EP0353611B1 - Kreiselpumpe keramischer Bauart - Google Patents

Kreiselpumpe keramischer Bauart Download PDF

Info

Publication number
EP0353611B1
EP0353611B1 EP89113769A EP89113769A EP0353611B1 EP 0353611 B1 EP0353611 B1 EP 0353611B1 EP 89113769 A EP89113769 A EP 89113769A EP 89113769 A EP89113769 A EP 89113769A EP 0353611 B1 EP0353611 B1 EP 0353611B1
Authority
EP
European Patent Office
Prior art keywords
centrifugal pump
impeller
housing
housing walls
lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89113769A
Other languages
English (en)
French (fr)
Other versions
EP0353611A3 (en
EP0353611A2 (de
Inventor
Salvatore Scianna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB AG
Original Assignee
KSB AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB AG filed Critical KSB AG
Priority to AT89113769T priority Critical patent/ATE94952T1/de
Publication of EP0353611A2 publication Critical patent/EP0353611A2/de
Publication of EP0353611A3 publication Critical patent/EP0353611A3/de
Application granted granted Critical
Publication of EP0353611B1 publication Critical patent/EP0353611B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4286Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps inside lining, e.g. rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/04Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being viscous or non-homogenous

Definitions

  • the invention relates to a centrifugal pump according to the preamble of the main claim.
  • GB-PS 14 926 discloses a centrifugal pump for conveying media containing solids, in which replaceable and adjustable wear walls were used for the first time. Here adjustment means are used, with the help of which the wear walls can be moved back and forth in the axial direction. This enables the setting of a Sufficiently tight gap between rotating impeller and stationary wear wall, which does not hinder the impeller rotation.
  • the invention has for its object to develop a centrifugal pump from simply constructed ceramic elements, which ensure safe and trouble-free operation with a compact design.
  • This object is achieved in accordance with the characterizing part of the main claim.
  • impellers of one or both sides of the open type the latter also being known as a vane or star impeller.
  • These impellers are in contact with the axial blade end faces located in the area of the axial impeller end faces. Due to the disc-shaped design of the impellers, extremely simple manufacture of the impellers is possible. Furthermore, the side surfaces abutting the impellers are also disc-shaped, which enables simple machining of the surfaces that are sealingly adjacent to one another and sliding on one another. As a result of this constructive solution, there is no longer a wheel side space in these centrifugal pumps.
  • the impeller In contrast to the so-called side channel pumps, in which the impeller rotates with tight play between profiled and specially designed side surfaces and there is also an exchange of momentum, in the solution according to the invention the impeller with its axial end faces, like a mechanical seal, is sealing against the side of the housing. Due to the pumping medium located in the area of the sliding surfaces and the use of ceramic materials, long-lasting and low-wear pump operation is possible with abrasive, erosive or corrosive pumping media.
  • the embodiments of the invention described in claims 4 to 6 relate to a suction opening which is known per se and is usually arranged in the region of the pump shaft; furthermore a bearing for the pump shaft provided in the suction opening, for example held by struts.
  • the through hole for the pump shaft in the housing wall opposite the suction opening can be formed directly as a shaft bearing. In contrast to the previously known solutions, this ensures a minimal shaft overhang and the impeller-shaft connection only requires an appropriately designed, form-fitting connection for torque transmission.
  • a housing wall can be part of a pot-shaped step housing which covers or accommodates the impeller. Outlet openings for the pumped medium are contained within the stage housing part surrounding the impeller. A housing wall closing the stage housing would ensure the contact between the impeller and the housing walls.
  • housing walls provided with a collar extending in the axial direction are used.
  • centrifugal pump which in its simplest design consists, as it were, of three ceramic disk-shaped elements, with a sliding rotating central disk being arranged between two outer stationary disks, has considerable advantages.
  • These disk-shaped elements can be produced in the simplest way as ceramic components and are very wear-resistant, chemically resistant, corrosion-resistant and, in addition to high mechanical strength, also have very good sliding properties.
  • the inside of the pump can Wheel side friction, the gap losses and the axial thrust load can be avoided. In addition to the long service life that is now possible, while at the same time being cost-effective, a very quick conversion is possible in the event of a repair.
  • Fig. 1 shows a single-stage centrifugal pump of radial design in section.
  • a connecting flange 3 of a suction line is attached directly.
  • Inside the housing 1 there is a suction-side, side housing wall 4 which is prevented from rotating by a projection 5 in the housing 1 attached to the circumference is secured. Sealing rings 6 inserted into grooves in the housing serve for sealing or pressing.
  • the suction-side housing wall 4 is provided here in the region of its outer diameter with a collar 7 which extends in the axial direction and which envelops an impeller 8 without a cover plate and a pressure-side housing wall 9. In the area of the pressure port 2, the collar 7 has appropriately designed flow openings for the pumped medium.
  • Another example of the anti-rotation device is shown using the example of the pressure-side housing wall 9, namely with the aid of a simple pin 12.
  • the suction-side housing wall 4 has a suction opening 13 in the area of the pump shaft 12, which is simultaneously provided with a bearing 14 for the pump shaft 12.
  • FIG. 2 shows a multi-stage pump, the flow-influencing parts of which consist of disk-shaped ceramic elements.
  • Disc-shaped housing walls 17 are arranged within an outer housing 1 between the impellers 16 of the first and second stage and are provided with flow paths 18 ensuring overflow between the individual pump stages.
  • the housing walls 17 shown can consist of a disk-shaped element with ribs attached thereon, extending in the axial direction, or in a corresponding manner machined grooves exist.
  • the flow paths 18 are formed between the ribs or from the grooves.
  • the axial end faces of the ribs each abut the rear cover disk of the impeller 16 in front.
  • the housing walls 17 are secured against rotation by appropriately designed projections 19 resting in the housing 1.
  • a pressure side housing wall 20 is formed on the pressure side.
  • the connection between the impellers 8 from FIGS. 1 and 16 from FIG. 2 and the pump shaft 12 takes place through a shaping of the pump shaft, for example with a polygonal cross section.
  • the through hole for the pump shaft 12 made in the housing wall 20 is here also as a ceramic shaft bearing 21 educated.
  • FIG. 3 shows a double-flow design.
  • the upper half of the figure shows two disk-shaped open and ceramic impellers 8, between which a cutting disk 22, also disk-shaped and rotating with the shaft 12, is arranged.
  • the lower half of the picture shows a one-piece double-flow impeller 23, which is disc-shaped in an open design.
  • a closed design of the wheels is also possible.
  • FIG. 4 shows a top view of an impeller 8, as is used for example in FIG. 1. It consists of blades 25 arranged radially and integrally formed with a hub 24, it being possible without further ado to give the blades 25 a curved course. In any case, the possible bucket loading must be reconciled with the permissible material stress.
  • the hub 24 has a triangular polygon for transmitting the torque as a cross-sectional profile. With the blade edges 26 pointing in the axial direction, the impeller slides along the housing walls.
  • FIG. 5 shows the suction-side housing wall 4 according to FIG. 1.
  • the suction opening 13 is divided here by two webs 27 which hold a bearing 14 for the pump shaft within the suction opening 13.
  • a projection 5 is formed on the outer circumference, which lies in a corresponding recess in the housing.
  • the impeller cover disks slide along the adjacent housing walls.
  • the housing 1, the suction and / or pressure ports from ceramic, or to provide them with a ceramic coating when using a different material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

  • Die Erfindung betrifft eine Kreiselpumpe gemäß dem Oberbegriff des Hauptanspruches.
  • In denjenigen Bereichen, in denen eine Kreiselpumpe sehr stark abrasive oder erosive Medien zu fördern hat, ist es bekannt, das Innere eines Kreiselpumpengehäuses sowie das Laufrad mit verschleißfesten Medien zu beschichten oder Gehäuse und Laufrad direkt aus dem verschleißfesten Material herzustellen. Vorwiegend im Bereich der Chemiepumpen finden Überzüge aus Gummi, Kunststoff, Email, Glas oder dgl. Verwendung. Desweiteren ist es bekannt, Laufrad und Gehäuse vollständig aus Kunststoff,Glas oder keramischen Werkstoffen zu erstellen. Hierfür finden sich Beispiele in der DE-PS 34 13 930, dem DE-GM 75 26 215 oder der US-PS 30 89 423. Problematisch bei derartigen Pumpen ist der Beschichtungsvorgang sowie die Laufrad-Wellen-Verbindung bei Glas- oder Keramikpumpen. Desweiteren ergeben sich Probleme mit der Laufradgeometrie und den geringen Festigkeitswerten der keramischen Werkstoffe.
  • Durch die GB-PS 14 926 ist eine Kreiselpumpe zur Förderung feststoffhaltiger Medien bekannt, bei der erstmals auswechselbare und einstellbare Verschleißwände eingesetzt wurden. Hierbei finden Einstellmittel Verwendung, mit deren Hilfe die Verschleißwände in axialer Richtung vor und zurück bewegt werden können. Dies ermöglicht die Einstellung eines genügend dichten Spaltes zwischen rotierendem Laufrad und stillstehender Verschleißwand, welcher die Laufradrotation nicht behindert.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Kreiselpumpe aus einfach aufgebauten keramischen Elementen zu entwickeln, welche bei kompakter Bauweise eine sichere und störungsfreie Funktion gewährleisten. Die Lösung dieser Aufgabe erfolgt gemäß dem kennzeichnenden Teil des Hauptanspruches. Infolge der Tatsache, daß das Laufrad mit seinen axialen Stirnseiten oder auch den Laufraddeckscheiben direkt an den gegenüberliegenden Gehäusewänden anliegt und dort dichtend entlang gleitet, wird die Entstehung von sog. Axialschüben auf ein Minimum reduziert. Als Folge davon kann für die Laufrad-Wellen-Verbindung eine einfache formschlüssige Steckverbindung Anwendung finden, da eventuelle auf das Laufrad in Achsrichtung einwirkende Schubkräfte direkt von den zugehörigen Gehäusewänden aufgenommen werden.
  • Die in den Ansprüche 2 und 3 beschriebenen Ausgestaltungen haben Laufräder ein- oder beidseitiger offener Bauart zum Gegenstand, wobei das letztere auch als Flügel- oder Sternlaufrad bezeichnet werden kann. Bei diesen Laufrädern erfolgt eine Anlage mit den im Bereich der axialen Laufradstirnflächen befindlichen axialen Schaufelstirnseiten. Bedingt durch die scheibenförmige Ausbildung der Laufräder ist eine äußerst einfache Herstellung derselben möglich. Desweiteren sind die an den Laufrädern anliegenden Seitenflächen ebenfalls scheibenförmig ausgebildet, wodurch eine einfache Bearbeitung der dichtend aneinanderliegenden sowie aufeinander gleitenden Flächen möglich. Infolge dieser konstruktiven Lösung existiert bei diesen Kreiselpumpen kein Radseitenraum mehr. Im Gegensatz zu den sog. Seitenkanalpumpen, bei denen das Laufrad mit engem Spiel zwischen profilierten und besonders gestalteten Seitenflächen rotiert und dazwischen auch ein Impulsaustausch erfolgt, liegt bei der erfindungsgemäßen Lösung das Laufrad mit seinen axialen Stirnflächen, ähnlich wie bei einer Gleitringdichtung, dichtend an der seitlichen Gehäusewand an. Aufgrund des im Bereich der Gleitflächen befindlichen Fördermediums sowie der Verwendung von keramischen Werkstoffen ist bei abrasiven, erosiven bzw. korrosiven Fördermedien ein lang anhaltender und verschleißarmer Pumpenbetrieb möglich.
  • Die in den Ansprüchen 4 bis 6 beschriebenen Ausgestaltungen der Erfindung haben eine an sich bekannte und gewöhnlich im Bereich der Pumpenwelle angeordnete Saugöffnung zum Gegenstand; desweiteren eine in der Saugöffnung vorgesehene, beispielsweise durch Streben gehaltenes Lager für die Pumpenwelle. Auch kann die Durchgangsbohrung für die Pumpenwelle in der der Saugöffnung gegenüberliegenden Gehäusewand direkt als Wellenlager ausgebildet sein. Dies sichert im Gegensatz zu den vorbekannten Lösungen einen minimalen Wellenüberhang und die Laufrad-Wellenverbindung benötigt lediglich eine entsprechend ausgebildete, formschlüssige Verbindung zur Drehmomentübertragung.
  • Die in den Ansprüchen 7 bis 12 beschriebenen vorteilhaften Ausgestaltungen haben Gehäuseausbildungen zum Gegenstand. Mit Hilfe der Anpreßvorrichtungen wird in einfacher Weise ständig eine Anlage der aufeinander gleitenden Teile sichergestellt. Hierbei sind die nicht rotierenden Teile innerhalb eines umgebenden Gehäuses gegen Verdrehung gesichert. Desweiteren kann eine Gehäusewand Bestandteil eines topfförmigen, das Laufrad überdeckenden bzw. aufnehmenden Stufengehäuses sein. Innerhalb des das Laufrad umgebenden Stufengehäuseteiles sind Austrittsöffnungen für das Fördermedium enthalten. Eine das Stufengehäuse verschließende Gehäusewand würde die Anlage zwischen dem Laufrad und den Gehäusewänden sicherstellen. In entsprechender Weise finden mit einem sich in Achsrichtung erstreckenden Bund versehene Gehäusewände Verwendung. Für Anwendungsfälle, bei denen eine mehrstufige Pumpenkonstruktion vorgesehen ist, sind in die Seitenwände und/oder zwischen einander benachbarten Seitenwänden Strömungswege zur Weiterleitung des Fördermediums angebracht.
  • Diese Kreiselpumpenbauart, die in ihrer einfachsten Bauart gewissermaßen aus drei keramischen scheibenförmigen Elementen besteht, wobei zwischen zwei äußeren stillstehenden Scheiben eine gleitend anliegende mittlere rotierende Scheibe angeordnet ist, weist erhebliche Vorteile auf. Diese scheibenförmigen Elemente lassen sich in einfachster Weise als keramische Bauteile herstellen und sind sehr verschleißfest, chemisch resistent, korrosionsbeständig und weisen neben einer hohen mechanischen Festigkeit auch sehr gute Gleiteigenschaften auf. Innerhalb der Pumpe können somit die Radseitenreibung, die Spaltverluste und die Axialschubbelastung vermieden werden. Neben den nun möglichen hohen Standzeiten bei gleichzeitiger Kostengünstigkeit, ist bei einem eventuellen Reparaturfall ein sehr schneller Umbau möglich.
  • Bei einem möglichen Verzicht auf die vordere und/oder hintere Laufraddeckscheibe existiert eine geringe Drehmasse und trotzdem die Funktionsweise eines geschlossenen Laufrades, zumal die stillstehenden seitlichen Gehäusewände für ein daran entlang gleitendes offenes Laufrad die Funktion der Deckscheibe übernehmen. Bei Verwendung einer Welle aus Keramik ergeben sich sehr günstige Lagerbedingungen.
  • Ausführungsbespiele der Erfindung sind in den Zeichnungen dargestellt und werden im folgenden näher beschrieben. Es zeigen die
  • Fig. 1
    eine Kreiselpumpe einstufiger Bauart, die
    Fig. 2
    eine Kreiselpumpe mehrstufiger Bauart, die
    Fig. 3
    eine Kreiselpumpe in zweiflutiger Bauart, die
    Fig. 4
    eine Draufsicht auf ein Laufrad in Flügelbauart und die
    Fig. 5
    eine Draufsicht auf die saugseitige Laufrad deckscheibe.
  • Die Fig. 1 zeigt eine einstufige Kreiselpumpe radialer Bauart im Schnitt. An einem äußeren Gehäuse 1, ausgerüstet mit einem Druckstutzen 2, ist direkt ein Anschlußflansch 3 einer Saugleitung angebracht. Innerhalb des Gehäuses 1 befindet sich eine saugseitige, seitliche Gehäusewand 4, die durch einen am Umfang angebrachten Vorsprung 5 im Gehäuse 1 gegen Verdrehung gesichert ist. In Nuten des Gehäuses eingelegte Dichtringe 6 dienen der Abdichtung bzw. der Anpressung. Die saugseitige Gehäusewand 4 ist hier im Bereich ihres Außendurchmessers mit einem sich in axialer Richtung erstreckenden Bund 7 versehen, der ein deckscheibenloses Laufrad 8 sowie eine druckseitige Gehäusewand 9 einhüllt. Im Bereich des Druckstutzens 2 weist der Bund 7 entsprechend ausgebildete Durchströmöffnungen für das Fördermedium auf. Zwischen den beiden keramischen Gehäusewänden 4, 9 gleitet das ebenfalls aus keramischen Material bestehende, scheibenförmig ausgebildete Laufrad 8. Die druckseitige Gehäusewand 9 wird von einem Druckdeckel 10 gegen das Laufrad 8 gedrückt, wobei als Federelemente ausgebildete Anpreßeinrichtungen 11 für eine sichere Anlage der Teile sorgen.
  • Am Beispiel der druckseitigen Gehäusewand 9 ist auch eine andere Art der Verdrehsicherung gezeigt, nämlich mit Hilfe eines einfachen Stiftes 12.
  • Die saugseitige Gehäusewand 4 weist im Bereich der Pumpenwelle 12 eine Saugöffnung 13 auf, welche gleichzeitig mit einem Lager 14 für die Pumpenwelle 12 versehen ist. Eine Dichtung 15, die als Gleitringdichtung, Stopfbuchse oder Dichtring ausgebildet sein kann, verhindert einen Flüssigkeitsaustritt aus der Pumpe.
  • Das Ausführungsbeispiel der Fig. 2 zeigt eine mehrstufige Pumpe, deren strömungsbeeinflussende Teile aus scheibenförmigen keramischen Elementen bestehen. Innerhalb eines äußeren Gehäuses 1 sind zwischen den Laufrädern 16 der ersten und zweiten Stufe scheibenförmige Gehäusewände 17 angeordnet, welche mit ein Überströmen zwischen den einzelnen Pumpenstufen sicherstellenden Strömungswegen 18 versehen sind. Hierbei können die gezeigten Gehäusewände 17 aus einem scheibenförmigen Element mit darauf angebrachten, sich in axialer Richtung erstreckenden Rippen oder in entsprechender Weise eingearbeiteten Nuten bestehen. Zwischen den Rippen bzw. von den Nuten werden die Strömungswege 18 gebildet. Die axialen Stirnseiten der Rippen liegen jeweils an der Deckscheiben-Rückseite des vorangestellten Laufrades 16 an. Die Gehäusewände 17 sind durch entsprechend gestaltete, im Gehäuse 1 anliegende Vorsprünge 19 gegen Verdrehung gesichert. Am Laufrad 16 der dritten Stufe liegt druckseitig eine einfach ausgebildete druckseitige Gehäusewand 20 an. Die Verbindung zwischen den Laufrädern 8 aus Fig. 1 und 16 aus Fig. 2 und der Pumpenwelle 12 erfolgt durch eine, beispielsweise einen polygonalen Querschnitt aufweisende Formgebung der Pumpenwelle Die in der Gehäusewand 20 angebrachte Durchgangsbohrung für die Pumpenwelle 12 ist hier gleichzeitig als keramisches Wellenlager 21 ausgebildet.
  • In der Fig. 3 ist eine doppelflutige Bauart gezeigt. Die obere Bildhälfte zeigt zwei scheibenförmig ausgebildete offene und keramische Laufräder 8, zwischen denen eine ebenfalls scheibenförmig ausgebildete und mit der Welle 12 rotierende Trennscheibe 22 angeordnet ist. Beiderseits des so gebildeten doppelflutigen Laufrades liegen jeweils saugseitige keramische Gehäusewände 4 an. Die untere Bildhälfte zeigt ein einteilig ausgebildetes doppelflutiges Laufrad 23, welches in offener Bauart scheibenförmig ausgebildet ist. Selbstverständlich ist auch eine geschlossene Bauart der Laufräder möglich.
  • Die Fig. 4 zeigt eine Draufsicht auf ein Laufrad 8, wie es beispielsweise in Fig. 1 Anwendung findet. Es besteht aus strahlenförmig angeordneten und mit einer Nabe 24 einstückig ausgebildeten Schaufeln 25, wobei es ist ohne weiteres möglich ist, den Schaufeln 25 auch einen gebogenen Verlauf zu geben. In jedem Fall ist die mögliche Schaufelbelastung mit den zulässigen Materialbeanspruchungen in Einklang zu bringen. Zur Übertragung des Drehmomentes weist die Nabe 24 ein Dreiecks-Polygon als Querschnittsprofil auf. Mit den in axialer Richtung weisenden Schaufelkanten 26 gleitet das Laufrad an den Gehäusewänden entlang.
  • Die Fig. 5 zeigt die saugseitige Gehäusewand 4 gemäß Fig. 1. Die Saugöffnung 13 ist hier unterteilt durch zwei Stege 27, welche innerhalb der Saugöffnung 13 ein Lager 14 für die Pumpenwelle halten. Zur Verdrehsicherung ist am Außenumfang ein Vorsprung 5 angeformt, der in einer entsprechenden Ausnehmung des Gehäuses liegt. In den Anwendungsfällen, in denen ein einseitig offenes oder ein geschlossenes Laufrad Verwendung findet, gleiten die Laufraddeckscheiben jeweils auf den benachbarten Gehäusewänden entlang.
  • Es ist ohne weiteres möglich, das Gehäuse 1, die Saug- und/oder Druckstutzen ebenfalls aus Keramik herzustellen oder bei Verwendung eines anderen Materials mit einer keramischen Beschichtung zu versehen.

Claims (12)

  1. Kreiselpumpe zentrifugaler Bauart, deren strömungsführende und/oder strömungsfördernde Bauteile aus keramischen Materialien bestehen, dadurch gekennzeichnet, daß ein oder mehrere scheibenförmige Laufräder (8,16,23) mit ihren axialen Stirnseiten an innerhalb eines Gehäuses (1) angeordneten, gegen Verdrehung gesicherten sowie das Laufrad (8,16,23) abdeckenden seitlichen Gehäusewänden (4,9,17,20) dichtend entlang gleiten, wobei eine oder mehrere Anpreßeinrichtungen auf die Gehäusewände einwirken.
  2. Kreiselpumpe nach Anspruch 1, dadurch gekennzeichnet, daß einseitig offene Laufräder (16,23) mit ihren im Bereich der axialen Stirnseiten befindlichen seitlichen Schaufelkanten (26) sowie einer rückseitigen Deckscheibe an den gegenüberliegenden seitlichen Gehäusewänden (4,9,17,20) dichtend entlang gleiten.
  3. Kreiselpumpe nach Anspruch 1, dadurch gekennzeichnet, daß Laufräder beidseitig offener Bauart (8,23) mit den im Bereich der axialen Stirnseiten befindlichen seitlichen Schaufelkanten (26) an den gegenüberliegenden seitlichen Gehäusewänden (4) dichtend entlang gleiten.
  4. Kreiselpumpe nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß mindestens eine der seitlichen Gehäusewände (4) eine an sich bekannte Saugöffnung (13) für ein scheibenförmiges Laufrad (8) aufweist.
  5. Kreiselpumpe nach Anspruch 4, dadurch gekennzeichnet, daß die Saugöffnung (13) ein Lager (14) für eine Pumpenwelle (12) aufweist.
  6. Kreiselpumpe nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß eine in der Gehäusewand (9,20) angebrachte Durchgangsbohrung das Wellenlager (21) für die Pumpenwelle (12) bildet.
  7. Kreiselpumpen nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß die am Laufrad (8, 16, 23) anliegenden seitlichen Gehäusewände (4,9,17,20) in einem umgebenden Gehäuse (1) gegen Verdrehung gesichert gehalten sind.
  8. Kreiselpumpe nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß Anpreßeinrichtungen (11) eine oder mehrere, gegen Verdrehung gesicherte, seitliche Gehäusewände (4,9,17,20) gegen das Laufrad oder die Laufräder (8,16,23) bewegen.
  9. Kreiselpumpe nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß eine gegen Verdrehung gesicherte seitliche Gehäusewand (4) Bestandteil eines topfförmigen Stufengehäuses ist.
  10. Kreiselpumpe nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß eine gegen Verdrehung gesicherte seitliche Gehäusewand (4) mit einem das Laufrad (8) ganz oder teilweise überdeckenden, sich in axialer Richtung erstreckenden Bund (7) versehen ist.
  11. Kreiselpumpe nach Anspruch 10, dadurch gekennzeichnet, daß der Bund (7) das Laufrad (8) und/oder eine zweite seitliche Gehäusewand (9) überdeckt.
  12. Kreiselpumpe nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß bei mehrstufiger Pumpenbauart in den Gehäusewänden (17) und/oder zwischen einander benachbarten seitlichen Gehäusewänden Strömungswege (18) für das Fördermedium angeordnet sind.
EP89113769A 1988-08-04 1989-07-26 Kreiselpumpe keramischer Bauart Expired - Lifetime EP0353611B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89113769T ATE94952T1 (de) 1988-08-04 1989-07-26 Kreiselpumpe keramischer bauart.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3826472 1988-08-04
DE3826472A DE3826472A1 (de) 1988-08-04 1988-08-04 Kreiselpumpe keramischer bauart

Publications (3)

Publication Number Publication Date
EP0353611A2 EP0353611A2 (de) 1990-02-07
EP0353611A3 EP0353611A3 (en) 1990-07-18
EP0353611B1 true EP0353611B1 (de) 1993-09-22

Family

ID=6360217

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89113769A Expired - Lifetime EP0353611B1 (de) 1988-08-04 1989-07-26 Kreiselpumpe keramischer Bauart

Country Status (3)

Country Link
EP (1) EP0353611B1 (de)
AT (1) ATE94952T1 (de)
DE (1) DE3826472A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004159A1 (de) * 2004-01-28 2005-08-25 Sachtleben Chemie Gmbh Einsatz von statisch und dynamisch druck- und biegebeanspruchten keramischen Bauteilen als Druckentlastungselemente in Pumpen

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1256730B (it) * 1992-12-16 1995-12-15 Lowara Spa Pompa multistadio di tipo sommerso, provvista di elementi interni modulari in materiali antiusura.
DE4319616A1 (de) * 1993-06-14 1994-12-15 Wilo Gmbh Tauchmotorpumpe
GB2458526A (en) * 2008-02-05 2009-09-30 Ion Associates Ltd Moulded footwear with ventilating grooves
DE102020006364A1 (de) 2020-10-16 2022-04-21 KSB SE & Co. KGaA Kreiselpumpe mit einem Pumpengehäuse und einem Druckdeckel
CN113153756A (zh) * 2021-04-20 2021-07-23 合肥精创科技有限公司 一种渣浆泵用耐磨陶瓷过流件及其制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2461835A (en) * 1949-02-15 Double-acting centrifugal pump
GB131563A (de) * 1900-01-01
GB189814926A (en) * 1898-07-07 1899-02-04 Henry Bernoulli Barlow An Improved Centrifugal Pump.
US640345A (en) * 1899-09-29 1900-01-02 George Alfred Wilberforce Centrifugal pump.
US1128822A (en) * 1913-02-11 1915-02-16 Sparks Withington Co Centrifugal pump.
DE689618C (de) * 1936-11-07 1940-03-28 Karl Plischke tark erwaermten Maschinenteilen
US2775945A (en) * 1953-08-27 1957-01-01 Reda Pump Company Sand resistant pump
US3089423A (en) * 1960-11-25 1963-05-14 Union Carbide Corp Corrosive resistant pump
US3801226A (en) * 1970-08-28 1974-04-02 Goulds Pumps Pump impeller
FR2290133A6 (fr) * 1973-02-09 1976-05-28 Materiel Processing Internal Pompe centrifuge
DE7526215U (de) * 1975-08-19 1976-04-08 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Pumpe mit korrosionsfester auskleidung
US4099890A (en) * 1975-08-21 1978-07-11 Mitsui Mining & Smelting Co., Ltd. Impeller type pump having seal means and protective means
DE3334786A1 (de) * 1982-12-24 1984-07-05 Klöckner-Humboldt-Deutz AG, 5000 Köln Kreiselpumpe
DE3413930A1 (de) * 1984-04-13 1985-10-31 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Kreiselpumpe
FR2588323B1 (fr) * 1985-10-09 1990-02-23 Ngk Insulators Ltd Pompe centrifuge a entrainement magnetique
US4741668A (en) * 1987-10-13 1988-05-03 Hughes Tool Company Centrifugal pump stage with abrasion resistant impeller hub

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004159A1 (de) * 2004-01-28 2005-08-25 Sachtleben Chemie Gmbh Einsatz von statisch und dynamisch druck- und biegebeanspruchten keramischen Bauteilen als Druckentlastungselemente in Pumpen

Also Published As

Publication number Publication date
EP0353611A3 (en) 1990-07-18
ATE94952T1 (de) 1993-10-15
EP0353611A2 (de) 1990-02-07
DE3826472A1 (de) 1990-02-08

Similar Documents

Publication Publication Date Title
DE1403879A1 (de) Korrosionsbestaendige Fliehkraftpumpe
DE10012181A1 (de) Kreiselpumpe mit Noppen-Laufrad und Noppen-Laufrad hierfür
EP0353611B1 (de) Kreiselpumpe keramischer Bauart
DE949899C (de) Axialgeblaese oder -pumpe mit Schwenkbaren Laufschaufeln
EP0618369B1 (de) Topfgehäusepumpe
EP2142804A1 (de) Förderpumpe
DE19906130A1 (de) Förderpumpe
DE19513962B4 (de) Radiale Kreiselpumpe
DE3717229A1 (de) Blechlaufrad kleiner foerderleistung, insbesondere fuer kuehlmittelpumpen
DE4415566C2 (de) Seitenkanalpumpe
WO2019025238A1 (de) Laufrad für abwasserpumpe
WO2002048551A1 (de) Förderpumpe
DE19826367C2 (de) Innenzahnradpumpe
EP1053402B1 (de) Kreiselpumpenlaufrad radialer bauart
EP0677661B1 (de) Zentrifugalpumpe
DE3537803A1 (de) Kreiskolbenpumpe
EP0928914B1 (de) Kreiselmotorpumpe mit Gleitringdichtung
DE69102357T2 (de) Mehrstufige Kreiselpumpe.
DE1277673B (de) Pumpe mit Nutationsscheibe
DE200493C (de)
DE603362C (de) Fluegelradpumpe mit abdichtender, kreisender Hilfsfluessigkeit
DE3447256C2 (de)
EP1389280A1 (de) Förderpumpe
EP0681658A1 (de) Spaltringdichtung.
EP3884169A1 (de) Hochdruckradialventilator umfassend eine in einer einlassöffnung angeordnete dichtungsanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH FR GB IT LI NL

17P Request for examination filed

Effective date: 19901227

17Q First examination report despatched

Effective date: 19920204

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19930922

Ref country code: NL

Effective date: 19930922

Ref country code: GB

Effective date: 19930922

REF Corresponds to:

Ref document number: 94952

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19930922

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950711

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950712

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950906

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19960731

Ref country code: LI

Effective date: 19960731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST