EP0357743B1 - Hochfeste magnesiumlegierungen und verfahren, um derartige legierungen mittels rascher erstarrung zu erhalten - Google Patents

Hochfeste magnesiumlegierungen und verfahren, um derartige legierungen mittels rascher erstarrung zu erhalten Download PDF

Info

Publication number
EP0357743B1
EP0357743B1 EP89903172A EP89903172A EP0357743B1 EP 0357743 B1 EP0357743 B1 EP 0357743B1 EP 89903172 A EP89903172 A EP 89903172A EP 89903172 A EP89903172 A EP 89903172A EP 0357743 B1 EP0357743 B1 EP 0357743B1
Authority
EP
European Patent Office
Prior art keywords
alloy
alloys
temperature
magnesium
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89903172A
Other languages
English (en)
French (fr)
Other versions
EP0357743A1 (de
Inventor
Gilles Regazzoni
Gilles Nussbaum
Haavard T. Gjestland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ferropem SAS
Norsk Hydro ASA
Original Assignee
Pechiney Electrometallurgie SAS
Norsk Hydro ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8802885A external-priority patent/FR2627780B1/fr
Application filed by Pechiney Electrometallurgie SAS, Norsk Hydro ASA filed Critical Pechiney Electrometallurgie SAS
Publication of EP0357743A1 publication Critical patent/EP0357743A1/de
Application granted granted Critical
Publication of EP0357743B1 publication Critical patent/EP0357743B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/005Amorphous alloys with Mg as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention relates to magnesium-based alloys with high mechanical strength, as well as a process for obtaining these alloys by rapid solidification and consolidation by spinning. It relates in particular to alloys containing Al, at least Zn and / or Ca and which can contain manganese whose weight composition is situated within the following limits: Al: 2 - 11% Zn: 0 - 12% Mn: 0 - 0.6% Ca: 0 - 7% but always with the presence of Zn and / or Ca with the following content of impurities: If: 0.1 - 0.6 Cu: ⁇ 0.2 Fe: ⁇ 0.1 Ni: ⁇ 0.01 the rest being magnesium.
  • alloys with high mechanical strength having a composition corresponding to that of the basic commercial alloys of the prior art, listed under the names AZ31, AZ61, AZ80 (wrought alloys) and AZ91, AZ92 (casting alloys), according to ASTM standard, or G-A3Z1, G-A6Z1, G-A8Z, G-A9Z1 and G-A9Z2 respectively according to French standard NE A 02-004; it also relates to alloys having a composition corresponding to those of said basic commercial alloys to which calcium is added. It should be noted that these alloys contain Mn as an addition element.
  • the alloys used comprise, on a magnesium basis, from 0 to 11 atom% of aluminum, from 0 to 4 atom% of zinc and from 0.5 to 4 atom% of an addition element such as silicon, germanium, cobalt, tin or antimony.
  • Aluminum or zinc can also be replaced up to 4% by neodymium, praseodymium, yttrium, cerium or manganese.
  • the alloys thus obtained have a breaking load of the order of 414 to 482 MPa, an elongation of up to 5% and good resistance to corrosion by aqueous solutions containing 3% NaCl.
  • magnesium alloys with high mechanical strength, obtained by rapid solidification which contain, as alloying elements, from 0 to 15 atom% of aluminum, and from 0 to 4 atom% of zinc (with a total of both between 2 and 15%) and a complementary addition of 0.2 to 3 atom% of at least one element chosen from the group comprising Mn, Ce, Nd, Pr, Y , Ag.
  • This process requires the use of non-standard magnesium alloys comprising certain elements of addition of high price and often difficult solution, and grinding of the ribbons, obtained during rapid solidification, prior to the compaction.
  • a first object of the present invention relates to magnesium-based alloys, consolidated after rapid solidification, with high mechanical characteristics, having a breaking load at least equal to 290 MPa, but more particularly at least 330 MPa and an elongation at break at least equal to 5% and having, in combination, the following characteristics: - a weight composition located within the following limits: Aluminum 2-11% Zinc 0-12%, preferably 0.2 to 12% Manganese 0-0.6%, preferably 0.1 to 0.2% Calcium 0-7% but with at least the presence of Zn and / or Ca. with the following contents of main impurities: Silicon 0.1 to 0.6% Copper ⁇ 0.2% Iron ⁇ 0.1% Nickel ⁇ 0.1% the rest being magnesium.
