. L'agent comporte au moins 5% en poids de nitrure de titane et au moins un additif pulvérulent ayant une température de fusion inférieure à la température de traitement du métal ou de l'alliage dont le grain est à affiner. L'additif pulvérulent est, de préférence, apte à entrer dans la composition du métal ou de l'alliage à traiter. L'agent d'affinage est, de préférence sous forme d'un mélange compressé tel qu'une pastille, ce qui facilite l'addition et la dissolution de l'agent d'affinage lors du traitement à l'état liquide du métal ou de l'alliage et permet une dispersion rapide et efficace du nitrure de titane dans le métal ou l'alliage fondu.

Description

Agent d'affinage de grain comportant du nitrure de titane et procédé de fabrication d'un tel agent.
Domaine technique de l'invention
L'invention concerne un agent d'affinage de grain pour le traitement à l'état liquide d'un métal choisi parmi l'aluminium et le magnésium ou d'un de leurs alliages respectifs et son procédé de fabrication.
État de la technique
En présence d'un nombre insuffisant de cristaux inoculants, l'aluminium, le magnésium et leurs alliages respectifs développent, lors de l'étape de solidification, des grains de forme hétérogène et de dimensions grossières.
Ainsi, il est souvent nécessaire d'accroître le nombre de particules inoculantes par l'addition d'agents d'affinage de grain au métal ou à l'alliage liquide. Ceci est généralement obtenu par l'addition d'alliages-mères contenant des composés intermétalliques servant de germes de nucléation. L'addition d'agents d'affinage de grain améliore, en effet, la solidification hétérogène et se traduit par une macrostructure fine caractérisée par une orientation équiaxe des grains. Un des principaux effets consiste en une amélioration des propriétés mécaniques du matériau affiné.
Depuis plusieurs décennies maintenant, les alliages-mères contenant du titane sont utilisés pour l'affinage des grains de l'aluminium et des alliages d'aluminium. En effet, à une teneur de l'ordre de 0,2%, le titane peut former, lors de la solidification d'un alliage d'aluminium, le composé intermétallique AI3Ti qui agit comme un inoculant de l'aluminium. Les alliages-mères binaires Al-Ti ont généralement une teneur en titane comprise entre 5% et 15%. D'après le diagramme de phase de l'alliage Al-Ti, le composé intermétallique AbTi est présent dans ce type d'agent d'affinage de grain. Des alliages-mères ternaires tels que Al-Ti-B et Al-Ti-C ont aussi été développés. Par exemple dans un alliage-mère du type Al-Ti-B, le rapport Ti : B peut varier de 1 :1 à 50 :1. La présence de bore et de carbone accroît sensiblement le pouvoir affinant de ces alliages-mères. Ceci est certainement dû à la formation respectivement de particules de TiB2 et de TiC qui combinent leur pouvoir affinant à celui du composé AI3Ti aussi présent.
En pratique, les alliages-mères Al-Ti-B sont les plus fréquemment utilisés, surtout pour le traitement des alliages d'aluminium de fonderie. A cause de leur procédé de fabrication ; qui consiste à faire réagir un mélange de sels K^TiFe-KBF4 avec de l'aluminium pur fondu à près de 75O0C, puis à porter le bain à une température proche de 12500C ; les alliages-mères Al-Ti-B ont une teneur en titane généralement inférieure à 10%. L'alliage-mère AI-5%Ti-1%B contient des composés intermétalliques comme AbTi et TiB2 dont la taille peut fortement varier suivant la méthode d'élaboration de l'alliage-mère et la forme du produit (fils, barres, lingots ,etc...). Par exemple les particules de TiB2 peuvent avoir une taille allant de 1 à 10 microns alors que le composé AbTi, présent sous forme d'aiguilles, peut avoir une taille supérieure variant de 20 à 60 microns.
Dans le cas de l'aluminium pur ou des alliages faiblement alliés, on préfère parfois utiliser des alliages-mères de type Al-Ti-C dont la teneur en carbone est inférieure à1% .
L'addition de 0,01 à 0,02% de titane provenant d'un alliage-mère comme AI-5%Ti-1%B ou AI-3%Ti-0,3%C est nécessaire pour obtenir à l'état solide une fine structure macroscopique de l'aluminium et des alliages d'aluminium. Cependant, des quantités relativement importantes d'alliages-mères sont souvent nécessaires pour obtenir l'effet affinant recherché. Ainsi, en utilisant un alliage-mère AI-5%Ti-1%B, il faut généralement ajouter 4kg d'alliage- mère pour 1000 kg d'aluminium fondu de manière à accroître la teneur en titane de près de 0,02%. de plus, même préchauffés, les alliages-mères se dissolvent initialement à une vitesse relativement lente. En plus de la faible teneur en composés actifs, comme AI3Ti et TiB2, dans l'alliage-mère Al- 5%Ti-1%B, l'observation microscopique montre souvent une dispersion irrégulière de ces composés dans une matrice d'aluminium primaire. La phase hyperpéritectique d'AbTi est présente sous forme de grosses aiguilles dans l'aluminium primaire tandis que les précipités de TiB2 sont situés essentiellement aux joints de grains.
De plus, toute présence d'oxydes ou d'autres inclusions dans les alliages traités est susceptible d'avoir des effets négatifs sur les performances de ces alliages-mères utilisés comme agents d'affinage. D'autre part, toute contamination, ajoutée à celle de la présence d'hydrogène dissous dans les alliages-mères, se répercutera après le traitement affinant sur la qualité de l'aluminium et des alliages d'aluminium fondus. Par conséquent des précautions particulières doivent être prise lors de l'élaboration, souvent à des températures supérieures à 10000C, des alliages - mères. A ces températures élevées, les coûts de production sont substantiels et le risque de contamination des alliages-mères devient très important.
Enfin, dans les alliages -mères, il faut noter que l'aluminium, qui sert de vecteur aux composés affinants, est présent en large quantité. Par exemple, l'alliage-mère AI-5%Ti-1%B contient 94% d'aluminium. De plus, pour une dispersion rapide des composés actifs, il est recommandé d'utiliser les alliages-mères à des températures relativement élevées.
Jusqu'à récemment le magnésium et certains de ses alliages étaient affinés avec de Phexachloroéthane ( C2CI6). Pour des raisons environnementales, ce produit n'est plus recommandé pour l'affinage des grains. Objet de l'invention
L'invention a pour but d'éviter les inconvénients liés à la production et à l'utilisation des agents d'affinage de grain actuellement disponibles et, plus particulièrement, de proposer un nouvel et très efficace agent d'affinage de grain, pour le traitement à l'état liquide, de l'aluminium, du magnésium ou d'un de leurs alliages respectifs, avant leur coulée, sans qu'il ne soit nécessaire de produire un alliage-mère.
Selon l'invention, ce but est atteint par les revendications annexées.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- les figures 1 et 2 représentent des échantillons polis, observés au microscope optique et correspondant à un alliage d'aluminium de fonderie de type Al-Si coulé, respectivement avant et après l'utilisation d'un agent d'affinage de grain selon l'art antérieur. - les figures 3 et 4 représentent des échantillons polis, observés au microscope optique et correspondant audit alliage d'aluminium de fonderie coulé respectivement avant et après l'utilisation d'un agent d'affinage de grain selon l'invention. Description de modes particuliers de réalisation
Selon l'invention, un agent d'affinage de grain, apte à être employé lors du traitement à l'état liquide de l'aluminium, du magnésium ou d'un de leurs alliages respectifs, comporte au moins du nitrure de titane TiN. La teneur en nitrure de titane, dans ledit agent, est au moins de 5% en poids. Elle est, de préférence, comprise entre 5% en poids et 90% en poids et plus particulièrement comprise entre 15% en poids et 75% en poids.
De plus, l'agent d'affinage de grain comporte un additif pulvérulent ayant une température de fusion inférieure à Ia température à laquelle le métal ou l'alliage, dont le grain est à affiner, est traité à l'état liquide. L'additif pulvérulent est, plus particulièrement, choisi de sorte que le ou les éléments chimiques le constituant soient aptes à entrer dans la composition du métal ou de l'alliage dont le grain est à affiner. L'additif pulvérulent a, de préférence, une taille moyenne comprise entre 0,5mm et 5mm.
L'additif pulvérulent peut être de tout type et plus particulièrement il peut être sous la forme d'une poudre d'un ou de plusieurs éléments chimiques purs ou d'un ou de plusieurs composés tels que les alliages métalliques ou les composés intermétalliques. Le ou les éléments dudit additif sont susceptibles d'entrer dans la composition de produits coulés à base d'aluminium et de magnésium. A titre d'exemple, l'additif pulvérulent peut être constitué :
- par au moins un élément chimique choisi parmi le titane, le manganèse, le bore, le carbone et préférentiellement parmi l'aluminium, le magnésium, le cuivre, le silicium et le zinc
- ou par au moins un alliage métallique choisi parmi les alliages d'aluminium et de magnésium, d'aluminium et de silicium, d'aluminium et de cuivre, de magnésium et de cuivre, de magnésium et de zinc, d'aluminium et de zinc - ou par au moins un composé intermétallique choisi parmi l'aluminure de titane, Ie borure d'aluminium, le carbure de titane, le carbure d'aluminium, le borure de titane, le nitrure d'aluminium, le borure de zirconium. De préférence, lorsque l'additif pulvérulent est constitué par au moins deux éléments chimiques ou lorsqu'il est un alliage métallique ou un composé intermétallique, il est choisi de manière à avoir une composition proche de celle d'un eutectique correspondant et plus particulièrement proche de la composition d'un eutectique correspondant dont le point de fusion est inférieur à la température de traitement du métal ou de l'alliage dont le grain est à affiner. La composition est, de préférence, choisie de manière à être proche de celle d'un eutectique dont le point de fusion est le plus faible possible. Ainsi, à titre d'exemple, l'agent pulvérulent peut être formé de 40% en poids d'aluminium et de 60% en poids de magnésium, cet agent pouvant soit être un alliage 40%AI-60%Mg sous forme de poudre, soit un mélange de 40% d'aluminium pur sous forme de poudre et de 60% de magnésium pur sous forme de poudre. Cet agent a une température de fusion de l'ordre de 455°C, ce qui est proche de la température de fusion du composé eutectique 32%AI-68%Mg, qui est de 437°C. Un tel agent peut ensuite être mélangé avec du nitrure de titane, de manière à obtenir, par exemple, l'agent d'affinage de grain suivant : 25%TiN-30%AI-45%Mg.
L'agent d'affinage se présente, de préférence, sous une forme compacte. Il peut, par exemple, être en forme de tablettes, de disques, de barres, de pastilles, de briques. Ainsi, il peut être fabriqué en mélangeant au moins 5% en poids de nitrure de titane sous forme d'une poudre fine avec au moins un additif pulvérulent prédéterminé. Le choix de l'additif pulvérulent est, plus particulièrement, réalisé pour qu'il soit constitué d'un ou plusieurs éléments chimiques aptes à entrer dans la composition du métal ou de l'alliage dont le grain est à affiner. Ledit mélange peut ensuite être compacté de manière à obtenir un mélange compressé de tout type de forme. Ceci permet de traiter l'aluminium, le magnésium et les alliages d'aluminium et/ou de magnésium lorsque ceux-ci sont maintenus à une température relativement basse. A titre d'exemple, l'agent d'affinage peut être réalisé selon les principales étapes suivantes, réalisées à température ambiante : a) utilisation d'une fine poudre de TiN dont la taille moyenne des particules varie, de préférence entre 0,1 et 20 microns et plus particulièrement entre 0,1 microns et 5 microns et avantageusement entre 0,1 et 2 microns, b) utilisation d'au moins une poudre plus ou moins fine d'additif tel que de l'aluminium, du magnésium, du cuivre, du silicium, du zinc, du titane et du bore ou de tout autre poudre obtenue à partir d'un métal pur ou d'un alliage dont le ou les éléments sont susceptibles d'entrer dans la composition de produits coulés à base d'aluminium et de magnésium, c) mélange mécanique et/ou broyage mécanique, normal et/ou intense sous air ou sous gaz inerte, d'une quantité prédéterminée de poudre de TiN et d'une quantité prédéterminée de l'additif sous forme de poudre, de manière à obtenir un mélange de poudres comprenant au moins 5% en poids de TiN et par exemple entre 10% et 90% en poids de TiN. d) compactage dudit mélange, avec ou sans liant additionnel, par exemple en exerçant une pression uni-axiale ou isostatique de manière à obtenir un mélange compressé par exemple sous forme de tablettes, de disques, de barres, de pastilles, de briquettes ou toute autre forme permettent le traitement des métaux et des alliages de l'aluminium et du magnésium, maintenus à l'état liquide .
Des essais d'affinage du grain ont été effectués avec un alliage d'aluminium de fonderie de type Al-Si dont la composition est donnée ci-dessous :
Figure imgf000008_0001
Pour chaque série d'essais, une quantité d'environ 10kg d'alliage a été fondue dans un creuset en carbure de silicium. La température de l'alliage liquide est préalablement stabilisée dans un intervalle entre 720 et 74O0C, avant l'introduction de différents agents d'affinage de grains. Chaque type d'agents d'affinage de grains est, ensuite, ajouté à la surface de l'alliage en fusion, qui est maintenu à une température proche de 7300C. Une minute après l'addition de l'agent d'affinage de grain, l'alliage maintenu à l'état liquide est légèrement remué afin d'assurer une distribution homogène de l'agent d'affinage de grain dans l'alliage liquide.
Avant et une heure après l'addition de l'agent d'affinage de grain dans le bain d'alliage fondu, des échantillons ont été coulés dans un moule en graphite spécialement conçu pour ces essais et maintenu à une température d'environ 2500C, avant la coulée dudit l'alliage. Les échantillons sont polis puis observés au microscope optique afin d'observer la taille de grains d'aluminium primaire dans l'alliage hypoeutectique Al-Si de fonderie.
Trois essais ont été réalisés, respectivement avec l'agent d'affinage de grain AI-5%Ti-1%B décrit dans l'art antérieur (exemple 1) et avec des premier et second agents d'affinage selon l'invention (exemples 2 et 3).
L'alliage AI-5%Ti-1%B, l'agent d'affinage de grain aujourd'hui le plus couramment utilisé, sert ici de référence aux essais réalisés avec les agents d'affinage selon l'invention. Le premier agent d'affinage selon l'invention est constitué d'une pastille de 5,5 g d'un mélange binaire de 25% de TiN et de 75% d'AI tandis que le second agent est formé par un mélange de poudres compressées sous forme d'une pastille de 5,5 g dont la composition est de 25% de TiN, de 30% d'AI et de 45% de Mg. Exemple 1 :
50 g d'alliage-mère AI-5%Ti-1 %B sont ajoutés dans un bain de 10 kg d'alliage en fusion.
En comparant les deux échantillons moulés et polis, respectivement avant et après l'ajout de l'alliage-mère, on constate que la teneur en titane dans l'alliage passe de 0,068% pour l'échantillon non traité à 0,088% pour l'échantillon traité alors que la teneur en magnésium reste inchangée. De plus, pour l'échantillon non traité par l'alliage-mère, la taille des grains d'aluminium primaire varie de 600 à 800 microns alors que pour l'échantillon coulé et poli une heure après le traitement d'affinage avec l'alliage mère, la dimension des grains se situe dans un intervalle compris entre 100 et 200 microns. La diminution de la taille des grains d'aluminium primaire par ajout d'un alliage-mère est confirmée par l'observation des clichés obtenus par microscopie optique et représentés sur les figures 1 et 2. Cependant, la figure 2 confirme également que les composés intermétalliques AbTi et TiE^ sont dispersés de manière irrégulière dans la matrice d'aluminium primaire.
Exemple 2 :
Une pastille de 5,5 g d'un mélange binaire 25%TiN - 75%AI est utilisée pour le traitement affinant d'environ 10kg de l'alliage d'aluminium fondu.
Une analyse des deux échantillons d'alliage, réalisée après coulée, montre que Ie fait d'ajouter de l'agent d'affinage de grain dans le bain d'alliage fondu ne fait pas augmenter de manière très significative la teneur en titane dans l'alliage après coulée. En effet, l'alliage traité avec l'agent d'affinage de grain présente une teneur en titane seulement supérieure de 20ppm (0,002%) par rapport à l'alliage non traité. La taille des grains d'aluminium primaire passe d'une dimension moyenne de 700 microns pour l'échantillon d'alliage non traité à 200 microns pour l'échantillon prélevé une heure après le début du traitement d'affinage.
Exemple 3 :
L'alliage est traité avec 5.0 g d'un mélange de poudres compressées sous forme de pastille dont la composition est : 25% TiN -30%AI-45%Mg. Comme indiqué plus haut, l'additif pulvérulent est donc formé par un mélange de 40% en poids d'aluminium et de 60% en poids de magnésium, avec une température de fusion de 4550C, proche de celle de i'eutectique 32%AI- 68%Mg (4370C) et inférieure à la température de traitement de l'alliage d'aluminium dont le grain est à affiner (Température de traitement comprise entre 7200C et 74O0C). L'analyse des échantillons respectivement non traité et traité ne permet pas de constater une augmentation des teneurs respectives en titane et magnésium dans l'alliage. Par contre, comme représenté sur les figures 3 et 4, l'addition d'environ 100ppm (0,01%) de TiN dans l'alliage fondu se traduit par une nette diminution de la taille des grains d'aluminium primaire par rapport à un alliage non traité. Ainsi, les grains passent d'une taille moyenne initiale de 800 microns à une taille moyenne finale de l'ordre de 100microns, une heure après le début du traitement. Ainsi, l'agent d'affinage sous forme d'un mélange compressé comprenant au moins 5% en poids de nitrure de titane est facilement additionné et dissous lors du traitement à l'état liquide de l'alliage et il permet une dispersion rapide et efficace du nitrure de titane dans l'alliage fondu, ce qui permet d'obtenir un affinage des grains avec de faibles taux d'addition.

Claims

Revendications
1. Agent d'affinage de grain pour le traitement à l'état liquide d'un métal choisi parmi l'aluminium et le magnésium ou d'un de leurs alliages respectifs, caractérisé en ce qu'il comporte au moins 5% en poids de nitrure de titane et au moins un additif pulvérulent ayant une température de fusion inférieure à la température de traitement du métal ou de l'alliage dont le grain est à affiner.
2. Agent selon la revendication 1 , caractérisé en ce qu'il est constitué d'un mélange compressé de nitrure de titane avec l'additif pulvérulent.
3. Agent selon l'une des revendications 1 et 2, caractérisé en ce que l'additif pulvérulent est constitué :
- par au moins un élément chimique choisi parmi l'aluminium, le magnésium, le titane, le cuivre, le manganèse, le silicium, le bore, le carbone et le zinc
- ou par au moins un alliage métallique choisi parmi les alliages d'aluminium et de magnésium, d'aluminium et de silicium, d'aluminium et de cuivre, de magnésium et de cuivre, de magnésium et de zinc, d'aluminium et de zinc
- ou par au moins un composé intermétallique choisi parmi l'aluminure de titane, le borure d'aluminium, le carbure de titane, le carbure d'aluminium, le borure de titane, le nitrure d'aluminium, le borure de zirconium.
4. Agent selon la revendication 3, caractérisé en ce que l'additif pulvérulent étant constitué par au moins deux éléments chimiques, par un alliage métallique ou par un composé intermétallique, il a une composition proche de la composition d'un eutectique correspondant dont le point de fusion est inférieur à la température de traitement du métal ou de l'alliage dont le grain est à affiner.
5. Agent selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'additif pulvérulent a une taille moyenne comprise entre 0,5mm et 5mm.
6. Agent selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le nitrure de titane est, dans l'agent d'affinage, sous forme de fines particules ayant une taille moyenne comprise entre 0,1 μm et 20μm.
7. Agent selon la revendication 6, caractérisé en ce que la taille moyenne est comprise entre 0,1 μm et 5μrn.
8. Agent selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la teneur en nitrure de titane dans l'agent d'affinage est comprise entre 5% en poids et 90% en poids.
9. Agent selon la revendication 8, caractérisé en ce que la teneur en nitrure de titane dans l'agent d'affinage est comprise entre 15% en poids et 75% en poids.
10. Procédé de fabrication d'un agent d'affinage de grain pour le traitement à l'état liquide d'un métal choisi parmi l'aluminium et le magnésium ou pour un de leurs alliages respectifs, caractérisé en ce qu'il comporte au moins :
- la sélection d'au moins un additif pulvérulent constitué par un ou plusieurs éléments chimiques aptes à entrer dans la composition du métal ou de l'alliage dont le grain est à affiner, - et le mélange d'au moins 5% en poids de nitrure de titane avec l'additif pulvérulent sélectionné.
11. Procédé selon Ia revendication 10, caractérisé en ce que le mélange est réalisé par mélange mécanique et/ou broyage mécanique.
12. Procédé selon l'une des revendications 10 et 11 , caractérisé en ce que l'étape de mélange est suivie d'une étape de compactage.
13. Procédé selon la revendication 12, caractérisé en ce que le compactage est réalisé en exerçant, sur le mélange, une pression uni-axiale ou isostatique.
14. Procédé selon l'une quelconque des revendications 10 à 13, caractérisé en ce que la sélection de l'additif pulvérulent est réalisée parmi les additifs pulvérulents constitués par au moins deux éléments chimiques, par un alliage métallique ou par un composé intermétallique et présentant une composition proche de la composition d'un eutectique correspondant dont le point de fusion est inférieur à la température de traitement du métal ou de l'alliage dont le grain est à affiner.
PCT/FR2006/001004 2005-05-06 2006-05-03 Agent d’affinage de grain comportant du nitrure de titane et procede de fabrication d’un tel agent WO2006120322A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06743761A EP1877589A1 (fr) 2005-05-06 2006-05-03 Agent d affinage de grain comportant du nitrure de titane et procede de fabrication d un tel agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00809/05 2005-05-06
CH8092005 2005-05-06

Publications (1)

Publication Number Publication Date
WO2006120322A1 true WO2006120322A1 (fr) 2006-11-16

Family

ID=36889047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/001004 WO2006120322A1 (fr) 2005-05-06 2006-05-03 Agent d’affinage de grain comportant du nitrure de titane et procede de fabrication d’un tel agent

Country Status (2)

Country Link
EP (1) EP1877589A1 (fr)
WO (1) WO2006120322A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065455A1 (fr) * 2011-06-10 2012-05-24 新星化工冶金材料(深圳)有限公司 Affineur de grains cristallins d'aluminium-zirconium-titane-carbone pour le magnésium et des alliages de magnésium et procédé de préparation correspondant
WO2012065453A1 (fr) * 2011-06-10 2012-05-24 新星化工冶金材料(深圳)有限公司 Procédé de préparation d'alliage intermédiaire aluminium-zirconium-titane-carbone
WO2012065454A1 (fr) * 2011-06-10 2012-05-24 新星化工冶金材料(深圳)有限公司 Application d'alliage intermédiaire aluminium-zirconium-titane-carbone dans un processus de déformation de magnésium et d'alliages de magnésium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2299099A (en) * 1995-03-18 1996-09-25 Christopher Duncan Mayes Process for producing grain refining master alloys.
JP2001342528A (ja) * 2000-06-01 2001-12-14 Toyota Motor Corp マグネシウム合金の細粒化剤およびその製造方法およびそれを用いた微細化方法
WO2003095689A1 (fr) * 2002-05-14 2003-11-20 Groupe Minutia Inc. Agent d'affinage de grain pour produits coules en magnesium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2299099A (en) * 1995-03-18 1996-09-25 Christopher Duncan Mayes Process for producing grain refining master alloys.
JP2001342528A (ja) * 2000-06-01 2001-12-14 Toyota Motor Corp マグネシウム合金の細粒化剤およびその製造方法およびそれを用いた微細化方法
WO2003095689A1 (fr) * 2002-05-14 2003-11-20 Groupe Minutia Inc. Agent d'affinage de grain pour produits coules en magnesium

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MYKHALENKOV K ET AL: "APPLICATION OF TIN PARTICLES FOR GRAIN REFINEMENT OF ALUMINIUM", ZEITSCHRIFT FUR METALLKUNDE, CARL HANSER, MUNICH, DE, vol. 90, no. 9, September 1999 (1999-09-01), pages 664 - 668, XP000854038, ISSN: 0044-3093 *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 04 4 August 2002 (2002-08-04) *
VIDRICH GABRIELE ET AL: "Grain-refining of MG alloys by nanoscaled TiN Particles", MAGNES. TECHNOL.; MAGNESIUM TECHNOLOGY; MAGNESIUM TECHNOLOGY 2005 - PROC. OF THE SYMP. SPONSORED BY THE MAGNESIUM COMMITTEE OF THE LIGHT METALS DIVISION (LMD) OF TMS (THE MINERALS, METALS AND MATERIALS SOC.) WITH THE INT. MAGNESIUM ASSOC. 2005, February 2005 (2005-02-01), pages 117 - 120, XP008068314 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012065455A1 (fr) * 2011-06-10 2012-05-24 新星化工冶金材料(深圳)有限公司 Affineur de grains cristallins d'aluminium-zirconium-titane-carbone pour le magnésium et des alliages de magnésium et procédé de préparation correspondant
WO2012065453A1 (fr) * 2011-06-10 2012-05-24 新星化工冶金材料(深圳)有限公司 Procédé de préparation d'alliage intermédiaire aluminium-zirconium-titane-carbone
WO2012065454A1 (fr) * 2011-06-10 2012-05-24 新星化工冶金材料(深圳)有限公司 Application d'alliage intermédiaire aluminium-zirconium-titane-carbone dans un processus de déformation de magnésium et d'alliages de magnésium
GB2494353A (en) * 2011-06-10 2013-03-06 Shenzhen Sunxing Light Alloys Materials Co Ltd Application of aluminium-zirconium-titanium-carbon intermediate alloy in deformation process of magnesium and magnesium alloys
GB2494353B (en) * 2011-06-10 2013-07-24 Shenzhen Sunxing Light Alloys Materials Co Ltd Use of aluminium-zirconium-titanium-carbon intermediate alloy in wrought processing of magnesium and magnesium alloys

Also Published As

Publication number Publication date
EP1877589A1 (fr) 2008-01-16

Similar Documents

Publication Publication Date Title
EP0357743B1 (fr) Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide
EP0465376B1 (fr) Alliage de magnésium à haute résistance mécanique contenant du strontium et procédé d'obtention par solidification rapide
FR2589763A1 (fr) Procede de production d'une poudre d'alliage contenant des metaux de terres rares.
WO2020115201A1 (fr) Procede de fabrication d'alliages de metaux precieux et alliages de metaux precieux ainsi obtenus
CN1418973A (zh) 一种铝钛碳中间合金晶粒细化剂
JP4451913B2 (ja) Ti粒子分散マグネシウム基複合材料の製造方法
KR101273577B1 (ko) 알루미늄 합금 다이캐스팅재 및 그 제조방법
Sunitha et al. Study of Al-Si alloys grain refinement by inoculation
JP2011144443A (ja) セミソリッド鋳造用アルミニウム合金
WO2006120322A1 (fr) Agent d’affinage de grain comportant du nitrure de titane et procede de fabrication d’un tel agent
FR2604185A1 (fr) Alliages-maitres aluminium-titane contenant des additions d'un troisieme element, utiles pour l'affinage du grain de l'aluminium
JP2008238183A (ja) マグネシウム合金の製造方法およびマグネシウム合金
FR2707191A1 (fr) Poudre métallique pour la réalisation de pièces par compression et frittage et procédé d'obtention de cette poudre.
CN115652156A (zh) 一种新型Mg-Gd-Li-Y-Al合金及其制备方法
Zhao et al. Microstructure and synthesis mechanism of Al-Ti-C-Sr master alloy
JP3777878B2 (ja) 金属基複合材料の製造方法
CN109475932B (zh) 镁合金的晶粒细化剂及其制备方法以及镁合金的晶粒细化方法
CN113286912A (zh) 铝合金的再生方法
JPH0681068A (ja) 耐熱Mg合金の鋳造方法
RU2742874C1 (ru) Способ получения композиционного материала на основе алюминия или его сплава, легированного титаном
EP0069680A1 (fr) Procédé d'affinage du grain du silicium primaire des alliages aluminium-silicium hypereutectiques
FR2697030A1 (fr) Procédé de production d'alliages de magnésium de haute pureté et alliage ainsi obtenu.
CH715619B1 (fr) Procédé de fabrication d'une pièce en alliage d'un métal précieux avec du bore, procédé de fabrication d'un tel alliage et alliage d'or et de bore 18 carats.
Kamble Grain refiner master alloys and grain modifiers for the aluminum foundry
JPS6360251A (ja) アルミニウム・珪素合金及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006743761

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006743761

Country of ref document: EP