EP0355568B1 - Herstellung einer Silberhalogenidemulsion - Google Patents

Herstellung einer Silberhalogenidemulsion Download PDF

Info

Publication number
EP0355568B1
EP0355568B1 EP89114620A EP89114620A EP0355568B1 EP 0355568 B1 EP0355568 B1 EP 0355568B1 EP 89114620 A EP89114620 A EP 89114620A EP 89114620 A EP89114620 A EP 89114620A EP 0355568 B1 EP0355568 B1 EP 0355568B1
Authority
EP
European Patent Office
Prior art keywords
silver halide
compounds
color
gelatin
gelatine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89114620A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0355568A2 (de
EP0355568A3 (de
Inventor
Franz Dr. Moll
Bruno Dr. Mücke
Klaus Dr. Wagner
Herbert Dr. Gareis
Wolfgang Graesser
Peter Dr. Koepff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert AG
Original Assignee
Agfa Gevaert AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert AG filed Critical Agfa Gevaert AG
Publication of EP0355568A2 publication Critical patent/EP0355568A2/de
Publication of EP0355568A3 publication Critical patent/EP0355568A3/de
Application granted granted Critical
Publication of EP0355568B1 publication Critical patent/EP0355568B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/09Noble metals or mercury; Salts or compounds thereof; Sulfur, selenium or tellurium, or compounds thereof, e.g. for chemical sensitising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/04Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with macromolecular additives; with layer-forming substances
    • G03C1/047Proteins, e.g. gelatine derivatives; Hydrolysis or extraction products of proteins

Definitions

  • the invention relates to a process for the preparation of a light-sensitive silver halide emulsion by precipitation of the silver halide in the presence of gelatin, flocculation and washing of the silver halide precipitated in the presence of the gelatin and redispersion with the addition of further gelatin.
  • the oxidation of gelatins for inertization i.e. to destroy photographically active substances, but also to remove bacterial contamination or to brighten the color of the gelatin, is known, using as the oxidizing agent hydrogen peroxide, peracids such as performic acid, peracetic acid, periodic acid, chloramine T (N-chloro-p-toluenesulfonic acid amide sodium) and the like .ä. be used.
  • the object of the invention was therefore to modify the production of a silver halide emulsion so that on the one hand an improved grain growth is achieved and on the other hand an undesirably high haze is avoided.
  • this object can be achieved in that in the process described at the outset the precipitation in the presence of a gelatin with a gold number of at most 10 ⁇ mol / g gelatin and a cysteine content of at most 6 ppm and the redispersion with a gelatin with a Gold number of at least 23 ⁇ mol / g gelatin is carried out and the weight ratio of the amount of gelatin used in the precipitation to the amount of gelatin added during the redispersion is 1: 1 to 1:10.
  • the gelatin for redispersion preferably has cysteine contents of 6 to 16 ppm.
  • Gelatins with a gold value of at least 23 ⁇ mol / g are obtained with the usual alkaline or acidic liming.
  • Gelatins with a gold value of at most 10 ⁇ mol / g and a cysteine content of at most 6 ppm are obtained from the usual gelatins by oxidation with the oxidizing agents specified above.
  • the gelatin-to-silver weight ratio (Ge-Si) of the finished emulsion is preferably 1: 1 to 1: 5, silver being used as the silver nitrate in the calculation.
  • the weight ratio of the amount of gelatin during the precipitation to the amount of gelatin that is added during the redispersion is preferably 1: 1 to 1: 5.
  • all light-sensitive silver halide emulsion layers contain silver halide emulsions produced according to the invention.
  • the oxidized gelatin can be acidic or alkaline.
  • the raw material can be bone or skin. However, bone is preferred as the raw material, since this makes inert gelatins, i.e. Gelatins with low levels of photographically active contaminants, such as thiosulfate or sulfite, can be produced.
  • the gelatin can be oxidized at any time during the production of the gelatin.
  • the oxidation can also take place in the gelatin solution before the beginning of the emulsion precipitation.
  • the pH during the oxidation can fluctuate within wide limits and is preferably between pH 2 and pH 8, higher and lower pH values are possible, but then the physical properties of the gelatin are deteriorated.
  • the oxidation of the gelatin can be checked by determining the gold value or the cysteine content and terminated according to the desired values.
  • the gelatin is titrated potentiometrically with tetrachloroauric acid at pH 2. Of the Gold consumption gives the gold number.
  • non-oxidized gelatins show gold numbers of ⁇ 23 ⁇ mol / g. This corresponds approximately to a methionine content of ⁇ 50 ⁇ mol / g.
  • the cysteine content of the gelatin is determined by a method described by H. Meichelbeck, AGhack and Chr. Sentler in Z. Ges. Textilindustrie 70 , 242 (1968).
  • TRIS tris (hydroxymethyl) aminomethane
  • DTNB 5,5′-dithiobis (2-nitrobenzoic acid)
  • the measurement is carried out at 412 nm.
  • the same solution as the measurement solution, but without hydrolyzate, is used as the reference solution.
  • the hydrolyzate with all additives except DTNB must also be measured and subtracted from the absorbance of the measurement solution.
  • the buffer is prepared as follows: 121 g of TRIS are dissolved in 500 ml of water and the pH is adjusted to 7.4 with HCl. The solution is then made up to 1000 ml.
  • Reagent solution 10 ml of TRIS / HCl buffer are diluted to about 50 ml with water, containing 25 mg of reagent (DTNB) and 20 mg EDTA salt dissolved. The pH is adjusted to 4 with HCl. The solution is made up to 100 ml.
  • the fluctuation range of the measurements must not be greater than ⁇ 1 ppm.
  • the cysteine content results from the measured value by means of a previously established calibration curve. As with H. Meichelbeck et al, loc. cit. specified, the cysteine content can also be obtained arithmetically from the measured value without a calibration curve.
  • the gelatins can be desalinated or not. Inert gelatins are preferred which are characterized in that they contain only a few photographically active compounds. Non-desalted inert gelatins often have a high content of Ca ions.
  • the silver halide present as a light-sensitive component in the photographic emulsion can contain chloride, bromide or iodide or mixtures thereof as the halide.
  • the halide content at least one layer consists of 0 to 15 mol% of iodide, 0 to 100 mol% of chloride and 0 to 100 mol% of bromide.
  • silver bromide iodide emulsions are usually used; in the case of color negative and color reversal paper, silver chloride bromide emulsions are usually used. It can be predominantly compact crystals, which are, for example, regularly cubic or octahedral or can have transitional forms.
  • platelet-shaped crystals can preferably also be present, the average ratio of diameter to thickness of which is preferably at least 5: 1, the diameter of a grain being defined as the diameter of a circle with a circle content corresponding to the projected area of the grain.
  • the layers can also have tabular silver halide crystals in which the ratio of diameter to thickness is substantially greater than 5: 1, for example 12: 1 to 30: 1.
  • the silver halide grains can also have a multi-layered grain structure, in the simplest case with an inner and an outer grain area (core / shell), the halide composition and / or other modifications, such as doping of the individual grain areas, being different.
  • the average grain size of the emulsions is preferably between 0.2 .mu.m and 5.0 .mu.m, particularly preferably 0.2 .mu.m and 2.0 .mu.m the grain size distribution can be both homo- and heterodisperse. Homodisperse grain size distribution means that 95% of the grains do not exceed ⁇ 30% of deviate from the average grain size.
  • the emulsions can also contain organic silver salts, for example silver benzotriazolate or silver behenate.
  • Two or more kinds of silver halide emulsions, which are prepared separately, can be used as a mixture.
  • the photographic emulsions can be prepared using various methods (e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • various methods e.g. P. Glafkides, Chimie et Physique Photographique, Paul Montel, Paris (1967), GF Duffin, Photographic Emulsion Chemistry, The Focal Press, London (1966), VL Zelikman et al, Making and Coating Photographic Emulsion, The Focal Press, London (1966) from soluble silver salts and soluble halides.
  • the silver halide can be precipitated in the acidic, neutral or alkaline pH range, silver halide complexing agents preferably being additionally used.
  • the latter include, for example, ammonia, thioether, imidazole, ammonium thiocyanate or excess halide.
  • the water-soluble silver salts and the halides are combined either in succession by the single-jet process or simultaneously by the double-jet process or by any combination of the two processes. Dosing with increasing inflow rates is preferred, the "critical" feed rate at which just yet no new germs arise, should not be exceeded.
  • the pAg range can vary within wide limits during the precipitation, preferably the so-called pAg-controlled method is used, in which a certain pAg value is kept constant or a defined pAg profile is traversed during the precipitation.
  • so-called inverse precipitation with an excess of silver ions is also possible.
  • the silver halide crystals can also grow by physical ripening (Ostwald ripening) in the presence of excess halide and / or silver halide complexing agent.
  • the growth of the emulsion grains can even take place predominantly by Ostwald ripening, preferably a fine-grained, so-called Lippmann emulsion, mixed with a less soluble emulsion and redissolved on the latter.
  • Salts or complexes of metals such as Cd, Zn, Pb, Tl, Bi, Ir, Rh, Fe may also be present during the precipitation and / or physical ripening of the silver halide grains.
  • the precipitation can also be carried out in the presence of sensitizing dyes.
  • Complexing agents and / or dyes can be rendered ineffective at any time, for example by changing the pH or by an oxidative treatment.
  • the soluble salts are removed from the emulsion by flocculation and washing.
  • the silver halide emulsion is generally subjected to chemical sensitization under defined conditions - pH, pAg, temperature, gelatin, silver halide and sensitizer concentration - until the optimum sensitivity and fog are reached.
  • the procedure is e.g. described by H. Frieser "The basics of photographic processes with silver halides" page 675-734, Akademische Verlagsgesellschaft (1968).
  • Chemical sensitization can be carried out with the addition of compounds of sulfur, selenium, tellurium and / or noble metal compounds (e.g. gold, platinum, palladium, iridium), thiocyanate compounds, surface-active compounds such as thioethers, heterocyclic nitrogen compounds (e.g. imidazoles, azaindenes) or also spectral sensitizers (described, for example, by F. Hamer "The Cyanine Dyes and Related Compounds", 1964, or Ullmanns Encyclopedia of Industrial Chemistry, 4th edition, vol. 18, pp. 431 ff. and Research Disclosure No. 17643, section III) are added.
  • noble metal compounds e.g. gold, platinum, palladium, iridium
  • thiocyanate compounds e.g. gold, platinum, palladium, iridium
  • surface-active compounds such as thioethers
  • heterocyclic nitrogen compounds e.g. imidazoles, azaindenes
  • a reduction sensitization can be carried out with the addition of reducing agents (tin-II salts, amines, hydrazine derivatives, aminoboranes, silanes, formamidine sulfinic acid) using hydrogen, by means of low pAg (eg less than 5) and / or high pH (eg above 8) .
  • reducing agents titanium-II salts, amines, hydrazine derivatives, aminoboranes, silanes, formamidine sulfinic acid
  • the photographic emulsions may contain compounds to prevent fogging or to stabilize the photographic function during production, storage or photographic processing.
  • Azaindenes are particularly suitable, preferably tetra- and penta-azaindenes, in particular those which are substituted by hydroxyl or amino groups. Such connections are for example from Birr, Z. Wiss. Phot. 47 (1952), pp. 2-58. Furthermore, salts of metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, optionally substituted benzotriazoles or benzothiazolium salts can be used as antifoggants.
  • metals such as mercury or cadmium, aromatic sulfonic or sulfinic acids such as benzenesulfinic acid, or nitrogen-containing heterocycles such as nitrobenzimidazole, nitroindazole, optionally substituted benzotriazoles or benzothiazolium salts can be used as antifoggants.
  • Heterocycles containing mercapto groups for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines, are particularly suitable, these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • mercaptobenzthiazoles for example mercaptobenzthiazoles, mercaptobenzimidazoles, mercaptotetrazoles, mercaptothiadiazoles, mercaptopyrimidines
  • these mercaptoazoles also being able to contain a water-solubilizing group, for example a carboxyl group or sulfo group.
  • a water-solubilizing group for example a carboxyl group or sulfo group.
  • the stabilizers can be added to the silver halide emulsions before, during or after their ripening.
  • the compounds can also be added to other photographic layers which are assigned to a halogen silver layer.
  • the photographic emulsion layers or other hydrophilic colloid layers of the light-sensitive material produced according to the invention can contain surface-active agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
  • surface-active agents for various purposes, such as coating aids, to prevent electrical charging, to improve the sliding properties, to emulsify the dispersion, to prevent adhesion and to improve the photographic characteristics (eg acceleration of development, high contrast, sensitization etc.).
  • surface-active compounds e.g. Saponin
  • non-ionic surfactants e.g. Alkylene oxide compounds, glycerin compounds or glycidol compounds
  • cationic surfactants e.g.
  • alkyl amines quaternary ammonium salts, pyridine compounds and other heterocyclic compounds, sulfonium compounds or phosphonium compounds, anionic surfactants containing an acid group, e.g. Carboxylic acid, sulfonic acid, a phosphoric acid, sulfuric acid ester or phosphoric acid ester group, ampholytic surfactants, e.g. Amino acid and aminosulfonic acid compounds as well as sulfuric or phosphoric acid esters of an amino alcohol.
  • an acid group e.g. Carboxylic acid, sulfonic acid, a phosphoric acid, sulfuric acid ester or phosphoric acid ester group
  • ampholytic surfactants e.g. Amino acid and aminosulfonic acid compounds as well as sulfuric or phosphoric acid esters of an amino alcohol.
  • the photographic emulsions can be spectrally sensitized using methine dyes or other dyes.
  • Particularly suitable dyes are cyanine dyes, merocyanine dyes and complex merocyanine dyes.
  • the emulsions can contain additional binders, such as synthetic or natural layer-forming polymers.
  • the emulsions according to the invention are suitable for all types of photographic materials, such as X-ray films, black and white film, black and white paper, but in particular for color photographic materials.
  • color photographic materials are color negative films, color reversal films, color positive films, color photographic paper, color reversal photographic paper, color sensitive materials for the color diffusion transfer process or the silver color bleaching process.
  • Suitable supports for the production of color photographic materials are, for example, films and foils of semi-synthetic and synthetic polymers, such as cellulose nitrate, Cellulose acetate, cellulose butyrate, polystyrene, polyvinyl chloride, polyethylene terephthalate and polycarbonate and paper laminated with a baryta layer or ⁇ -olefin polymer layer (eg polyethylene).
  • These carriers can be colored with dyes and pigments, for example titanium dioxide. They can also be colored black for the purpose of shielding light.
  • the surface of the support is generally subjected to a treatment in order to improve the adhesion of the photographic emulsion layer, for example a corona discharge with subsequent application of a substrate layer.
  • the color photographic materials usually contain at least one red-sensitive, green-sensitive and blue-sensitive silver halide emulsion layer and, if appropriate, intermediate layers and protective layers.
  • the color couplers are essential components of the photographic emulsion layers.
  • the differently sensitized emulsion layers are assigned non-diffusing monomeric or polymeric color couplers, which can be located in the same layer or in a layer adjacent to it.
  • cyan couplers are assigned to the red-sensitive layers, purple couplers to the green-sensitive layers and yellow couplers to the blue-sensitive layers.
  • Color couplers for producing the blue-green partial color image are usually couplers of the phenol or ⁇ -naphthol type.
  • Color couplers for generating the purple partial color image are usually couplers of the 5-pyrazolone, indazolone or pyrazoloazole type.
  • Color couplers for producing the yellow partial color image are generally couplers with an open-chain ketomethylene group, in particular couplers of the ⁇ -acylacetamide type; suitable examples are ⁇ -benzoylacetanilide couplers and ⁇ -pivaloylacetanilide couplers.
  • the color couplers can be 4-equivalent couplers, but also 2-equivalent couplers.
  • the latter are derived from the 4-equivalent couplers in that they contain a substituent in the coupling point, which is split off during the coupling.
  • the 2-equivalent couplers include those that are colorless, as well as those that have an intense intrinsic color that disappears when the color is coupled or is replaced by the color of the image dye produced (mask coupler), and the white couplers that react with color developer oxidation products yield essentially colorless products.
  • the 2-equivalent couplers are also those couplers which contain a detachable radical in the coupling point, which in reaction with color developer oxidation products Freedom is set, either directly or after one or more other groups have been split off from the primarily split off remainder (e.g. DE-A-27 03-145, DE-A-28 55 697, DE-A-31 05 026, DE -A-33 19 428), develops a certain desired photographic effectiveness, for example as a development inhibitor or accelerator.
  • Examples of such 2-equivalent couplers are the known DIR couplers as well as DAR or. FAR coupler.
  • DIR couplers which release development inhibitors of the azole type, for example triazoles and benzotriazoles, are described in DE-A-24 14 006, 26 10 546, 26 59 417, 27 54 281, 27 26 180, 36 26 219, 36 30 564, 36 36 824, 36 44 416 and 28 42 063. Further advantages for color reproduction, ie, color separation and color purity, and for detail reproduction, ie, sharpness and granularity, can be achieved with those DIR couplers which, for example, do not split off the development inhibitor directly as a result of the coupling with an oxidized color developer, but only after a further follow-up reaction, which is achieved, for example, with a timing group.
  • DIR couplers which release a development inhibitor which is decomposed into essentially photographically ineffective products in the developer bath are described, for example, in DE-A-32 09 486 and in EP-A-167 168 and 219 713. This measure ensures trouble-free development and processing consistency.
  • the DIR couplers can be added to a wide variety of layers in a multilayer photographic material, for example also light-insensitive or intermediate layers. However, they are preferably added to the light-sensitive silver halide emulsion layers, the characteristic properties of the silver halide emulsion, for example its iodide content, the structure of the silver halide grains or their grain size distribution having an influence on the photographic properties achieved.
  • the influence of the inhibitors released can be limited, for example, by incorporating an inhibitor scavenger layer in accordance with DE-A-24 31 223. For reasons of reactivity or stability, it may be advantageous to use a DIR coupler which forms in the respective layer in which it is introduced a color which is different from the color to be produced in this layer in the coupling.
  • DAR or FAR couplers can be used, which release a development accelerator or an fogger.
  • Compounds of this type are, for example, in DE-A-25 34 466, 32 09 110, 33 33 355, 34 10 616, 34 29 545, 34 41 823, in EP-A-89 834, 110 511, 118 087, 147 765 and described in US-A-4,618,572 and 4,656,123.
  • DIR, DAR or FAR couplers mainly the effectiveness of the residue released during coupling is desired and the color-forming properties of these couplers are less important, such DIR, DAR or FAR couplers are also suitable, which give essentially colorless products on coupling (DE-A-15 47 640).
  • the cleavable residue can also be a ballast residue, so that upon reaction with color developer oxidation products coupling products are obtained which are diffusible or at least have a weak or restricted mobility (US Pat. No. 4,420,556).
  • the material may further contain compounds other than couplers, which can liberate, for example, a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR hydroquinones and other compounds as described, for example, in US Pat US-A-4 636 546, 4 345 024, 4 684 604 and in DE-A-31 45 640, 25 15 213, 24 47 079 and in EP-A-198 438. These compounds perform the same function as the DIR, DAR or FAR couplers, except that they do not form coupling products.
  • couplers can liberate, for example, a development inhibitor, a development accelerator, a bleaching accelerator, a developer, a silver halide solvent, a fogging agent or an antifoggant, for example so-called DIR hydroquinones and other compounds as described, for example, in US Pat US-A-4 636 546, 4 345 024, 4 684 60
  • High molecular weight color couplers are described, for example, in DE-C-1 297 417, DE-A-24 07 569, DE-A-31 48 125, DE-A-32 17 200, DE-A-33 20 079, DE-A-33 24 932, DE-A-33 31 743, DE-A-33 40 376, EP-A-27 284, US-A-4 080 211.
  • the high molecular weight color couplers are usually produced by polymerizing ethylenically unsaturated monomeric color couplers. However, they can also be obtained by polyaddition or polycondensation.
  • the couplers or other compounds can be incorporated into silver halide emulsion layers by first preparing a solution, a dispersion or an emulsion of the compound in question and then adding it to the casting solution for the layer in question.
  • the selection of the suitable solvent or dispersing agent depends on the solubility of the compound.
  • Hydrophobic compounds can also be introduced into the casting solution using high-boiling solvents, so-called oil formers. Corresponding methods are described for example in US-A-2 322 027, US-A-2 801 170, US-A-2 801 171 and EP-A-0 043 037.
  • oligomers or polymers instead of the high-boiling solvents, oligomers or polymers, so-called polymeric oil formers, can be used.
  • the compounds can also be introduced into the casting solution in the form of loaded latices.
  • anionic water-soluble compounds e.g. dyes
  • pickling polymers e.g. acrylic acid
  • Suitable oil formers are e.g. Alkyl phthalates, phosphonic acid esters, phosphoric acid esters, citric acid esters, benzoic acid esters, amides, fatty acid esters, trimesic acid esters, alcohols, phenols, aniline derivatives and hydrocarbons.
  • oil formers are dibutylphthalate, dicyclohexylphthalate, di-2-ethylhexylphthalate, decylphthalate, triphenylphosphate, tricresylphosphate, 2-ethylhexyldiphenylphosphate, tricyclohexylphosphate, tri-2-ethylhexylphosphate, tridecoxyphosphate, 2-ethylhexylphosphate, tridecoxyphosphate, 2-ethylhexylphosphate, , 2-ethylhexyl p-hydroxybenzoate, diethyldodecanamide, N-tetradecylpyrrolidone, isostearyl alcohol, 2,4-di-tert.-amylphenol, dioctylacelate, glycerol tributyrate, isostearyl lactate, trioctyl citrate, N, N-doxy-5-butyl-2-butyl
  • Each of the differently sensitized, light-sensitive layers can consist of a single layer or can also comprise two or more silver halide emulsion partial layers (DE-C-1 121 470).
  • Red-sensitive silver halide emulsion layers are Layer supports are often arranged closer than green-sensitive silver halide emulsion layers and these in turn are closer than blue-sensitive layers, a non-light-sensitive yellow filter layer generally being located between green-sensitive layers and blue-sensitive layers.
  • the green or Red-sensitive layers can be selected without the yellow filter layer, other layer arrangements in which e.g. the blue-sensitive, then the red-sensitive and finally the green-sensitive layers follow.
  • the non-light-sensitive intermediate layers which are generally arranged between layers of different spectral sensitivity, can contain agents which prevent undesired diffusion of developer oxidation products from one light-sensitive layer into another light-sensitive layer with different spectral sensitization.
  • Suitable agents which are also called scavengers or EOP-catchers, are described in Research Disclosure 17 643 (Dec. 1978), Chapter VII, 17 842/1979, pages 94-97 and 18.716 / 1979, page 650 and in EP-A- 69,070, 98,072, 124,877, 125,522 and in US-A-463,226.
  • sub-layers of the same spectral sensitization can differ with regard to their composition, in particular with regard to the type and amount of the silver halide grains.
  • the sublayer with higher sensitivity will be located further away from the support than the sublayer with lower sensitivity.
  • Partial layers of the same spectral sensitization can be adjacent to one another or through other layers, e.g. separated by layers of other spectral sensitization.
  • all highly sensitive and all low-sensitive layers can be combined to form a layer package (DE-A-19 58 709, DE-A-25 30 645, DE-A-26 22 922).
  • the photographic material can also contain UV light-absorbing compounds, whiteners, spacers, filter dyes, formalin scavengers, light stabilizers, antioxidants, D min dyes, additives to improve dye, coupler and white stabilization and to reduce the color fog, plasticizers (latices), Contain biocides and others.
  • Examples are aryl-substituted benzotriazole compounds (US-A-3 533 794), 4-thiazolidone compounds (US-A-3 314 794 and 3 352 681), benzophenone compounds (JP-A-2784/71), cinnamic acid ester compounds (US-A-3 705 805 and 3,707,375), butadiene compounds (US-A-4,045,229) or benzoxazole compounds (US-A-3,700,455).
  • Ultraviolet absorbing couplers such as ⁇ -naphthol type cyan couplers
  • ultraviolet absorbing polymers can also be used. These ultraviolet absorbents can be fixed in a special layer by pickling.
  • Filter dyes suitable for visible light include oxonol dyes, hemioxonol dyes, styryl dyes, merocyanine dyes, cyanine dyes and azo dyes. Of these dyes, oxonol dyes, hemioxonol dyes and merocyanine dyes are used particularly advantageously.
  • Suitable whiteners are e.g. in Research Disclosure 17,643 (Dec. 1978), Chapter V, in US-A-2,632,701, 3,269,840 and in GB-A-852,075 and 1,319,763.
  • Certain layers of binder in particular the layer furthest from the support, but also occasionally intermediate layers, especially if they represent the most distant layer from the support during production, can contain photographically inert particles of inorganic or organic nature, for example as matting agents or as spacers (DE-A-33 31 542, DE-A-34 24 893, Research Disclosure 17 643, Dec. 1978, Chapter XVI).
  • the average particle diameter of the spacers is in particular in the range from 0.2 to 10 ⁇ m.
  • the spacers are water-insoluble and can be alkali-insoluble or alkali-soluble, the alkali-soluble ones generally being removed from the photographic material in the alkaline development bath.
  • suitable polymers are polymethyl methacrylate, copolymers of acrylic acid and methyl methacrylate and hydroxypropyl methyl cellulose hexahydrophthalate.
  • Additives to improve dye, coupler and whiteness stability and to reduce the color fog can belong to the following chemical substance classes: hydroquinones, 6-hydroxychromanes, 5-hydroxycoumarans, spirochromans, spiroindanes, p- Alkoxyphenols, sterically hindered phenols, gallic acid derivatives, methylenedioxybenzenes, aminophenols, sterically hindered amines, derivatives with esterified or etherified phenolic hydroxyl groups, metal complexes.
  • Compounds that have both a hindered amine partial structure and a hindered one Phenol partial structure in a molecule are particularly effective for preventing the deterioration (deterioration or degradation) of yellow color images as a result of the development of heat, moisture and light.
  • Spiroindane JP-A-159 644/81
  • chromanes are caused by Hydroquinone diethers or monoethers are particularly effective (JP-A-89 835/80).
  • the layers of the photographic material can be hardened with the usual hardening agents.
  • Suitable curing agents include formaldehyde, glutaraldehyde and similar aldehyde compounds, diacetyl, cyclopentadione and similar ketone compounds, bis (2-chloroethylurea), 2-hydroxy-4,6-dichloro-1,3,5-triazine and other compounds, the reactive halogen contain (US-A-3 288 775, US-A-2 732 303, GB-A-974 723 and GB-A-1 167 207) divinyl sulfone compounds, 5-acetyl-1,3-diacryloylhexahydro-1,3,5 triazine and other compounds containing a reactive olefin bond (US-A-3 635 718, US-A-3 232 763 and GB-A-994 869); N-hydroxymethylphthalimide and other N-methylol compounds (US-A-2 732 316 and US
  • the hardening can be effected in a known manner by adding the hardening agent to the casting solution for the layer to be hardened, or by overlaying the layer to be hardened with a layer which contains a diffusible hardening agent.
  • Immediate hardeners are understood to mean compounds which crosslink suitable binders in such a way that the hardening is completed to such an extent immediately after casting, at the latest after 24 hours, preferably at the latest after 8 hours, that no further crosslinking reactions result conditional change in the sensitometry and the swelling of the layer structure occurs.
  • Swelling is understood to mean the difference between the wet film thickness and the dry film thickness during the aqueous processing of the film (Photogr. Sci., Eng. 8 (1964), 275; Photogr. Sci. Eng. (1972), 449).
  • hardening agents that react very quickly with gelatin are e.g. to carbamoylpyridinium salts, which are able to react with free carboxyl groups of the gelatin, so that the latter react with free amino groups of the gelatin to form peptide bonds and crosslink the gelatin.
  • Color photographic negative materials are usually processed by developing, bleaching, fixing and washing or by developing, bleaching, fixing and stabilizing without subsequent washing, with bleaching and fixing can be combined into one processing step.
  • All developer compounds which have the ability to react in the form of their oxidation product with color couplers to form azomethine or indophenol dyes can be used as the color developer compound.
  • Suitable color developer compounds are aromatic compounds of the p-phenylenediamine type containing at least one primary amino group, for example N, N-dialkyl-p-phenylenediamines such as N, N-diethyl-p-phenylenediamine, 1- (N-ethyl-N-methanesulfonamidoethyl) -3 -methyl-p-phenylenediamine, 1- (N-ethyl-N-hydroxyethyl) -3-methyl-p-phenylenediamine and 1- (N-ethyl-N-methoxyethyl) -3-methyl-p-phenylenediamine.
  • Other useful color developers are described, for example, in J. Amer. Chem. Soc. 73 , 3106 (1951) and G. Haist, Modern Photographic Processing, 1979, John Wiley and Sons, New York, page 545 ff.
  • Fe (III) salts and Fe (III) complex salts such as ferricyanides, dichromates, water-soluble cobalt complexes can be used as bleaching agents.
  • Iron (III) complexes of aminopolycarboxylic acids in particular, for example, ethylenediaminetetraacetic acid, propylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, nitrilotriacetic acid, iminodiacetic acid, N-hydroxyethylethylenediaminetriacetic acid, are particularly preferred, Alkyliminodicarboxylic acids and corresponding phosphonic acids.
  • Persulphates and peroxides for example hydrogen peroxide, are also suitable as bleaching agents.
  • the bleach-fixing bath or fixing bath is usually followed by washing, which is designed as countercurrent washing or consists of several tanks with their own water supply.
  • the washing can be completely replaced by a stabilizing bath, which is usually carried out in countercurrent.
  • this stabilizing bath also acts as a final bath.
  • a silver bromide chloride emulsion with 10 mol% silver chloride was prepared by the double-jet method at 56 ° C.
  • the GeSi was 0.15.
  • the emulsion was flocculated by adding a flocculant and lowering the pH to 3.5 and then washing. The pH was then adjusted again to 4.5, further gelatin 1 was added, and the emulsion was redispersed with heating. After redispersion, the GeSi was 0.65.
  • the emulsion was then matured with the addition of thiosulfate for optimal sensitivity (emulsion A).
  • emulsion B Another emulsion with gelatin 2 was prepared by precipitation and redispersion using the same process (emulsion B).
  • the emulsions were provided per 100 g AgNO3 180 mg of a blue sensitizer and 120 g of a yellow coupler and poured onto a PE-coated paper base. One was placed over the emulsion layer Gelatin layer pulled with a hardener. After drying, the layers were exposed in a sensitometer and developed using the EP 2 process.
  • the latent image was determined 6 hours after the exposure, the exposed strip being stored at room temperature.
  • oxidized gelatin in the batch has an improved grain distribution, i.e. very monodisperse emulsions.
  • oxidized gelatin in post-ripening, however, there is a higher haze.
  • the decline in the latent picture is noticeably stronger. If, on the other hand, the non-oxidized gelatin is used in the post-ripening, a better haze and a more stable latent image is obtained with a good grain distribution.
  • Example 1 was repeated with gelatin 3 instead of gelatin 1 and gelatin 4 instead of gelatin 2.
  • the silver chloride bromide emulsion contained 95 mol% of silver chloride, the ripening for optimum sensitivity was carried out with the addition of gold salts and thiosulfate. All other parameters remained unchanged.
  • Emulsions D (gelatin 3 only), E (gelatin 4 only) and F (gelatin 4 during precipitation, gelatin 3 during redispersion) resulted.
  • the emulsions were provided with a blue sensitizer and a yellow coupler and then poured onto a PE coated paper backing. A layer of gelatin with a hardening agent is applied over the emulsion.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
EP89114620A 1988-08-20 1989-08-08 Herstellung einer Silberhalogenidemulsion Expired - Lifetime EP0355568B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3828312A DE3828312A1 (de) 1988-08-20 1988-08-20 Herstellung einer silberhalogenidemulsion
DE3828312 1988-08-20

Publications (3)

Publication Number Publication Date
EP0355568A2 EP0355568A2 (de) 1990-02-28
EP0355568A3 EP0355568A3 (de) 1991-01-23
EP0355568B1 true EP0355568B1 (de) 1995-01-11

Family

ID=6361251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89114620A Expired - Lifetime EP0355568B1 (de) 1988-08-20 1989-08-08 Herstellung einer Silberhalogenidemulsion

Country Status (4)

Country Link
US (1) US4992362A (ja)
EP (1) EP0355568B1 (ja)
JP (1) JPH02111940A (ja)
DE (2) DE3828312A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412075A (en) * 1992-03-11 1995-05-02 Eastman Kodak Company Control of methionine content in photographic grade gelatin

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614929A (en) * 1947-08-13 1952-10-21 Eastman Kodak Co Method of preparing photographic emulsions
EP0228256A2 (en) * 1985-12-19 1987-07-08 EASTMAN KODAK COMPANY (a New Jersey corporation) A process for precipitating a tabular grain emulsion in the presence of a gelatino-peptizer and an emulsion produced thereby

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE231430C (ja) *
US3888676A (en) * 1973-08-27 1975-06-10 Du Pont Silver halide films with wide exposure latitude and low gradient
US4131467A (en) * 1977-11-23 1978-12-26 E. I. Du Pont De Nemours And Company 4,7-Dihydroxybenzimidazole hydrobromide as antifogger
US4496652A (en) * 1978-12-26 1985-01-29 E. I. Du Pont De Nemours And Company Silver halide crystals with two surface types
CA1284051C (en) * 1985-12-19 1991-05-14 Joe E. Maskasky Chloride containing emulsion and a process for emulsion preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2614929A (en) * 1947-08-13 1952-10-21 Eastman Kodak Co Method of preparing photographic emulsions
EP0228256A2 (en) * 1985-12-19 1987-07-08 EASTMAN KODAK COMPANY (a New Jersey corporation) A process for precipitating a tabular grain emulsion in the presence of a gelatino-peptizer and an emulsion produced thereby

Also Published As

Publication number Publication date
DE3828312A1 (de) 1990-03-01
US4992362A (en) 1991-02-12
EP0355568A2 (de) 1990-02-28
EP0355568A3 (de) 1991-01-23
DE58908871D1 (de) 1995-02-23
JPH02111940A (ja) 1990-04-24

Similar Documents

Publication Publication Date Title
EP0358071B1 (de) Fotografisches Aufzeichnungsmaterial
EP0464409B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0351588B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0517053B1 (de) Fotografische Silberhalogenidemulsion
EP0515873B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0537545A1 (de) Fotografisches Silberhalogenidmaterial
EP0355568B1 (de) Herstellung einer Silberhalogenidemulsion
EP0413204A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0377889B1 (de) Silberhalogenidaufzeichnungsmaterial
EP0447656A1 (de) Farbfotografisches Silberhalogenidmaterial und seine Entwicklung
EP0550907B1 (de) Fotografisches Aufzeichnungsmaterial
EP0369235B1 (de) Fotografisches Aufzeichnungsmaterial
EP0373339B1 (de) Silberhalogenidaufzeichnungsmaterial
EP0377181A2 (de) Farbfotografisches Material
EP0616256B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0554756B1 (de) Farbfotografisches Aufzeichnungsmaterial
DE4224027C2 (de) Silberhalogenidemulsionsherstellung
EP0546416A1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0564910B1 (de) Farbfotografisches Aufzeichnungsmaterial
EP0504692B1 (de) Farbfotografischer Umkehrfilm
EP0447657B1 (de) Fotografisches Aufzeichnungsmaterial
EP0709731A2 (de) Farbfotografisches Silberhalogenidmaterial
EP0330948A2 (de) Verfahren zur Erzeugung von Colorbildern
EP0703493A1 (de) Farbfotografisches Silberhalogenidmaterial
DE3828311A1 (de) Fotografische, gleatinehaltige silberhalogenidemulsion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890808

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19931028

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950119

REF Corresponds to:

Ref document number: 58908871

Country of ref document: DE

Date of ref document: 19950223

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950728

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950803

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950804

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950817

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950830

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960831

Ref country code: CH

Effective date: 19960831

Ref country code: BE

Effective date: 19960831

BERE Be: lapsed

Owner name: AGFA-GEVAERT A.G.

Effective date: 19960831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960808

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970430

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000720

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050808