  • the alloy must contain at least one of the elements Zn or Ca or a mixture of the two; when Zn is present, its content is preferably at least 0.2%.
  • Mn When Mn is present, it is an at least quaternary element and its minimum weight content is preferably 0.1%.
  • the added quantities by weight are between 0.5 and 7%. This addition then makes it possible to improve the characteristics of the alloys based on Mg, in particular those containing Al and / or Zn and / or Mn, obtained after rapid quenching and consolidation by spinning, including for a spinning temperature between 250 and 350 ° C.
  • the sum of the contents of Al, Zn and / or Ca does not usually exceed 20%.
  • a second object of the present invention is a process for obtaining these alloys characterized in that said alloy, in the liquid state is added to rapid cooling, at a speed at least equal to 104 Ks-l, so as to obtain a solidified product of which at least one of the dimensions is less than 150 mm, in that this solidified product is then compacted by spinning at a temperature between 200 and 350 ° C.
  • a characteristic of the invention is that it applies to magnesium alloys of the conventional type, normally intended for foundry (casting) or for working, without any additional addition of alloying element (s) intended to modify its structure as is the case in the prior art.
  • alloys of the types G-A3Z1, G-A6Z1, G-A8Z, G-A9Z1, G-A9Z2 (according to French standard NF A 02704), including the chemical composition intervals, were preferably used. have been given previously; they contain in particular additions of Mn.
  • Ca can also be added to it to improve their mechanical characteristics obtained during consolidation at a higher temperature.
  • the magnesium ribbons can either be directly introduced into the container of a press and spun, or pre-compacted cold or warm (temperature below, for example 250 ° C.), using a press, in the form of a billet whose density is close to 99% of the theoretical density of the alloy, this billet being subsequently spun, or introduced by cold pre-compacting them to 70% the theoretical density, in a sheath made of magnesium or magnesium alloy or aluminum or aluminum alloy, itself introduced into the container of the spinning press; it is then possible, after spinning, to remove the sheath by machining.
  • the sheath can be thin-walled (less than 1 mm) or thick (up to 4 mm). In all cases, it is preferable that the alloy constituting the sheath has a flow limit not exceeding the order of magnitude of that of the product to be spun, at the spinning temperature.
  • a rotating electrode is melted by an electron beam or an electric arc (atomization by rotating electrode), or a liquid jet is mechanically divided in contact with a rotating body and the fine droplets are projected onto a strongly cooled, renewed, or fixed surface, but kept clear, that is to say without adhesion of the solidified metal particles on said surface; the droplets can also be projected into a stream of inert gas, at low temperature (centrifugal atomization).
  • the parameters of the operation must be chosen so that at least one of the dimensions of the metal particles is less than 150 ⁇ m.
  • the alloy particles are obtained by atomization of liquid alloy in a jet of inert gas. This operation is also well known in itself and is not part of the invention. It makes it possible to provide particles of dimensions less than a hundred microns. These particles are generally spherical in shape, while those obtained in the previous variant are rather in the form of thin plates. The compaction of these particles is also carried out according to the same scheme as in the first and the second embodiment.
  • the products obtained can, before spinning, be degassed at a temperature not exceeding 350 ° C.
  • the procedure can be as follows: the ribbons are cold pre-compacted in a box and all placed in a vacuum oven. The box is vacuum sealed and then spun. But degassing can also be done dynamically: the divided products are degassed and then compacted under vacuum in the form of a billet with closed porosities which is then spun.
  • Table II gives the characteristics of alloys of equivalent compositions, obtained in a conventional manner: TABLE II Test No. Alloy type (1) Method of obtaining Hv kg / mm2 TYS (0.2) MPa UTS MPa e% 14 AZ 31 Gross spinning 170 250 5
  • AZ31 has 2.5-3.5% Al and 0.5-1.5% Zn, and AZ91 8.3-10.3% Al and 0.2-1% Zn as main elements, and 0.15% from Mn.
  • the hardness, the elastic limit and the breaking load very strongly depend on the spinning conditions.
  • Table III brings together a certain number of mechanical characteristics of products in AZ91 alloys solidified quickly then compacted by spinning, according to the invention. The parameters were varied: spinning ratio (from 12 to 30), temperature and spinning speed (resp. 200-350 ° C and 0.5-3 mm / s). TABLE III Mechanical characteristics of the AZ91 treated according to the invention T. Wire ° C R. Wire V Wire. mm / sec Hardness Hv kg / mm2 Elast.limit. Charge rupt. UTS, MPa All.
  • the mechanical characteristics decrease when the spinning temperature increases, that the hardness increases when the spinning ratio increases to reach a plateau, more or less quickly, depending on the temperature.
  • a spinning ratio 20.
  • the elastic limit CYS in compression is at least equal (and sometimes higher) to the elastic limit in tension, which is quite exceptional since the same alloys, in classical transformation, have a limit in compression about 0.7 times the tensile limit. This means that, in the design of parts added to compressive stresses, the alloys according to the invention will bring a significant gain of around 30%.
  • the remarkable mechanical properties of the alloys according to the invention are essentially due to the fact that the process used leads to a very fine grain structure, of the order of a micrometer (0.7 to 1.5 on average).
  • the optical microscope does not make it possible to resolve the structure and it is only by electron microscopy that it can be verified that the products according to the invention are in fact constituted by a homogeneous matrix reinforced by particles of intermetallic compounds Mg17Al12 of size less than 0.5 mum, precipitated at the grain boundaries and also of Al2Ca, under certain conditions mentioned above.
  • the presence, in the grains, of precipitates ⁇ 0.2 mum of compound based on Al Mn Zn is also noted.
  • the general structure is granular equiaxed.
  • the precipitates do not have the same morphology as the structural hardening precipitates observed on samples of the same alloys obtained by conventional metallurgy.
  • This structure also has remarkable thermal stability, since it remains unchanged after 24 hours of holding at 200 ° C for alloys containing no Ca and up to 350 ° C for those containing it. No softening or hardening is manifested, which is not the case for conventional magnesium alloys with structural hardening.
  • the corrosion resistance is evaluated by a measurement of weight loss in an aqueous solution at 5% (by weight) of NaCl, the result of which is expressed in "mcd" (milligrams per square centimeter per day).
  • the tests carried out on a set of products according to the invention give results of between 0.4 and 0.6 while the same alloys, transformed into conventional metallurgy, give results of between 0.6 and 2 mcd. It can therefore be said that the corrosion resistance of the alloys according to the invention is at least equal to that of conventional alloys, and is in fact placed at the level of the resistance of high purity alloys, such as AZ91E produced by the Company DOW CHEMICAL. It is found that the alloys according to the invention generally exhibit corrosion without pitting and more homogeneous than that of said AZ91E alloys.
  • the presence of Ca further improves the resistance to corrosion; it becomes very slow and extremely homogeneous.
  • the weight loss is 0.075 mg / cm2.day while for an AZ91 without calcium in test 4 it is 0.4 mg / cm2.day.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Forging (AREA)
  • Extrusion Of Metal (AREA)

Claims (13)

  1. Legierung auf Magnesiumbasis, erhalten durch rasche Erstarrung und Verfestigung, mit einer Bruchfestigkeit von mindestens 290 MPa, einer Bruchdehnung von mindestens 5 % und der Kombination der folgenden Elemente:
    Sie hat eine in den folgenden Grenzen liegende Gewichtszusammensetzung:
    - Aluminium: 2 - 11 %
    - Zink: 0 - 12 %
    - Mangan: 0 - 0,6 %
    - Calcium: 0 - 7 %,
    aber mit mindestens der Anwesenheit von Zn und/oder Ca,
    mit den folgenden Gehalten an Hauptverunreinigungen:
    - Silizium: 0,1 - 0,6 %
    - Kupfer: < 0,2 %
    - Eisen: < 0,1 %
    - Nickel: < 0,01 %
    Rest Magenesium;
    sie hat eine mittlere Kornabmessung unter 3 µm;
    sie besteht aus einer homogenen Matrix, die durch Teilchen intermetallischer Verbindungen Mg₁₇Al₁₂, die an den Korngrenzen ausgeschieden sind, eventuell Mg₃₂ (Al, Zn)₄₉ und Al₂Ca einer mittleren Größe unter 1 µm verstärkt ist, welches Gefüge nach Halten von 24 Stunden bei 200 °C unverändert bleibt;
    und im Fall, wo sie kein Ca enthält, wird die Verfestigung durch Strangpressen bei einer Temperatur im Bereich von 200 bis 350 °C mit einem Reduktionsverhältnis im Bereich von 10 bis 40 und einer Vorrückgeschwindigkeit des Kolbens von 0,5 bis 3 mm/s durchgeführt.
  2. Legierung nach dem Anspruch 1,
    dadurch gekennzeichnet,
    daß die Teilchen intermetallischer Verbindungen eine mittlere Größe unter 0,5 µm haben.
  3. Legierung nach irgendeinem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    daß der Gehalt an Zn zwischen 0,2 und 12 Gew.% und der Gehalt an Mn zwischen 0,1 und 0,6 Gew.% liegen.
  4. Legierung nach irgendeinem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    daß der Gehalt an Ca zwischen 0,5 und 7 Gew.% liegt.
  5. Verfahren zur Herstellung einer Legierung nach den Ansprüchen 1 bis 4,
    dadurch gekennzeichnet,
    daß die Legierung im flüssigen Zustand einer raschen Abkühlung mit einer Geschwindigkeit von mindestens 10⁴·K·s⁻¹ derart ausgesetzt wird, um ein erstarrtes Produkt zu erhalten, dessen wenigstens eine der Abmessungen unter 150 µm ist und das dann durch Strangpressen bei einer Temperatur im Bereich von 200 bis 350 °C direkt kompaktiert wird.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    daß die rasche Abkühlung durch Gießen eines Endlosbandes einer Dicke unter 150 µm auf eine stark gekühlte bewegliche Oberfläche bewirkt wird.
  7. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    daß die rasche Abkühlung durch Zerstäuben der flüssigen Legierung auf eine freigehaltene stark gekühlte Oberfläche bewirkt wird.
  8. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet,
    daß die rasche Abkühlung durch Versprühen der flüssigen Legierung mittels eines Inertgasstrahls bewirkt wird.
  9. Verfahren nach irgendeinem der Ansprüche 5 bis 8,
    dadurch gekennzeichnet,
    daß das rasch erstarrte Produkt, wenn es Calcium enthält, durch Strangpressen in der Presse bei einer Temperatur im Bereich von 200 bis 350 °C mit einem Strangpreßverhältnis von 10 bis 40 und vorzugsweise von 10 bis 20 und mit einer Vorrückgeschwindigkeit des Stempels der Presse von 0,5 bis 3 mm je Sekunde kompaktiert wird.
  10. Verfahren nach irgendeinem der Ansprüche 5 bis 9,
    dadurch gekennzeichnet,
    daß das rasch abgekühlte Produkt direkt in den Preßtopf der Strangpresse eingeführt wird.
  11. Verfahren nach irgendeinem der Ansprüche 5 bis 9,
    dadurch gekennzeichnet,
    daß das rasch abgekühlte Produkt vorab in eine aus Aluminium, aus Magnesium oder aus einer Legierung auf Basis des einen oder anderen dieser beiden Metalle bestehende Metallhülle eingeführt wird.
  12. Verfahren nach irgendeinem der Ansprüche 5 bis 11,
    dadurch gekennzeichnet,
    daß das rasch erstarrte Produkt vorab in Form eines Barrens bei einer Temperatur von höchstens 200 °C vorkompaktiert wird.
  13. Verfahren nach irgendeinem der Ansprüche 5 bis 12,
    dadurch gekennzeichnet,
    daß das rasch abgekühlte Produkt unter Vakuum bei einer Temperatur unter oder gleich 350 °C vor der Verfestigung entgast wird.
EP89903172A 1988-02-26 1989-02-23 Hochfeste magnesiumlegierungen und verfahren, um derartige legierungen mittels rascher erstarrung zu erhalten Expired - Lifetime EP0357743B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8802885A FR2627780B1 (fr) 1988-02-26 1988-02-26 Alliages de magnesium a haute resistance mecanique et procede d'obtention de ces alliages par solidification rapide
FR8802885 1988-02-26
FR8901913 1989-02-01
FR898901913A FR2642439B2 (de) 1988-02-26 1989-02-01

Publications (2)

Publication Number Publication Date
EP0357743A1 EP0357743A1 (de) 1990-03-14
EP0357743B1 true EP0357743B1 (de) 1993-09-29

Family

ID=26226539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89903172A Expired - Lifetime EP0357743B1 (de) 1988-02-26 1989-02-23 Hochfeste magnesiumlegierungen und verfahren, um derartige legierungen mittels rascher erstarrung zu erhalten

Country Status (6)

Country Link
US (1) US4997622A (de)
EP (1) EP0357743B1 (de)
JP (1) JPH02503331A (de)
DE (1) DE68909544T2 (de)
FR (1) FR2642439B2 (de)
WO (1) WO1989008154A1 (de)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074936A (en) * 1989-04-05 1991-12-24 The Dow Chemical Company Amorphous magnesium/aluminum-based alloys
JP2511526B2 (ja) * 1989-07-13 1996-06-26 ワイケイケイ株式会社 高力マグネシウム基合金
FR2651244B1 (fr) * 1989-08-24 1993-03-26 Pechiney Recherche Procede d'obtention d'alliages de magnesium par pulverisation-depot.
FR2662707B1 (fr) * 1990-06-01 1992-07-31 Pechiney Electrometallurgie Alliage de magnesium a haute resistance mecanique contenant du strontrium et procede d'obtention par solidification rapide.
JP2705996B2 (ja) * 1990-06-13 1998-01-28 健 増本 高力マグネシウム基合金
US5087304A (en) * 1990-09-21 1992-02-11 Allied-Signal Inc. Hot rolled sheet of rapidly solidified magnesium base alloy
US5078807A (en) * 1990-09-21 1992-01-07 Allied-Signal, Inc. Rapidly solidified magnesium base alloy sheet
US5552110A (en) * 1991-07-26 1996-09-03 Toyota Jidosha Kabushiki Kaisha Heat resistant magnesium alloy
EP0524644B1 (de) * 1991-07-26 1996-10-23 Toyota Jidosha Kabushiki Kaisha Hitzebeständiges Magnesiumlegierung
JP2730847B2 (ja) * 1993-06-28 1998-03-25 宇部興産株式会社 高温クリープ強度に優れた鋳物用マグネシウム合金
AU3708495A (en) * 1994-08-01 1996-03-04 Franz Hehmann Selected processing for non-equilibrium light alloys and products
CA2213550A1 (en) * 1995-02-17 1996-08-22 Institute De La Technologie Du Magnesium, Inc. Creep resistant magnesium alloys for die casting
JP3415987B2 (ja) * 1996-04-04 2003-06-09 マツダ株式会社 耐熱マグネシウム合金成形部材の成形方法
KR970070222A (ko) * 1996-04-25 1997-11-07 박병재 고압주조용 마그네슘 합금
US5855697A (en) * 1997-05-21 1999-01-05 Imra America, Inc. Magnesium alloy having superior elevated-temperature properties and die castability
JP2000104137A (ja) * 1998-09-30 2000-04-11 Mazda Motor Corp マグネシウム合金鍛造素材、及び鍛造部材並びに該鍛造部材の製造方法
DE19915277A1 (de) * 1999-04-03 2000-10-05 Volkswagen Ag Magnesiumlegierungen hoher Duktilität, Verfahren zu deren Herstellung und deren Verwendung
US6264763B1 (en) 1999-04-30 2001-07-24 General Motors Corporation Creep-resistant magnesium alloy die castings
JP2001247926A (ja) * 2000-03-03 2001-09-14 Japan Steel Works Ltd:The 流動性に優れたマグネシウム合金およびマグネシウム合金材
US6342180B1 (en) 2000-06-05 2002-01-29 Noranda, Inc. Magnesium-based casting alloys having improved elevated temperature properties
EP1339888B1 (de) 2000-09-26 2011-04-13 Kwang Seon Shin Hochfeste magnesiumlegierung
JP3592310B2 (ja) * 2001-06-05 2004-11-24 住友電工スチールワイヤー株式会社 マグネシウム基合金ワイヤおよびその製造方法
JP3592659B2 (ja) * 2001-08-23 2004-11-24 株式会社日本製鋼所 耐食性に優れたマグネシウム合金およびマグネシウム合金部材
WO2003062481A1 (fr) * 2002-01-03 2003-07-31 Jsc 'avisma Titanium-Magnesium Works' Alliage a base de magnesium
IL147561A (en) * 2002-01-10 2005-03-20 Dead Sea Magnesium Ltd High temperature resistant magnesium alloys
WO2003057935A1 (fr) * 2002-01-11 2003-07-17 Jsc 'avisma Titanium-Magnesium Works' Alliage a base de magnesium
RU2220221C2 (ru) * 2002-02-20 2003-12-27 Открытое акционерное общество "АВИСМА титано-магниевый комбинат" Сплав на основе магния
AU2002950563A0 (en) * 2002-08-02 2002-09-12 Commonwealth Scientific And Industrial Research Organisation Age-Hardenable, Zinc-Containing Magnesium Alloys
US9682425B2 (en) 2009-12-08 2017-06-20 Baker Hughes Incorporated Coated metallic powder and method of making the same
US9079246B2 (en) 2009-12-08 2015-07-14 Baker Hughes Incorporated Method of making a nanomatrix powder metal compact
US9109429B2 (en) 2002-12-08 2015-08-18 Baker Hughes Incorporated Engineered powder compact composite material
US9101978B2 (en) 2002-12-08 2015-08-11 Baker Hughes Incorporated Nanomatrix powder metal compact
US8403037B2 (en) 2009-12-08 2013-03-26 Baker Hughes Incorporated Dissolvable tool and method
JP4575645B2 (ja) * 2003-01-31 2010-11-04 株式会社豊田自動織機 鋳造用耐熱マグネシウム合金および耐熱マグネシウム合金鋳物
US8123877B2 (en) 2003-01-31 2012-02-28 Kabushiki Kaisha Toyota Jidoshokki Heat-resistant magnesium alloy for casting heat-resistant magnesium alloy cast product, and process for producing heat-resistant magnesium alloy cast product
US7029626B2 (en) * 2003-11-25 2006-04-18 Daimlerchrysler Corporation Creep resistant magnesium alloy
US20050194072A1 (en) * 2004-03-04 2005-09-08 Luo Aihua A. Magnesium wrought alloy having improved extrudability and formability
DE502004003603D1 (de) * 2004-03-11 2007-06-06 Geesthacht Gkss Forschung Verfahren zur Herstellung von Profilen aus Magnesiumwerkstoff mittels Strangpressen
JP4862983B2 (ja) * 2005-03-22 2012-01-25 住友電気工業株式会社 マグネシウム溶接線の製造方法
AT503854B1 (de) * 2006-05-19 2008-01-15 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh Magnesium-basislegierung
US20090196787A1 (en) * 2008-01-31 2009-08-06 Beals Randy S Magnesium alloy
US8313692B2 (en) * 2008-06-03 2012-11-20 National Institute For Materials Science Mg-based alloy
BRPI0919653A2 (pt) * 2008-10-22 2015-12-08 Sumitomo Electric Industries produto formado de liga de magnésio e folha de liga de magnésio
US9227243B2 (en) 2009-12-08 2016-01-05 Baker Hughes Incorporated Method of making a powder metal compact
US9243475B2 (en) 2009-12-08 2016-01-26 Baker Hughes Incorporated Extruded powder metal compact
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9127515B2 (en) 2010-10-27 2015-09-08 Baker Hughes Incorporated Nanomatrix carbon composite
US9090955B2 (en) 2010-10-27 2015-07-28 Baker Hughes Incorporated Nanomatrix powder metal composite
JP2012097309A (ja) * 2010-10-29 2012-05-24 Sanden Corp マグネシウム合金部材、エアコン用圧縮機及びマグネシウム合金部材の製造方法
KR101080164B1 (ko) * 2011-01-11 2011-11-07 한국기계연구원 발화저항성과 기계적 특성이 우수한 마그네슘 합금 및 그 제조방법
WO2012144301A1 (ja) 2011-04-18 2012-10-26 国立大学法人東北大学 マグネシウム燃料電池
US9080098B2 (en) 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US8631876B2 (en) 2011-04-28 2014-01-21 Baker Hughes Incorporated Method of making and using a functionally gradient composite tool
US9139928B2 (en) 2011-06-17 2015-09-22 Baker Hughes Incorporated Corrodible downhole article and method of removing the article from downhole environment
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9833838B2 (en) 2011-07-29 2017-12-05 Baker Hughes, A Ge Company, Llc Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9643250B2 (en) 2011-07-29 2017-05-09 Baker Hughes Incorporated Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle
US9057242B2 (en) 2011-08-05 2015-06-16 Baker Hughes Incorporated Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9109269B2 (en) 2011-08-30 2015-08-18 Baker Hughes Incorporated Magnesium alloy powder metal compact
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9856547B2 (en) 2011-08-30 2018-01-02 Bakers Hughes, A Ge Company, Llc Nanostructured powder metal compact
US9643144B2 (en) 2011-09-02 2017-05-09 Baker Hughes Incorporated Method to generate and disperse nanostructures in a composite material
US9133695B2 (en) 2011-09-03 2015-09-15 Baker Hughes Incorporated Degradable shaped charge and perforating gun system
US9347119B2 (en) 2011-09-03 2016-05-24 Baker Hughes Incorporated Degradable high shock impedance material
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9068428B2 (en) 2012-02-13 2015-06-30 Baker Hughes Incorporated Selectively corrodible downhole article and method of use
JP6013755B2 (ja) * 2012-04-10 2016-10-25 サンデンホールディングス株式会社 圧縮機能部材及びその製造方法
US9605508B2 (en) 2012-05-08 2017-03-28 Baker Hughes Incorporated Disintegrable and conformable metallic seal, and method of making the same
RU2640700C2 (ru) * 2012-06-26 2018-01-11 Биотроник Аг Магниевый сплав, способ его производства и использования
RU2506337C1 (ru) * 2012-11-13 2014-02-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Литейный магниевый сплав
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
WO2015127174A1 (en) 2014-02-21 2015-08-27 Terves, Inc. Fluid activated disintegrating metal system
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US9910026B2 (en) 2015-01-21 2018-03-06 Baker Hughes, A Ge Company, Llc High temperature tracers for downhole detection of produced water
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
JP6596236B2 (ja) * 2015-05-27 2019-10-23 本田技研工業株式会社 耐熱性マグネシウム合金及びその製造方法
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CA3012511A1 (en) 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite
JP2019063835A (ja) * 2017-10-04 2019-04-25 株式会社日本製鋼所 マグネシウム合金からなる鍛造用素材の製造方法
CN109321794B (zh) * 2018-10-31 2021-01-19 江苏理工学院 Al2Ca颗粒和碳纳米管混杂增强超轻镁锂基复合材料及制备方法
JP2021063256A (ja) * 2019-10-11 2021-04-22 三菱重工業株式会社 航空機部材の製造方法
CN115652157A (zh) * 2022-10-19 2023-01-31 重庆理工大学 一种低铝含量az系高性能铸造镁合金及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB596102A (en) * 1945-07-19 1947-12-29 Rupert Martin Bradbury A new magnesium base alloy
US2264310A (en) * 1940-03-09 1941-12-02 Dow Chemical Co Magnesium base alloy
FR888973A (fr) * 1942-03-25 1943-12-28 Airal A G Alliage de magnésium
GB579654A (en) * 1943-05-18 1946-08-12 Magnesium Elektron Ltd Improvements in or relating to magnesium base alloys
US3094413A (en) * 1960-09-14 1963-06-18 Magnesium Elektron Ltd Magnesium base alloys
US3496035A (en) * 1966-08-03 1970-02-17 Dow Chemical Co Extruded magnesium-base alloy
SU395474A1 (ru) * 1970-06-15 1973-08-28 В П Т Ьf'^nup qj^nrssTn'iVUiiA Caiiit!-! SufsJ
US4675157A (en) * 1984-06-07 1987-06-23 Allied Corporation High strength rapidly solidified magnesium base metal alloys
US4718475A (en) * 1984-06-07 1988-01-12 Allied Corporation Apparatus for casting high strength rapidly solidified magnesium base metal alloys
JPS613863A (ja) * 1984-06-15 1986-01-09 Ube Ind Ltd ダイカスト用マグネシウム基合金
US4765954A (en) * 1985-09-30 1988-08-23 Allied Corporation Rapidly solidified high strength, corrosion resistant magnesium base metal alloys
JP3240455B2 (ja) * 1995-07-11 2001-12-17 株式会社ケンウッド 音響再生装置

Also Published As

Publication number Publication date
US4997622A (en) 1991-03-05
WO1989008154A1 (fr) 1989-09-08
DE68909544T2 (de) 1994-01-27
JPH02503331A (ja) 1990-10-11
DE68909544D1 (de) 1993-11-04
FR2642439A2 (de) 1990-08-03
FR2642439B2 (de) 1993-04-16
EP0357743A1 (de) 1990-03-14

Similar Documents

Publication Publication Date Title
EP0357743B1 (de) Hochfeste magnesiumlegierungen und verfahren, um derartige legierungen mittels rascher erstarrung zu erhalten
EP0419375B1 (de) Hochfeste Magnesiumlegierungen und Verfahren zu ihrer Herstellung durch rasche Erstarrung
EP0465376B1 (de) Hochfeste Magnesiumlegierung, Strontium enthaltend und Herstellungsverfahren mittels rascher Erstarrung
EP0375571B1 (de) Verfahren zur Herstellung von Aluminiumlegierungen der Serie 7000 mittels Sprühabscheidung und nichtkontinuierlich verstärkten Verbundwerkstoffen, deren Matrix aus diesen Legierungen mit hoher mechanischer Festigkeit und guter Duktilität besteht
EP0414620B1 (de) Verfahren zur Herstellung von Magnesiumlegierungen durch Aufsprühbeschichten
JP6393008B1 (ja) 高強度アルミニウム合金積層成形体及びその製造方法
JP5239022B2 (ja) 高強度高靭性マグネシウム合金及びその製造方法
KR100993840B1 (ko) 고강도 마그네슘 합금 판재 및 그 제조방법
CA2360673A1 (fr) Produit en alliage aluminium-silicium hypereutectique pour mise en forme a l&#39;etat semi-solide
FR2645546A1 (fr) Alliage a base d&#39;al a haut module et a resistance mecanique elevee et procede d&#39;obtention
CN114231802A (zh) 锻造铝合金轮毂用稀土铝合金棒材及其制备方法
FR2805828A1 (fr) Alliage a base d&#39;aluminium contenant du bore et son procede de fabrication
JP3358934B2 (ja) 高融点金属含有Al基合金鋳塊のスプレーフォーミング法による製造方法
JPH0635624B2 (ja) 高強度アルミニウム合金押出材の製造法
JPH05306424A (ja) 高強度マグネシウム基合金およびその集成固化材
FR2661922A1 (fr) Alliages de cuivre a decomposition spinodale et leur procede d&#39;obtention.
FR2627780A1 (fr) Alliages de magnesium a haute resistance mecanique et procede d&#39;obtention de ces alliages par solidification rapide
JPH073375A (ja) 高強度マグネシウム合金及びその製造方法
EP1877589A1 (de) Titannitrid enthaltendes kornverfeinerungsmittel und herstellungsverfahren dafür
FR2651245A2 (fr) Alliages de magnesium a haute resistance mecanique et procede d&#39;obtention par solidification rapide.
FR2688233A1 (fr) Alliages de magnesium elabores par solidification rapide possedant une haute resistance mecanique a chaud.
CH536672A (fr) Procédé de fabrication d&#39;un produit métallique et produit obtenu par ce procédé
RU2742874C1 (ru) Способ получения композиционного материала на основе алюминия или его сплава, легированного титаном
JPH0557344B2 (de)
FR2689141A1 (fr) Feuille mince, déformable, en alliage d&#39;aluminium à structure fine et homogène ayant une limite élastique élevée.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19920211

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 68909544

Country of ref document: DE

Date of ref document: 19931104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931015

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970206

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST