EP0353427A1 - Walzeinheit - Google Patents

Walzeinheit Download PDF

Info

Publication number
EP0353427A1
EP0353427A1 EP89110506A EP89110506A EP0353427A1 EP 0353427 A1 EP0353427 A1 EP 0353427A1 EP 89110506 A EP89110506 A EP 89110506A EP 89110506 A EP89110506 A EP 89110506A EP 0353427 A1 EP0353427 A1 EP 0353427A1
Authority
EP
European Patent Office
Prior art keywords
rolling
pump
tool
unit according
rolling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89110506A
Other languages
English (en)
French (fr)
Other versions
EP0353427B1 (de
Inventor
Alfred Ostertag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hegenscheidt MFD GmbH and Co KG
Original Assignee
Wilhelm Hegenscheidt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE8809823U external-priority patent/DE8809823U1/de
Priority claimed from DE8906866U external-priority patent/DE8906866U1/de
Application filed by Wilhelm Hegenscheidt GmbH filed Critical Wilhelm Hegenscheidt GmbH
Priority to AT89110506T priority Critical patent/ATE82178T1/de
Publication of EP0353427A1 publication Critical patent/EP0353427A1/de
Application granted granted Critical
Publication of EP0353427B1 publication Critical patent/EP0353427B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B39/00Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zone; Accessories therefor
    • B24B39/04Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zone; Accessories therefor designed for working external surfaces of revolution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B39/00Burnishing machines or devices, i.e. requiring pressure members for compacting the surface zone; Accessories therefor

Definitions

  • the invention relates to a rolling unit with a rolling tool and at least one rolling element that can be placed against a workpiece surface under rolling force and is rotatably mounted, as well as with hydraulically actuated means for generating the rolling force and a device connected to the hydraulically actuated means for generating the desired pressure and volume flow Generation of the fluid acting on the rolling force.
  • Rolling units of the type described above are generally known and have proven themselves well in practical use. You will e.g. generally used on tip lathes for the smooth rolling of turned parts. Depending on requirements, such a tool is manually clamped on the machine support by the operator and removed again after use.
  • a known rolling unit in addition to the rolling tool also has a hydraulic device which is connected to the tool via pipes or hoses and has its own pump-motor unit for generating the necessary pressure, so that a rolling unit is formed from a rolling tool, device for Generation of the necessary hydraulic pressure and connecting means between this device and the tool.
  • Such hydraulically loaded tools are therefore not suitable for use on machines in which an automatic or manually controlled tool change takes place during the machining of a workpiece.
  • the invention is therefore based on the object of proposing a rolling unit of the type described at the outset which can remain in the tool turret or in the tool carrier of the associated machine tool as an installed tool or can be changed between a conventional tool turret or tool carrier and a tool magazine assigned to the machine and not, as in the case of hydraulically operated known tools previously necessary, installed separately for each machining of the workpiece and after finishing the machining must be removed every time.
  • this object is achieved in a rolling unit of the type described at the outset in that the rolling tool and the device for generating the desired pressure are constructed as a structural unit and are rigidly connected to one another, connections for energy supply to the device mentioned being provided, which have corresponding connections for supplying energy are connected or connectable to a machine tool.
  • the previously common external hydraulic station as a device for generating the necessary or desired pressure is thereby eliminated and becomes the tool's own device.
  • both the rolling tool and the device for generating the desired pressure each have an independent housing which is rigidly connected to one another. This makes it easier to adjust the power of the tool and the printing device, and to replace worn components more easily.
  • Such a device for generating the desired pressure can be formed from a simple gear pump or vane pump or piston pump, the latter of which can be driven via a cam or an eccentric disc, which can be driven by an associated drive of the machine tool used via its own drive shaft.
  • Such drive devices are often present, for example, in conventional NC lathes or CNC lathes.
  • it makes sense to connect a pressure accumulator between the tool and the piston pump in order to dampen the pressure surges of the piston pump.
  • the roller unit can have a separate clamping shaft for clamping.
  • the clamping shank can preferably have standard dimensions, so that the entire rolling unit fits over such a clamping shank with standardized dimensions into the likewise standardized and customary receptacles of a tool magazine or a turret head of NC-controlled or CNC-controlled machine tools.
  • the necessary drive shaft for the pump can advantageously be rotatably mounted in this clamping shaft.
  • the entire rolling unit according to the invention can be made particularly small if the roller head is designed as a hydrostatic bearing for the rolling element, which is connected to the pressure side of the associated pump with a connecting channel.
  • FIG. 1 shows a rolling unit with a rolling tool 1 with a hydrostatically mounted rolling element 2, which is held and guided in the housing 1 '.
  • This rolling unit shown in FIG. 1 is composed of the functional groups A to E, the functional group A forming the rolling tool 1.
  • the function group B comprises a piston pump 3, which is accommodated in an associated pump housing 3 ', this piston pump 3 acting on the pressure chamber 5 of the rolling tool 1 with its pressure side 4.
  • the housing 1 ' lies directly with a corresponding flat surface on an assigned flat surface of the pump housing 3'. No pipes or hoses are required between the two functional groups.
  • the pressure chamber 5 of the rolling tool 1 also serves as a pressure accumulator 29, which is designed as a spring pressure accumulator in the exemplary embodiment.
  • the interior of this spring pressure accumulator 29, not designated in any more detail has a piston 28 which is acted upon by the pressure medium and which is supported on a cover 45 via a spring 54.
  • the pressure behavior of the pressure accumulator is determined here by the characteristic curve of the spring 54.
  • a seal 49 e.g. can be designed as an O-ring, can ensure the necessary tightness in the area of the pressure connection between the functional groups A and B. However, other types of seals are also possible here.
  • a drive shaft 6 is rotatably mounted in a manner known per se, on which a cam 19 is arranged in a rotationally fixed but axially immovable manner.
  • a piston 23 On the circumferential surface of the eccentric 19 is a piston 23, which is always in by a spring 25 this facility is held.
  • a pump chamber 22 is connected to the cylinder 27 on the suction side of the piston pump 3 via a check valve 24. In a reverse piston stroke, the suction side becomes the pressure side and thus blocks the check valve 24, but opens a check valve 26, whereby pressure oil is provided on the pressure side of the piston pump 3 to supply the pressure chamber 5 of the rolling tool 1.
  • the structure of such a pump is generally known, so that there is no need to go into further detail here.
  • the drive shaft 6 of the piston pump 3 projects into the housing 52 'of an intermediate piece 52 and is connected there via a coupling 7 to an output shaft 8 of a hydraulic motor 9, which is housed in an associated housing 9'.
  • the intermediate piece 52 and the hydraulic motor 9 form the functional groups C and D. Both functional groups lie against one another via corresponding flat surfaces, the functional group C with a further corresponding flat surface being in contact with an assigned flat surface of the piston pump 3 as the functional group B.
  • Flat seals 51 can ensure the necessary tightness.
  • the entire unit is completed by the functional group E, which forms the cover 10.
  • the cover 10 essentially forms a housing 10 ', on which the clamping shaft 11' is provided with preferably standardized dimensions. Furthermore, the housing 10 'has an oil connection 12 which is guided via a channel 21 to the pump chamber 22. Another channel 15, which is also connected to the oil connection 12, is led to the opening 16 of the hydraulic motor 9 and, if a fluid stream 14 is provided accordingly, ensures its drive.
  • Such hydraulic motors and the necessary guidance of the fluid flow are known, so that here too a detailed description of the structure and the mode of operation can be dispensed with.
  • FIG. 3 The necessary hydraulic circuit diagram for the rolling unit shown in FIG. 1 is shown in FIG. 3.
  • the necessary safety valve 30 for protecting the piston pump 3 in the Embodiment of Figure 1 is provided on the rolling tool. At the same time, this represents a sensible safeguard for the hydrostatically operating rolling tool, so that this tool can be safeguarded independently of the pump.
  • This safety valve 30 can then simultaneously take over the pump protection. However, a similar separate protection against overpressure can also be provided on the piston pump 3. Conversely, this pump protection can of course also take over the protection of the hydrostatic tool.
  • the pressure accumulator 29 in FIG. Bladder accumulator was shown schematically, while in the embodiment of Figure 1, the pressure accumulator is a spring pressure accumulator. This is intended to indicate that, of course, different pressure reservoirs can be used and that the device is not restricted to a specific type of pressure reservoir.
  • FIG. 2 shows a, in contrast to the hydrostatic roller head 44 'in the usual way roller head 44, in which a rolling element 2 rests on a support roller 20 and is supported by this.
  • the rolling element 2 is guided in a manner known per se by a cage 18.
  • the roller head 44 is attached to the free end of a piston rod 42, at the other end of which a piston 41 is arranged, which is arranged displaceably in a cylinder space 40 in the usual and known manner.
  • the cylinder chamber 40 On the side facing away from the piston rod 42, the cylinder chamber 40 is closed by a cover 45 with a seal 46, which is preferably designed as an O-ring.
  • a locking ring 47 holds the cover 45 in its position.
  • a throttle valve 61 is installed in the cover 45.
  • the piston 41 also has a seal 48 in the usual and known manner, with which the piston 41 is sealed against the wall of the cylinder space 40.
  • a spring 43 is also provided in the cylinder chamber in the usual way, which force constantly moves the piston 41 and thus wants to retract the piston rod 42.
  • An extension movement of the piston rod 42 with the necessary force is ensured by pressurizing the part of the cylinder chamber 40 facing away from the piston rod, so that the piston rod-free side of the piston 41 is pressurized with corresponding pressure oil and thus the piston rod 42 with the roller head 44 in the direction of the workpiece 13 moves.
  • the tool in the embodiment according to FIG. 2 is thus able to bridge a larger space between the workpiece and the tool than the tool in the embodiment according to FIG. 1.
  • the rolling tool 1 in the embodiment according to FIG. 2, which represents the functional group F there, is in turn followed by the functional group G in the form of a gear pump 34 with the pump housing 34 '. If such a gear pump 34 is used, the throttle valve can be completely closed or can be omitted.
  • the pump housing 34 ' now connects again to the housing 59 of the cover 10 ⁇ , this housing 59 also having the clamping shaft 11 for a tool holder 57.
  • the tool holder 57 is assigned to the machine tool on which the tool is used.
  • the drive shaft 32 for the gears 39 and 39 ' is rotatably mounted in the bearings 38 and 38'. The necessary tightness between the functional groups is restored by the flat seals 51 and, if necessary, by sealing rings 49.
  • a channel 36 feeds the fluid flow 14 via the channel 37 to the gear pump 34, which ensures the necessary pressure of the fluid flow 14 and leads the pressurized fluid flow on the pressure side 4 into the cylinder space 40 of the rolling tool 1.
  • a safety valve 30 is guided to the outside from the pressure side 4 and secures the gear pump 34 against overload. The course of the channels 35, 36 and 37 and 4 is shown in Figure 5.
  • the drive shaft 32 can be connected to a drive shaft 60 of an electric motor 58 via the coupling 33.
  • This electric motor 58 is already present as a drive device in the associated machine tool.
  • Such known CNC-controlled machines usually not only have a drive for the main spindle but also further spindles derived from or separately driven by the drive of the main spindle, with which, if necessary, appropriately used tools, such as a tool according to the figure 2, can be driven.
  • FIG. 4 The hydraulic circuit diagram of the embodiment according to FIG. 2 is shown in FIG. 4.
  • the clamping shaft 11 or 11 ' in its dimensions e.g. comply with DIN 69880.
  • the clamping shaft 11 or 11 ' is brought into operative connection with the tool holder 57 of a machine tool and firmly clamped.
  • the oil connection 12 is also tightly connected to the lubricant circuit of this machine when the tool is clamped in a tool holder or in a tool holder 57.
  • connections of a lubricant circuit which can be used, can already be present in the area of the tool holder of such a machine in a known manner.
  • the rolling tool 1 is now to be rolled on a rotating workpiece 13, then the rolling tool 1 is brought into the working position in the tool holder 57, controlled by the machine control, and the rolling element 2 is positioned in relation to the workpiece 13 such that there is loose contact between the rolling element 2 and the workpiece 13 is present, but no significant forces occur between the rolling element 2 and workpiece 13.
  • the lubricant circuit of the machine tool is then activated and a fluid flow 14 flows through the oil connection 12 into the channel 15 of the hydraulic motor 9 Fluid stream 14 enters through the opening 16 in the gear housing 9 'and acts on the gears 17 and 17', which then convert the flow energy of the fluid stream 14 into rotational energy.
  • the shaft 8 of the gear 17 then drives the drive shaft 6 of the piston pump 3, which has the eccentric 19, via the clutch 7.
  • the fluid flow 14 flowing in through the oil connection 12 flows through the channel 15 and the channel 21 into the pump chamber 22, which envelops the eccentric 19 and the piston 23.
  • the fluid flow 14 thus reaches the check valve 24 or the suction valve of the piston pump 3. If the drive shaft 6 of the piston pump 3 is driven by the hydraulic motor 9, the piston 23 moves back and forth under spring pressure of the spring 25 on the eccentric 19, held in the cylinder 27 .
  • the suction valve 24 opens and fluid is sucked in.
  • the suction valve 24 closes and the pressure valve 26 opens and releases the pump outlet 4.
  • Both valves, suction valve 24 and pressure valve 26, can be designed in their simplest form as conventional check valves.
  • the fluid now enters the pressure chamber 5 of the rolling tool 1.
  • the now translated to a significantly higher pressure than from the lubricant circuit of the machine tool acts on the hydrostatically mounted rolling element 2 and generates the desired rolling force.
  • the rolling element 2 rests against the workpiece 13 under rolling force.
  • the piston 28 of the pressure accumulator 29 is displaced against the spring force of the spring 54 and thus stores the fluid under pressure in order to compensate for pressure irregularities resulting from the design of the piston pump. If a gear pump is used instead of the piston pump, the pressure accumulator could be omitted.
  • the spring 54 which resiliently supports the piston 28, is in turn supported on the free side by the cover 45, which, as also already described, is held in the housing by the locking ring 47.
  • the whole assembly shown in Figure 1 can be rigidly held together in the form of trained as a tie rod and only indicated by lines 50, 50 ', through screws. All function groups A to E are pressed tightly and tightly against one another and form a rigid, solid block that is quite small.
  • the pump drive is connected to a conventional tool drive of the assigned machine tool.
  • the tool drive of the machine tool is shown in FIG. 2 by the drive shaft 60 and the electric motor 58.
  • the oil connection 35 is simultaneously connected to the lubricant circuit of the associated machine tool when the entire unit is clamped in the tool holder.
  • the rolling tool is held in the tool carrier or in the tool holder 57 and brought into the working position controlled by the machine control so that the rolling element 2 is at a short distance from the surface of the workpiece 13 to be machined.
  • the lubricant circuit of the machine tool is then activated and a fluid stream 14 flows through the oil connection 35 into the channel 36 of the gear pump 34 and enters the channel 37, which is formed by the interior of the pump housing 34 '.
  • the inflowing fluid is brought to a pressure suitable for operating the rolling tool 1 and flows through the pressure side 4 into the cylinder chamber 40, whereby the piston 41 with the piston rod 42 against the spring force of the Spring 43 is moved.
  • the rolling element 2 which is carried by the roller head 44, is pressed against the rotating workpiece 13, as a result of which the required rolling force is built up.
  • the vent hole 53 ensures that there is no undesirable back pressure in the installation space 55 for the spring 43.
  • a gear pump in the construction of the unit according to FIG. 2 makes it possible to dispense with a pressure accumulator there.
  • a piston pump could also be used.
  • the throttle valve must be opened slightly so that a pressure reduction can take place in the cylinder chamber 40 when the piston pump is at a standstill. If the throttle is opened further, this can serve as a pressure control unit in cooperation with the pump speed. since the throughput through the throttle is largely dependent on the pressure drop across the throttle. With a piston pump, for example, the full pump pressure is created when the throttle is closed, even at low speed. If the throttle is now opened, the pressure drops depending on the opening cross-section. It can now be increased again by increasing the pump speed.
  • FIG. 6 now shows an exemplary embodiment in longitudinal section, in which the rolling tool 1 is connected to a holding shaft 62, which is designed for holding in the work spindle or main spindle of a machine tool, for example a milling machine.
  • the receiving shaft 62 can be designed in a conventional manner.
  • an intermediate region 64 is provided between the rolling tool 1 and said end of the holding shaft 62 and is fixedly connected to the holding shaft 62, which rotates with the holding shaft and which has a piston pump 65.
  • a radial bore 72 in which a piston 73 is inserted, can simply be provided in the intermediate region 64 mentioned.
  • the piston 73 is preloaded by a spring 74, which is supported on the one hand at the intermediate region 64 mentioned and on the other hand on a collar 75 of the piston 73.
  • the radial bore 72 is connected on the suction side via a check valve 76 to a supply line 78, via which the necessary fluid is supplied, for example from the circuit of the machine tool.
  • a further check valve 77 is provided, through which the pressure oil is supplied to the rolling tool 1, which in the exemplary embodiment shown in FIG. 6 is designed as a roller head with a hydrostatically mounted roller.
  • the pressure line 79 leading to the roller head is connected via a connecting line 80 to a pressure accumulator 70, which is also arranged in the intermediate region 64 and therefore rotates together with the rolling tool 1 and the machine spindle 71.
  • the pressure accumulator 70 can be designed as a spring pressure accumulator, as has already been described for FIG. 1.
  • the intermediate area 64 is covered over part of its longitudinal extent or width by a ring 67 which is rotatably mounted in this intermediate area 64, for example via roller bearings 81. Collars 82 and 83 ensure axial immovability.
  • the ring 67 has on its inside an inner cam track 68, against which the actuating cam 66 of the piston 73 abuts and is held in contact by the spring 74.
  • Torque support 69 which is supported on any holding part 84 of the machine tool 63. If the machine spindle 71 is now rotated, the entire structure described, with the exception of the ring 67, also rotates.
  • the actuating cam 66 of the piston 73 of the piston pump 65 runs along the inner cam track 68 of the ring 67 and is thereby set into a radial oscillating movement, that is to say into the necessary pumping movement.
  • the necessary fluid is supplied through the supply line 78 and brought to the necessary pressure for the rolling tool 1 by the piston pump 65.
  • the pressure fluctuations that always occur with a piston pump are absorbed by the pressure accumulator 70.
  • the rolling tool 1 can now be guided with its rolling element 2, for example, against the flat surface 85 of a workpiece, which is not described in more detail, and can perform smooth rolling machining there. Due to its eccentric position to the axis of rotation 86, the rolling element 2 describes a circle on the flat surface 85.
  • a linear feed movement of the tool in the direction of arrow 87 by a corresponding displacement of the machine spindle 71 ensures that these circles are superimposed, so that a flat surface of a workpiece can be rolled smooth path by path with such a tool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Actuator (AREA)
  • Gripping On Spindles (AREA)

Abstract

Die Erfindung betrifft eine Walzeinheit mit einem abgestützten und gegen eine Werkstückoberfläche anlegbaren Walzelement. Die erforderliche Walzkraft wird hydraulisch aufgebracht. Hierzu ist das Walzwerkzeug mit mindestens einer Hydraulikpumpe zur Erzeugung des notwendigen Hydraulikdruckes in Baueinheit verbunden, wobei die Pumpe bei eingespanntem Werkzeug mit dem Kühlmittelkreislauf oder Schmiermittelkreislauf der Maschine dicht verbunden ist. Die Pumpe kann hierbei von einem werkzeugeigenen Hydromotor, aber auch von einem in einer zugeordneten Werkzeugmaschine vorgesehenen Werkzeugantrieb angetrieben werden. Der Hydromotor seinerseits kann über den Schmiermittelkreislauf oder Kühlmittelkreislauf der zugehörigen Maschine versorgt werden.

Description

  • Die Erfindung betrifft eine Walzeinheit mit einem Walzwerkzeug und mindestens einem gegen eine Werkstückfläche unter Walzkraft anlegba­ren und drehbar gelagerten Walzelement sowie mit hydraulisch betätigten Mitteln zur Erzeugung der Walzkraft und einer mit den hydraulisch betätigten Mitteln verbundenen Einrichtung zur Erzeugung des gewünschten Druckes und Volumenstromes eines die Mittel zur Erzeugung der Walzkraft beaufschlagenden Fluides.
  • Walzeinheiten der vorbeschriebenen Art sind allgemein bekannt und haben sich im praktischen Einsatz gut bewährt. Sie werden z.B. ganz allgemein auf Spitzendrehmaschinen für das Glattwalzen von Drehteilen eingesetzt. Je nach Bedarf wird ein solches Werkzeug vom Bediener manuell auf dem Maschinensupport eingespannt und nach Gebrauch wieder entfernt. Zur Versorgung weist eine solche bekannte Walzeinheit neben dem Walzwerkzeug auch eine Hydraulikeinrichtung auf, die über Rohre oder Schläuche mit dem Werkzeug verbunden ist und zur Erzeugung des notwendigen Druckes eine eigene Pumpen-Motor-Einheit aufweist, so daß eine Walzeinheit entsteht aus Walzwerkzeug, Einrich­tung zur Erzeugung des notwendigen Hydraulikdrucks und Verbindungs­mittel zwischen dieser Einrichtung und dem Werkzeug. Solche hydraulisch beaufschlagten Werkzeuge eignen sich damit nicht für einen Einsatz auf solchen Maschinen, bei denen ein automatischer oder manuell gesteu­erter Werkzeugwechsel während der Bearbeitung eines Werkstückes erfolgt.
  • Der Erfindung liegt damit die Aufgabe zugrunde eine Walzeinheit der eingangs beschriebenen Art vorzuschlagen, die im Werkzeugrevolver oder im Werkzeugträger der zugeordneten Werkzeugmaschine als installiertes Werkzeug verbleiben kann oder zwischen einem üblichen Werkzeug­revolver oder Werkzeugträger und einem der Maschine zugeordneten Werkzeugmagazin gewechselt werden kann und nicht, wie bei hydraulisch betätigten bekannten Werkzeugen bisher notwendig, für jede Bearbeitung des Werkstückes separat eingebaut und nach Beendigung der Bearbeitung jedesmal ausgebaut werden muß.
  • Neuerungsgemäß wird diese Aufgabe bei einer Walzeinheit der eingangs beschriebenen Art dadurch gelöst, daß das Walzwerkzeug und die Einrichtung zur Erzeugung des gewünschten Druckes als Baueinheit ausgebildet und starr miteinander verbunden sind, wobei Anschlüsse zur Energieversorgung der genannten Einrichtung vorgesehen sind, die mit entsprechenden Anschlüssen zur Energielieferung an einer Werkzeug­maschine verbunden oder verbindbar sind. Die bisher übliche externe Hydraulikstation als Einrichtung zur Erzeugung des notwendigen oder gewünschten Druckes entfällt hierdurch und wird zur werkzeugeigenen Einrichtung. Auf diese Art und Weise kann gleichzeitig der bei solchen Werkzeugmaschinen immer vorhandene Kühlmittelkreislauf oder Schmiermittelkreislauf zur Energieversorgung verwendet werden, der dann gleichzeitig, falls notwendig, große Volumenströme für das Werkzeug bereit stellt, während von der werkzeuginternen Einrichtung zur Erzeugung des gewünschten Druckes der notwendige hohe Fluiddruck erzeugt wird, so daß diese Einrichtung entsprechend klein gehalten werden kann, da sie keine größeren Volumenströme bewältigen muß. Hierbei ist es von besonderem Vorteil, wenn sowohl das Walzwerkzeug als auch die Einrichtung zur Erzeugung des gewünschten Druckes je über ein unabhängiges Gehäuse verfügen, die starr miteinander verbunden sind. Hierdurch ist eine einfacherere Leistungsanpassung von Werkzeug und Druckeinrichtung sowie ein einfacherer Austausch von verschlissenen Komponenten möglich.
  • Eine solche Einrichtung zur Erzeugung des gewünschten Druckes kann aus einer einfachen Zahnradpumpe oder Flügelzellenpumpe oder Kolben­pumpe, welch letztere über einen Nocken oder eine Exzenterscheibe angetrieben werden kann, gebildet sein, die über eine eigene Antriebs­welle von einem zugeordneten Antrieb der verwendeten Werkzeugma­schine angetrieben werden kann. Solche Antriebseinrichtungen sind beispielsweise bei üblichen NC-Drehmaschinen oder CNC-Drehmaschinen häufig vorhanden. Es ist aber auch denkbar, als Antrieb einen weiteren, mit der Pumpe verbundenen Hydromotor vorzusehen, der ebenfalls vom Kühlmittelkreislauf oder Schmiermittelkreislauf der Maschine betrieben wird, der dann nicht nur den Hydromotor versorgt, sondern der auch den notwendigen Volumenstrom für die vom Hydromotor angetriebene Pumpe, die für den erforderlichen Druck sorgt, bereit stellt. Mindestens bei Verwendung einer Kolbenpumpe ist es sinnvoll, einen Druckspeicher zwischen Werkzeug und Kolbenpumpe zu schalten, um die Druckstöße der Kolbenpumpe abzudämpfen.
  • Für eine Einspannung kann die Walzeinheit einen gesonderten Einspann­schaft aufweisen. Der Einspannschaft kann vorzugsweise Normabmes­sungen haben, so daß die gesamte Walzeinheit über einen solchen Einspannschaft mit genormten Abmessungen in die ebenfalls genormten und üblichen Aufnahmen eines Werkzeugmagazins oder eines Revolver­kopfes von NC-gesteuerten oder CNC-gesteuerten Werkzeugmaschinen hineinpaßt. Hierbei kann vorteilhafterweise die notwendige Antriebs­welle für die Pumpe in diesem Einspannschaft drehbar gelagert sein.
  • Besonders klein kann die gesamte erfindungsgemäße Walzeinheit bauen, wenn der Rollenkopf als hydrostatisches Lager für das Walzelement ausgebildet ist, das mit einem Anschlußkanal an die Druckseite der zugeordneten Pumpe angeschlossen ist.
  • Die Erfindung soll nun anhand der in den Zeichnungen ausgeführten Ausführungsbeispiele näher beschrieben werden.
  • Es zeigen:
    • Figur 1 Walzeinheit mit hydrostatisch gelagertem Walzelement im Schnitt
    • Figur 2 Walzeinheit mit von einer Kolben-Zylinder-Einheit be­tätigtem Walzelement im Schnitt
    • Figur 3 Hydraulikschaltplan
    • Figur 4 Hydraulikschaltplan
    • Figur 5 Ansicht in Richtung des Pfeiles X-X aus Figur 2
    • Figur 6 Längsschnitt durch eine Bauvariante
    • Figur 7 Schnitt I-I nach Figur 6
  • Die Figur 1 zeigt eine Walzeinheit mit einem Walzwerkzeug 1 mit hydrostatisch gelagertem Walzelement 2, welches in dem Gehäuse 1′ gehalten und geführt wird. Diese in Figur 1 dargestellte Walzeinheit ist zusammengesetzt aus den Funktionsgruppen A bis E, wobei die Funktionsgruppe A das Walzwerkzeug 1 bildet. Die Funktionsgruppe B umfaßt eine Kolbenpumpe 3, die in einem zugeordneten Pumpengehäuse 3′ untergebracht ist, wobei diese Kolbenpumpe 3 mit ihrer Druckseite 4 den Druckraum 5 des Walzwerkzeuges 1 beaufschlagt. Hierzu liegt das Gehäuse 1′ direkt mit einer entsprechenden planen Fläche an einer zugeordneten Planfläche des Pumpengehäuses 3′ an. Irgendwelche Rohr­leitungen oder Schläuche sind zwischen den beiden Funktionsgruppen nicht erforderlich.
  • Der Druckraum 5 des Walzwerkzeuges 1 dient gleichzeitig als Druck­speicher 29, der im Ausführungsbeispiel als Federdruckspeicher ausgebildet ist. Hierzu weist der nicht näher bezeichnete Innenraum dieses Federdruckspeichers 29 einen vom Druckmedium beaufschlagten Kolben 28 auf, der sich über eine Feder 54 an einem Deckel 45 abstützt. Das Druckverhalten des Druckspeichers wird hierbei von der Kennlinie der Feder 54 bestimmt. Eine Dichtung 49, die z.B. als O-Ring ausgebildet sein kann, kann im Bereich der Druckverbindung zwischen den Funktions­gruppen A und B für die notwendige Dichtigkeit sorgen. Hier sind jedoch auch andersartige Dichtungen möglich.
  • In dem Pumpengehäuse 3′ der Kolbenpumpe 3 ist in an sich bekannter Weise eine Antriebswelle 6 drehbar gelagert, auf der drehfest, aber axial unverschiebbar ein Exzenter 19 angeordnet ist. An der Umfangsfläche des Exzenters 19 liegt ein Kolben 23 an, der von einer Feder 25 immer in dieser Anlage gehalten wird. Ein Pumpenraum 22 ist über ein Rück­schlagventil 24 mit dem Zylinder 27 auf der Saugseite der Kolbenpumpe 3 verbunden. In einem umgekehrten Kolbenhub wird die Saugseite zur Druckseite und sperrt damit das Rückschlagventil 24 ab, öffnet hingegen ein Rückschlagventil 26, wodurch Drucköl an der Druckseite der Kolbenpumpe 3 zur Belieferung des Druckraumes 5 des Walzwerkzeugs 1 bereitgestellt wird. Der Aufbau einer solchen Pumpe ist allgemein bekannt, so daß hierauf nicht weiter eingegangen werden muß.
  • Die Antriebswelle 6 der Kolbenpumpe 3 ragt in das Gehäuse 52′ eines Zwischenstücks 52 hinein und ist dort über eine Kupplung 7 mit einer Abtriebswelle 8 eines Hydromotors 9 verbunden, der in einem zugeord­neten Gehäuse 9′ untergebracht ist. Das Zwischenstück 52 und der Hydromotor 9 bilden hierbei die Funktionsgruppen C und D. Beide Funktionsgruppen liegen über entsprechende Planflächen gegeneinander an, wobei die Funktionsgruppe C mit einer weiteren entsprechenden Planfläche an einer zugeordneten Planfläche der Kolbenpumpe 3 als Funktionsgruppe B anliegt. Flächdichtungen 51 können hierbei für die notwendige Dichtigkeit sorgen.
  • Abgeschlossen wird die gesamte Einheit durch die Funktionsgruppe E, die die Abdeckung 10 bildet. Die Abdeckung 10 bildet im wesentlichen ein Gehäuse 10′, an dem der Einspannschaft 11′ mit vorzugsweise genormten Abmessungen vorgesehen ist. Weiterhin weist das Gehäuse 10′ einen Ölanschluß 12 auf, der über einen Kanal 21 zum Pumpenraum 22 geführt ist. Ein weiterer Kanal 15, der ebenfalls mit dem Ölanschluß 12 in Verbindung steht, ist zur Öffnung 16 des Hydromotors 9 geführt und sorgt bei entsprechender Bereitstellung eines Fluidstromes 14 für dessen Antrieb. Solche Hydromotoren und die notwendige Führung des Fluidstromes sind bekannt, so daß auch hier auf eine detailliertere Beschreibung des Aufbaues und der Funktionsweise verzichtet werden kann.
  • Das notwendige hydraulische Schaltbild zu der in Figur 1 dargestellten Walzeinheit zeigt Figur 3. Hierbei ist darauf hinzuweisen, daß das notwendige Sicherheitsventil 30 zur Absicherung der Kolbenpumpe 3 im Ausführungsbeispiel nach Figur 1 am Walzwerkzeug vorgesehen ist. Dies stellt gleichzeitig eine sinnvolle Absicherung des hydrostatisch arbei­tenden Walzwerkzeuges dar, so daß dieses Werkzeug unabhängig von der Pumpe abgesichert sein kann. Dieses Sicherheitsventil 30 kann dann gleichzeitig die Pumpenabsicherung mit übernehmen. Es kann jedoch auch an der Kolbenpumpe 3 eine gleichartige separate Absicherung gegen Überdruck vorgesehen sein. Hierbei kann dann natürlich umgekehrt auch diese Pumpenabsicherung die Absicherung des hydrostatischen Werkzeuges mit übernehmen. Auch soll darauf hingewiesen werden, daß in Figur 3 der Druckspeicher 29 als sogen. Blasenspeicher schematisch dargestellt wurde, während in der Ausführungsform nach Figur 1 der Druckspeicher ein Federdruckspeicher ist. Hiermit soll angedeutet werden, daß natürlich unterschiedliche Druckspeicher Anwendung finden können und die Einrichtung nicht auf eine bestimmte Druckspeicher­bauart beschränkt ist.
  • Die Ausführungsform nach Figur 2 zeigt einen im Gegensatz zum hydrostatischen Rollenkopf 44′ in üblicher Weise aufgebauten Rollenkopf 44, bei dem ein Walzelement 2 auf einer Stütztrolle 20 aufliegt und von dieser abgestützt wird. Das Walzelement 2 wird hierbei in an sich bekannter Weise von einem Käfig 18 geführt.
    Der Rollenkopf 44 ist am freien Ende einer Kolbenstange 42 befestigt, an deren anderem Ende ein Kolben 41 angeordnet ist, der in einem Zylinderraum 40 in üblicher und bekannter Weise verschiebbar angeordnet ist. Auf der der Kolbenstange 42 abgewandten Seite ist der Zylinderraum 40 verschlossen von einem Deckel 45 mit einer vorzugs­weise als O-Ring ausgebildeten Dichtung 46. Ein Sicherungsring 47 hält den Deckel 45 in seiner Position. Im Deckel 45 eingebaut ist ein Drosselventil 61.
  • Auch der Kolben 41 weist in üblicher und bekannter Art eine Dichtung 48 auf, mit der der Kolben 41 gegen die Wandung des Zylinderraumes 40 abgedichtet ist.
  • Auf der Kolbenstangenseite ist in ebenfalls üblicher Weise eine Feder 43 im Zylinderraum vorgesehen, die mit ihrer Kraft den Kolben 41 ständig bewegen und damit die Kolbenstange 42 einfahren will. Für eine Ausfahrbewegung der Kolbenstange 42 mit der notwendigen Kraft wird gesorgt durch eine Druckbeaufschlagung des der Kolbenstange abge­wandten Teiles des Zylinderraumes 40, so daß die kolbenstangenfreie Seite des Kolbens 41 mit entsprechendem Drucköl beaufschlagt wird und damit die Kolbenstange 42 mit dem Rollenkopf 44 in Richtung des Werkstückes 13 bewegt. Das Werkzeug in der Ausführungsform nach Figur 2 ist damit in der Lage, einen größeren Zwischenraum zwischen Werkstück und Werkzeug zu überbrücken als das Werkzeug in der Ausführungsform nach Figur 1.
  • Dem Walzwerkzeug 1 in der Ausführungsform nach Figur 2, das dort die Funktionsgruppe F darstellt, folgt wiederum die Funktionsgruppe G in Form einer Zahnradpumpe 34 mit dem Pumpengehäuse 34′. Wenn eine solche Zahnradpumpe 34 verwendet wird, kann das Drosselventil ganz geschlossen sein oder entfallen. Dem Pumpengehäuse 34′ schließt sich nun wieder das Gehäuse 59 der Abdeckung 10˝ an, wobei dieses Gehäuse 59 gleichzeitig den Einspannschaft 11 aufweist für eine Werkzeugauf­nahme 57. Die Werkzeugaufnahme 57 ist der Werkzeugmaschine zugeordnet auf der das Werkzeug zum Einsatz kommt.
    Im Einspannschaft 11 ist drehbar die Antriebswelle 32 für die Zahnräder 39 und 39′ in den Lagern 38 und 38′ gelagert. Die notwendige Dichtigkeit zwischen den Funktionsgruppen wird wieder hergestellt durch die Flachdichtungen 51 und soweit erforderlich, durch Dichtringe 49. Im Gehäuse 59 ist weiter ein nach außen geführter Ölanschluß 35 vorge­sehen, an dem die entsprechende Versorgungsleitung der zugehörigen Werkzeugmaschine angeschlossen wird. Ein Kanal 36 führt hierbei den Fluidstrom 14 über den Kanal 37 der Zahnradpumpe 34 zu, die für den notwendigen Druck des Fluidstromes 14 sorgt und den unter Druck stehenden Fluidstrom auf der Druckseite 4 in den Zylinderraum 40 des Walzwerkzeuges 1 führt. Ein Sicherheitsventil 30 ist von der Druckseite 4 her nach außen geführt und sichert die Zahnradpumpe 34 gegen Überlastung. Der Verlauf der Kanäle 35, 36 und 37 sowie 4 ist in Figur 5 dargestellt.
  • Für den Antrieb der Bauvariante nach Figur 2 kann die Antriebswelle 32 über die Kupplung 33 mit einer Antriebswelle 60 eines Elektromotors 58 verbunden werden. Dieser Elektromotor 58 ist in der zugeordneten Werkzeugmaschine als Antriebseinrichtung ohnehin vorhanden. Gleiches gilt für die Antriebswelle 60. Solche bekannten CNC-gesteuerten Maschinen verfügen üblicherweise nicht nur über einen Antrieb der Hauptspindel sondern auch über weitere, vom Antrieb der Hauptspindel abgeleitete oder separat angetriebene Spindeln, mit denen bei Bedarf entsprechend eingesetzte Werkzeuge, wie ein Werkzeug nach Figur 2, angetrieben werden können.
  • Das hydraulische Schaltbild der Ausführungsform nach Figur 2 ist in Figur 4 dargestellt.
  • Zu beiden Ausführungsformen kann der Einspannschaft 11 bzw. 11′ in seinen Abmessungen z.B. der DIN 69880 entsprechen. Beim Arbeitsein­satz auf einer Werkzeugmaschine wird der Einspannschaft 11 bzw. 11′ mit der Werkzeugaufnahme 57 einer Werkzeugmaschine in Wirkverbindung gebracht und fest eingespannt. Im Falle der Ausführungsform nach Figur 1 wird der Ölanschluß 12 zugleich beim Einspannen des Werkzeuges in einen Werkzeugträger oder in eine Werkzeugaufnahme 57 mit dem Schmiermittelkreislauf dieser Maschine dicht verbunden. Hierzu können im Bereich der Werkzeugaufnahme einer solchen Maschine bereits in bekannter Weise Anschlüsse eines Schmiermittelkreislaufs vorhanden sein, die benutzt werden können.
  • Soll nun das Walzwerkzeug 1 an einem rotierenden Werkstück 13 eine Walzbearbeitung durchführen, dann wird das Walzwerkzeug 1 in der Werkzeugaufnahme 57 über die Maschinensteuerung gesteuert in Arbeitsstellung gebracht und das Walzelement 2 zum Werkstück 13 so positioniert, daß ein lockerer Kontakt zwischen Walzelement 2 und Werkstück 13 vorliegt, jedoch keine nennenswerten Kräfte zwischen Walzelement 2 und Werkstück 13 auftreten. Der Schmiermittelkreislauf der Werkzeugmaschine wird dann aktiviert und ein Fluidstrom 14 strömt durch den Ölanschluß 12 in den Kanal 15 des Hydromotors 9. Der Fluidstrom 14 tritt durch die Öffnung 16 in das Zahnradgehäuse 9′ ein und beaufschlagt die Zahnräder 17 und 17′, die dann die Strömungs­energie des Fluidstromes 14 in Rotationsenergie umwandeln. Die Welle 8 des Zahnrades 17 treibt dann über die Kupplung 7 die Antriebswelle 6 der Kolbenpumpe 3 an, die den Exzenter 19 aufweist. Der durch den Ölanschluß 12 einströmende Fluidstrom 14 strömt durch den Kanal 15 und den Kanal 21 in den Pumpenraum 22, der den Exzenter 19 und den Kolben 23 umhüllt. Der Fluidstrom 14 erreicht so das Rückschlagventil 24 oder auch Saugventil der Kolbenpumpe 3. Wird die Antriebswelle 6 der Kolbenpumpe 3 durch den Hydromotor 9 angetrieben, bewegt sich der Kolben 23 unter Federdruck der Feder 25 am Exzenter 19, gehalten im Zylinder 27, hin und her. Beim Saughub des Kolbens 23 öffnet das Saugventil 24 und Fluid wird angesaugt. Beim Druckhub des Kolbens 23 schließt das Saugventil 24 und das Druckventil 26 öffnet sich und gibt den Pumpenaustritt 4 frei. Beide Ventile, Saugventil 24 und Druckventil 26, können in ihrer einfachsten Form als übliche Rückschlagventile ausgebildet sein. Es tritt nun das Fluid in den Druckraum 5 des Walzwerkzeuges 1 ein. Das nun auf einen wesentlich höheren Druck als aus dem Schmiermittelkreislauf der Werkzeugmaschine übersetzte Fluid beaufschlagt das hydrostatisch gelagerte Walzelement 2 und erzeugt die gewünschte Walzkraft. Das Walzelement 2 legt sich unter Walzkraft an das Werkstück 13 an. Beim Einströmen des Fluids in den Druckraum 5 des Walzwerkzeuges 1 wird der Kolben 28 des Druckspeichers 29 gegen die Federkraft der Feder 54 verdrängt und speichert so das Fluid unter Druck, um Druckunregelmäßigkeiten, die aus der Bauart der Kolben­pumpe herrühren, auszugleichen. Wird eine Zahnradpumpe anstelle der Kolbenpumpe eingesetzt, könnte der Druckspeicher entfallen. Wie bereits beschrieben wird die Feder 54, die den Kolben 28 federnd abstützt, ihrerseits auf der freien Seite von dem Deckel 45 abgestützt, der, wie ebenfalls bereits beschrieben, von dem Sicherungsring 47 im Gehäuse gehalten ist. Die ganze in Figur 1 dargestellte Baueinheit kann in Form von als Zuganker ausgebildeten und lediglich über die Linien 50, 50′ angedeuteten, durchgehenden Schrauben starr zusammengehalten sein. Alle Funktionsgruppen A bis E werden so fest und dicht aufeinander gepreßt und bilden einen starren, massiven Block, der recht klein baut.
  • Bei der Ausführungsform nach Figur 2 wird der Pumpenantrieb mit einem üblichen Werkzeugantrieb der zugeordneten Werkzeugmaschine verbun­den. Der Werkzeugantrieb der Werkzeugmaschine ist in Figur 2 darge­stellt durch die Antriebswelle 60 und den Elektromotor 58. Auch hier wird der Ölanschluß 35 zugleich beim Einspannen der gesamten Einheit in die Werkzeugaufnahme mit dem Schmiermittelkreislauf der zugeord­neten Werkzeugmaschine verbunden. Um eine Bearbeitung des Werk­stückes 13 durchzuführen, wird das Walzwerkzeug im Werkzeugträger oder in der Werkzeugaufnahme 57 gehalten und über die Maschinen­steuerung gesteuert in Arbeitsstellung gebracht, so, daß das Walzelement 2 zur zu bearbeitenden Oberfläche des Werkstücks 13 einen geringen Abstand einnimmt. Der Schmiermittelkreislauf der Werkzeugmaschine wird dann aktiviert und ein Fluidstrom 14 strömt durch den Ölanschluß 35 in den Kanal 36 der Zahnradpumpe 34 und tritt in den Kanal 37 ein, der vom Innenraum des Pumpengehäuses 34′ gebildet wird. Durch die über die Antriebswelle 32 angetriebenen Zahnräder 39, 39′ wird das einströmende Fluid auf einen für das Betreiben des Walzwerkzeugs 1 geeigneten Druck gebracht und strömt durch die Druckseite 4 in den Zylinderraum 40, wodurch der Kolben 41 mit der Kolbenstange 42 gegen die Federkraft der Feder 43 verschoben wird. Hierdurch wird das Walzelement 2, welches vom Rollenkopf 44 getragen wird, gegen das rotierende Werkstück 13 gepreßt, wodurch sich die erforderliche Walzkraft aufbaut. Die Entlüftungsbohrung 53 sorgt dafür, daß im Einbauraum 55 für die Feder 43 kein unerwünschter Gegendruck entsteht.
  • Die Verwendung einer Zahnradpumpe bei einem Aufbau der Einheit nach Figur 2 macht es möglich, dort auf einen Druckspeicher zu verzichten. Die Verwendung einer solchen Zahnradpumpe ist allerdings nicht zwingend. Es könnte auch eine Kolbenpumpe verwendet werden. Für diesen Fall muß das Drosselventil geringfügig geöffnet sein, damit bei Stillstand der Kolbenpumpe im Zylinderraum 40 ein Druckabbau erfolgen kann, der bei Verwendung einer Zahnradpumpe über die Leckage der Zahnradpumpe erfolgt. Bei weiterer Öffnung der Drossel kann diese in Zusammenwirkung mit der Pumpendrehzahl als Druckregeleinheit dienen, da der Durchsatz durch die Drossel in weiten Bereichen abhängig ist vom Druckgefälle an der Drossel. Zum Beispiel bei einer Kolbenpumpe entsteht bei geschlossener Drossel auch bei niedriger Drehzahl der volle Pumpendruck. Wird nun die Drossel geöffnet, fällt, abhängig vom Öffnungsquerschnitt der Druck. Er kann nun wieder gesteigert werden durch Erhöhung der Pumpendrehzahl.
  • Die Figur 6 zeigt nun ein Ausführungbeispiel im Längsschnitt, bei dem das Walzwerkzeug 1 verbunden ist mit einem Aufnahmeschaft 62, der für eine Aufnahme in der Arbeitsspindel oder Hauptspindel einer Werkzeug­maschine, beispielsweise einer Fräsmaschine, gestaltet ist. Der Aufnahmeschaft 62 kann in üblicher Weise gestaltet sein. Auf dem der Maschinenspindel 71 abgewandten Ende des Aufnahmeschaftes 62 ist zwischen dem Walzwerkzeug 1 und dem genannten Ende des Aufnahme­schaftes 62 ein Zwischenbereich 64 vorgesehen und mit dem Aufnahme­schaft 62 fest verbunden, der sich mit dem Aufnahmeschaft dreht und der eine Kolbenpumpe 65 aufweist. Hierzu kann in dem genannten Zwischen­bereich 64 einfach beispielsweise eine Radialbohrung 72 vorgesehen sein, in welche ein Kolben 73 eingesetzt ist. Der Kolben 73 steht unter der Vorlast einer Feder 74, die sich einerseits am genannten Zwischenbereich 64 und andererseits an einem Kragen 75 des Kolbens 73 abstützt.
  • Die Radialbohrung 72 steht saugseitig über ein Rückschlagventil 76 in Verbindung mit einer Versorgungsleitung 78, über welche das notwendige Fluid beispielsweise vom Kreislauf der Werkzeugmaschine herangeführt wird.
    Druckseitig ist, wie bei Kolbenpumpen üblich, ein weiterers Rückschlag­ventil 77 vorgesehen, durch welches hindurch das Drucköl zum Walz­werkzeug 1 geliefert wird, welches im gezeichneten Ausführungsbeispiel nach Figur 6 als Rollenkopf mit hydrostatisch gelagerter Rolle ausgebildet ist. Die zum Rollenkopf führende Druckleitung 79 ist hierbei über eine Verbindungsleitung 80 mit einem Druckspeicher 70 verbunden, der ebenfalls im Zwischenbereich 64 angeordnet ist und sich daher mit dem Walzwerkzeug 1 und der Maschinenspindel 71 gemeinsam dreht. Der Druckspeicher 70 kann hierbei als Federdruckspeicher ausgebildet sein, wie er bereits zu Figur 1 beschrieben wurde.
  • Der Zwischenbereich 64 ist über einen Teil seiner Längserstreckung oder Breite umfaßt von einem Ring 67 der in diesem Zwischenbereich 64, beispielsweise über Wälzlager 81, drehbar gelagert ist. Kragen 82 und 83 sorgen für eine axiale Unverschiebbarkeit. Der Ring 67 weist auf seiner Innenseite eine innere Kurvenbahn 68 auf, an welcher der Betätigungs­nocken 66 des Kolbens 73 anliegt und von der Feder 74 in Anlage gehalten wird. Auf seiner Außenseite verfügt der Ring 67 über eine sogen. Drehmomentstütze 69, die sich an einem beliebigen Halteteil 84 der Werkzeugmaschine 63 abstützt. Wird nun die Maschinenspindel 71 in Drehung versetzt, so dreht sich der gesamte beschriebene Aufbau, mit Ausnahme des Ringes 67, mit. Hierdurch läuft der Betätigungsnocken 66 des Kolbens 73 der Kolbenpumpe 65 auf der inneren Kurvenbahn 68 des Ringes 67 entlang und wird hierdurch in eine radiale Schwingbewegung, also in die notwendige Pumpbewegung, versetzt. Das notwendige Fluid wird durch die Versorgungsleitung 78 zugeführt und von der Kolben­pumpe 65 auf den notwendigen Druck für das Walzwerkzeug 1 gebracht. Die hierbei bei einer Kolbenpumpe immer auftretenden Druckschwan­kungen werden vom Druckspeicher 70 aufgefangen. Das Walzwerkzeug 1 kann nun mit seinem Walzelement 2 beispielsweise gegen die Planfläche 85 eines nicht näher bezeichneten Werkstückes geführt werden und dort eine Glattwalzbearbeitung durchführen. Hierbei beschreibt das Walzele­ment 2 aufgrund seiner exzentrischen Lage zur Drehachse 86 auf der Planfläche 85 einen Kreis. Eine lineare Vorschubbewegung des Werkzeuges in Richtung des Pfeils 87 durch entsprechende Verschiebung der Maschinenspindel 71 sorgt für eine Überlagerung dieser Kreise, so daß mit einem solchen Werkzeug eine ebene Fläche eines Werkstückes Bahn für Bahn glattgewalzt werden kann.
  • Es ist bei dem vorliegenden Ausführungsbeispiel nach Figur 6 durchaus möglich, die Versorgungsleitung 78 nicht zentral durch die Maschinen­spindel 71 und den Aufnahmeschaft 62 zu führen, sondern stattdessen außen an die Drehmomentstütze 69 anzuschließen, die dann entsprechend hohl ist und die über eine strichpunktiert dargestellte Leitung 88 durch einen Zwischenraum 89 hindurch wieder zur Pumpe 65 geführt wird.
  • Mit dem Gegenstand der Erfindung ist es erstmals gelungen eine Walzeinheit so zu gestalten, daß eine hydraulische Betätigung des Werkzeuges möglich ist, wobei die gesamte Einheit gleichzeitig so klein gehalten werden kann, daß sie als Werkzeug auf Werkzeugmaschinen, wie z.B. CNC-gesteuerten Drehautomaten einsetzbar ist und dort in den üblichen Werkzeugaufnahmen oder Werkzeugmagazinen gehalten werden kann. Eine Verbindung mit irgendwelchen gesonderten maschinenfremden Zusatzaggregaten ist nicht mehr erforderlich.
  • Liste der verwendeten Bezugszeichen
    • 1 Walzwerkzeug
    • 1′ Gehäuse
    • 2 Walzelement
    • 3 Kolbenpumpe
    • 3′ Pumpengehäuse
    • 4 Druckseite
    • 5 Druckraum
    • 6 Antriebswelle
    • 7 Kupplung
    • 8 Abtriebswelle
    • 9 Hydromotor
    • 9′ Gehäuse
    • 10 Abdeckung
    • 10′ Gehäuse
    • 10˝ Abdeckung
    • 11 Einspannschaft
    • 11′ Enspannschaft
    • 12 Ölanschluß
    • 13 Werkstück
    • 14 Fluidstrom
    • 15 Kanal
    • 16 Öffnung
    • 17 Zahnrad
    • 17′ Zahnrad
    • 18 Käfig
    • 19 Exzenter
    • 20 Stützrolle
    • 21 Kanal
    • 22 Pumpenraum
    • 23 Kolben
    • 24 Rückschlagventil
    • 25 Feder
    • 26 Rückschlagventil
    • 27 Zylinder
    • 28 Kolben
    • 29 Druckspeicher
    • 30 Sicherheitsventil
    • 31 unbenutzt
    • 32 Antriebswelle
    • 33 Kupplung
    • 34 Zahnradpumpe
    • 34′ Pumpengehäuse
    • 35 Ölanschluß
    • 36 Kanal
    • 37 Kanal
    • 38 Lager
    • 38′ Lager
    • 39 Zahnrad
    • 39′ Zahnrad
    • 40 Zylinderraum
    • 41 Kolben
    • 42 Kolbenstange
    • 43 Feder
    • 44 Rollenkopf
    • 44′ Rollenkopf
    • 45 Deckel
    • 46 Dichtung
    • 47 Sicherungsring
    • 48 Dichtung
    • 49 Dichtung
    • 50 Linie
    • 50′ Linie
    • 51 Flachdichtung
    • 52 Zwischenstück
    • 52′ Gehäuse
    • 53 Entlüftungsbohrung
    • 54 Feder
    • 55 Einbauraum
    • 56 unbenutzt
    • 57 Werkzeugaufnahme
    • 58 Elektromotor
    • 59 Gehäuse
    • 60 Abtriebswelle
    • 61 Drosselventil
    • 62 Aufnahmeschaft
    • 63 Werkzeugmaschine
    • 64 Zwischenbereich
    • 65 Kolbenpumpe
    • 66 Betätigungsnocken
    • 67 Ring
    • 68 innere Kurvenbahn
    • 69 Drehmomentstütze
    • 70 Druckspeicher
    • 71 Maschinenspindel
    • 72 Radialbohrung
    • 73 Kolben
    • 74 Feder
    • 75 Kragen
    • 76 Rückschlagventil
    • 77 Rückschlagventil
    • 78 Versorgungsleitung
    • 79 Druckleitung
    • 80 Verbindungsleitung
    • 81 Wälzlager
    • 82 Kragen
    • 83 Kragen
    • 84 Halteteil
    • 85 Planfläche
    • 86 Drehachse
    • 87 Pfeil
    • 88 Leitung
    • 89 Zwischenraum

Claims (20)

1. Walzeinheit mit einem Walzwerkzeug mit mindestens einem gegen eine Werkstückfläche unter Walzkraft anlegbarem und drehbar gelagertem Walzelement sowie mit hydraulisch betätigten Mitteln zur Erzeugung der Walzkraft und einer mit den hydraulisch betätigten Mitteln verbundenen Einrichtung zur Erzeugung des gewünschten Druckes und Volumenstromes eines die Mittel zur Erzeugung der Walzkraft beaufschlagenden Fluides, dadurch gekennzeichnet, daß das Walzwerkzeug (1) und die Einrichtung (B-E; G, H) zur Erzeugung des gewünschten Druckes als Baueinheit ausgebildet und starr miteinander verbunden sind, wobei Anschlüsse zur Energieversorgung der genannten Einrichtung vorgesehen sind, die mit entsprechenden Anschlüssen zur Energielieferung an einer Werkzeugmaschine verbunden oder verbindbar sind.
2. Walzeinheit nach Anspruch 1, dadurch gekennzeichnet, daß das Walzwerkzeug (1) und die Einrichtung (B-E; G, H) zur Erzeugung des gewünschten Druckes je über ein unabhängiges Gehäuse (1′; 3′, 52′, 9′, 10′; 34′, 59) verfügen, die starr miteinander verbunden sind.
3. Walzeinheit nach einem der Ansprüche 1 und 2, dadurch gekennzeich­net, daß die Einrichtung zur Erzeugung des gewünschten Druckes als Pumpe (3, 34) ausgebildet und saugseitig an den Schmiermittelkreis­lauf oder Kühlmittelkreislauf der Maschine, an der die Einheit zum Einsatz kommt, angeschlossen oder anschließbar ist.
4. Walzeinheit nach einem der Ansprüche 1 bis 3, dadurch gekenn­zeichnet, daß die Pumpe (3,34) mit einem Antriebsmotor (9,58) verbunden oder verbindbar ist.
5. Walzeinheit nach Anspruch 4, dadurch gekennzeichnet, daß die Pumpe (3,34) zur Verbindung mit dem Antriebsmotor (9,58) eine Antriebswelle (6,32) aufweist, die mit einer entsprechenden Abtriebs­welle (8,60) des Antriebsmotors verbindbar oder verbunden ist.
6. Walzeinheit nach Anspruch 5, dadurch gekennzeichnet, daß der Antriebsmotor als Hydromotor (9) ausgebildet und zur Energiever­sorgung an den Kühlmittelkreislauf oder Schmiermittelkreislauf der Maschine, an der die Einheit zum Einsatz kommt, angeschlossen oder anschließbar ist.
7. Walzeinheit nach einem der Ansprüche 1 bis 6, dadurch gekenn­zeichnet, daß die Einrichtung zur Erzeugung des gewünschten Druckes eine Hydraulikpumpe (3) und einen Hydraulikmotor (9) aufweist, wobei Pumpe und Motor in einem gemeinsamen Gehäuse (B,C,D) oder in separaten, aber starr miteinander verbundenen Gehäusen (3′, 52′, 9′) angeordnet sind.
8. Walzeinheit nach Anspruch 7, dadurch gekennzeichnet, daß die Einrichtung weiter einen Druckspeicher (29) aufweist.
9. Walzeinheit nach einem der Ansprüche 1 bis 8, dadurch gekennzeich­net, daß die Walzeinheit in Funktionsgruppen (A-H) unterteilt ist, wobei jede Funktionsgruppe ein eigenes Gehäuse (1',3′, 52′, 9′, 10′, 34′, 59) aufweist mit mindestens einer ebenen Anlagefläche und wobei zur Herstellung der Walzeinheit alle Gehäuse der vorgesehe­nen Funktionsgruppen (A-E; F-H) über die ebenen Anlageflächen funktionsgerecht aneinander gelegt und starr miteinander verbunden sind.
10. Walzeinheit nach einem der Ansprüche 1 bis 9, dadurch gekenn­zeichnet, daß die Pumpe (3) als Kolbenpumpe ausgebildet ist.
11. Walzeinheit nach Anspruch 10, dadurch gekennzeichnet, daß der Kolben (23) der Kolbenpumpe (3) mittels eines rotierend angetrie­benen oder antreibbaren Nockens oder Exzenters (19) bewegt wird.
12. Walzeinheit nach Anspruch 5, dadurch gekennzeichnet, daß der Antriebsmotor (58) ein Elektromotor ist.
13. Walzeinheit nach einem der Ansprüche 1 bis 9, dadurch gekennzeich­net, daß die Pumpe (34) eine Zahnradpumpe ist.
14. Walzeinheit nach einem der Ansprüche 1 bis 13, dadurch gekenn­zeichnet, daß die Walzeinheit einen Einspannschaft (11, 11′) zur Aufnahme an einem Werkzeugmagazin, einem Revolverkopf oder in einer sonstigen Werkzeugaufnahme (57) der Maschine, an der die Einheit zum Einsatz kommt, aufweist.
15. Walzeinheit nach Anspruch 14, dadurch gekennzeichnet, daß die An­triebswelle (32) für die Pumpe (34) im Einspannschaft (11) drehbar gelagert und mit einer Antriebswelle der Maschine über eine Kupplung (33) kuppelbar ist.
16. Walzeinheit nach Anspruch 8, dadurch gekennzeichnet, daß der Druckspeicher (29) ein Federdruckspeicher ist.
17. Walzeinheit nach einem der Ansprüche 1 bis 16, dadurch gekenn­zeichnet, daß jedes Walzelement (2) in einem Rollenkopf (44′) geführt, abgestützt und drehbar gelagert ist, wobei der Rollenkopf (44′) als hydrostatisches Lager für das Walzelement (2) ausgebildet ist und mit einem Anschlußkanal an die Druckseite (4) der Pumpe (3) angeschlossen oder anschließbar ist.
18. Walzeinheit nach einem der Ansprüche 1 bis 17, dadurch gekenn­zeichnet, daß jedes Walzelement (2) in einem Rollenkopf (44) geführt, abgestützt und drehbar gelagert ist, wobei der Rollenkopf (44) am freien Ende einer Kolbenstange (42) einer Kolben-Zylinder-­Einheit (41, 42, 45,) angeordnet ist, deren Zylinderraum (40) auf der der Kolbenstange (42) abgewandten Seite des Kolbens (41) mit der Druckseite (4) der Pumpe (34) verbunden oder verbindbar ist.
19. Walzeinheit nach Anspruch 1, dadurch gekennzeichnet, daß das Walzwerkzeug (1) mit einem Aufnahmeschaft (62) für eine Arbeits­spindel einer Werkzeugmaschine (63) verbunden ist, wobei im Zwischenbereich (64) zwischen Werkzeug (1) und Aufnahmeschaft (62) mindestens eine Kolbenpumpe (65) mit einem Betätigungsnocken (66) vorgesehen ist, die druckseitig mit den hydraulisch betätigten Mitteln zur Erzeugung der Walzkraft und saugseitig mit Fluidliefer­mitteln verbunden ist, wobei der Zwischenbereich (64) mit dem Betätigungsnocken (66) umfaßt ist von einem an diesem Zwischen­bereich (64) drehbar gelagerten Ring (67) mit einer inneren Kurvenbahn (68) zur Betätigung des Betätigungsnockens (66) und wobei der Ring (67) mittels einer Drehmomentstütze (69) an einer ungewollten Drehung gehindert wird.
20. Walzeinheit nach Anspruch 19, dadurch gekennzeichnet, daß ein mit dem Walzwerkzeug (1) umlaufender und mit der Druckseite der Pumpe (65) verbundener Druckspeicher (70) vorgesehen ist.
EP89110506A 1988-08-02 1989-06-10 Walzeinheit Expired - Lifetime EP0353427B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89110506T ATE82178T1 (de) 1988-08-02 1989-06-10 Walzeinheit.

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE8809823U 1988-08-02
DE8809823U DE8809823U1 (de) 1988-08-02 1988-08-02
EP89100291 1989-01-10
DE8904687 1989-04-11
DE8904687U 1989-04-11
DE8906866U 1989-06-05
DE8906866U DE8906866U1 (de) 1988-08-02 1989-06-05

Publications (2)

Publication Number Publication Date
EP0353427A1 true EP0353427A1 (de) 1990-02-07
EP0353427B1 EP0353427B1 (de) 1992-11-11

Family

ID=27207897

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89110506A Expired - Lifetime EP0353427B1 (de) 1988-08-02 1989-06-10 Walzeinheit

Country Status (4)

Country Link
US (1) US4922739A (de)
EP (1) EP0353427B1 (de)
KR (1) KR900701472A (de)
DE (1) DE58902669D1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022284A1 (de) * 2000-09-13 2002-03-21 Hegenscheidt-Mfd Gmbh & Co. Kg Rollenkäfig für eine festwalzrolle
EP2068015A3 (de) * 2007-12-05 2012-08-08 Hydac International GmbH Hydrostatisches Lagerungssystem
WO2012107582A1 (de) * 2011-02-10 2012-08-16 Mauser-Werke Oberndorf Maschinenbau Gmbh Walzwerkzeug
US9321135B2 (en) 2011-02-11 2016-04-26 Ecoroll Ag Werkzeugtechnik Fluidostatic rolling device for surface processing and method for shaping the edge layer
EP2759373A3 (de) * 2013-01-29 2016-11-23 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Verfahren zum Kontrollieren des Drucks eines hydrostatischen Glättwerkzeug und hydrostatisches Glättwerkzeug
WO2020083425A1 (de) * 2018-10-22 2020-04-30 Schaeffler Technologies AG & Co. KG Werkzeug und verfahren zur mechanischen oberflächenbearbeitung

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60122478D1 (de) * 2000-03-01 2006-10-05 Lambda Res Inc Verfahren und vorrichtung zum erzeugen einer restspannungverteilung in der oberfläche eines werkstückes
ATE499162T1 (de) * 2000-11-22 2011-03-15 Ingersoll Cm Systems Inc Vorrichtung und verfahren für das walzen von werkstücken
ATE463322T1 (de) * 2001-11-02 2010-04-15 Boeing Co Vorrichtung und verfahren zum herstellen einer schweissverbindung mit muster bildenden restdruckspannungen
GB2396578A (en) * 2002-04-16 2004-06-30 Michael Charles Richa Bartlett Rotational union coupling for a continuous casting roller
FR2871399B1 (fr) * 2004-06-15 2006-09-22 Snecma Moteurs Sa Procede de reparation d'un element d'aube
JP4658789B2 (ja) * 2005-12-08 2011-03-23 富士重工業株式会社 フィレットロール加工機
ITMI20052492A1 (it) * 2005-12-27 2007-06-28 Sunbird Investiments Ltd Dispositivo di lubrificazione per macchine utensili
US8024846B2 (en) * 2006-01-27 2011-09-27 General Electric Company Preparation of an article surface having a surface compressive texture
DE102010005006A1 (de) * 2010-01-19 2011-07-21 MAG IAS GmbH, 73033 Werkzeugmaschine
DE102018114689A1 (de) * 2018-06-19 2019-12-19 Schaeffler Technologies AG & Co. KG Walzkörper für ein hydrostatisches Walzwerkzeug und hydrostatisches Walzwerkzeug mit dem Walzkörper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405704A1 (de) * 1984-02-17 1985-08-22 Wilhelm Hegenscheidt Gmbh, 5140 Erkelenz Glattwalzwerkzeug
DD232864A1 (de) * 1984-12-27 1986-02-12 Werkzeugmasch Heckert Veb Werkzeug fuer das innenglattwalzen zylindrischer flaechen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559360A (en) * 1946-01-12 1951-07-03 Morey Machinery Co Inc Machine tool
IT1004663B (it) * 1974-01-03 1976-07-20 Caboni V Apparecchio da applicare a un tor nio per effettuare la tornitura in lastra
FR2498493A1 (fr) * 1981-01-26 1982-07-30 Rondolotti Ets Tour de repoussage perfectionne

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405704A1 (de) * 1984-02-17 1985-08-22 Wilhelm Hegenscheidt Gmbh, 5140 Erkelenz Glattwalzwerkzeug
DD232864A1 (de) * 1984-12-27 1986-02-12 Werkzeugmasch Heckert Veb Werkzeug fuer das innenglattwalzen zylindrischer flaechen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOVIET INVENTIONS ILLUSTRATED *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022284A1 (de) * 2000-09-13 2002-03-21 Hegenscheidt-Mfd Gmbh & Co. Kg Rollenkäfig für eine festwalzrolle
EP2068015A3 (de) * 2007-12-05 2012-08-08 Hydac International GmbH Hydrostatisches Lagerungssystem
WO2012107582A1 (de) * 2011-02-10 2012-08-16 Mauser-Werke Oberndorf Maschinenbau Gmbh Walzwerkzeug
CN103442848A (zh) * 2011-02-10 2013-12-11 毛瑟-韦尔克奥伯恩多夫机械制造有限公司 滚压工具
CN103442848B (zh) * 2011-02-10 2016-09-28 毛瑟-韦尔克奥伯恩多夫机械制造有限公司 滚压工具
US9616546B2 (en) 2011-02-10 2017-04-11 Mauser-Werke Oberndorf Maschinenbau Gmbh Rolling tool
US9321135B2 (en) 2011-02-11 2016-04-26 Ecoroll Ag Werkzeugtechnik Fluidostatic rolling device for surface processing and method for shaping the edge layer
EP2759373A3 (de) * 2013-01-29 2016-11-23 Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Verfahren zum Kontrollieren des Drucks eines hydrostatischen Glättwerkzeug und hydrostatisches Glättwerkzeug
WO2020083425A1 (de) * 2018-10-22 2020-04-30 Schaeffler Technologies AG & Co. KG Werkzeug und verfahren zur mechanischen oberflächenbearbeitung

Also Published As

Publication number Publication date
KR900701472A (ko) 1990-12-22
US4922739A (en) 1990-05-08
DE58902669D1 (de) 1992-12-17
EP0353427B1 (de) 1992-11-11

Similar Documents

Publication Publication Date Title
WO1990001395A1 (de) Walzeinheit
EP0353427B1 (de) Walzeinheit
EP0785861B1 (de) Hydraulisches antriebssystem für eine presse
DE19580685B4 (de) Radialkolbenhydraulikmotor und Verfahren zur Regelung eines Radialkolbenhydraulikmotors
EP0349742A2 (de) Kraftbetätigtes Spannfutter
DE2645213B2 (de) Schlagwerkzeug, insbesondere für Gesteinsbohrmaschinen
DE4341167A1 (de) Einrichtung zur Übertragung eines Druckmediums
DE3114656C2 (de)
DE2931996C2 (de) Drehschlagbohrmaschine
DE102019003392A1 (de) Werkzeugrevolver
DE10115634A1 (de) Hydraulischer Druckübersetzer
DE2028932C2 (de) Betätigungsvorrichtung für eine Schaltstange eines rotierenden Bohrkopfes
EP1574275A2 (de) Spannzylinder
DE19618757C2 (de) Werkzeugmaschine
EP1936208B1 (de) Druckmittelbetriebene Hubvorrichtung mit selbsthemmender Gewindespindel
DE2111355C3 (de) Druckmittelzuführung für ein durch eine Zylinder-Kolbenanordnung betätigtes, umlaufendes Spannfutter u.dgl
DE4307165C2 (de) Hydraulische Kolbenmaschine mit Gegendruck
DE102006005762B4 (de) Mehrachsen-Drehkopf mit einer Fluideinheit
EP2921255A2 (de) Dreh-werkstückträger mit fixierbarer drehposition
DE2364172C2 (de) Kupplungsvorrichtung für den Revolverkopf einer Werkzeugmaschine
DE1277635B (de) Druckluftdrehkolbenmotor mit umsteuerbarer Drehrichtung
DE2111707A1 (de) Verfahren und Anordnung zur hydraulischen Leistungsuebertragung
DE3425254C2 (de)
DE884718C (de) Anordnung eines unter Arbeitsmitteldruck verschiebbaren Laufrades fuer Turbomaschinen
DE673660C (de) Druckfluessigkeitsvorschubvorrichtung fuer Werkzeugmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19900607

17Q First examination report despatched

Effective date: 19910830

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921111

Ref country code: NL

Effective date: 19921111

REF Corresponds to:

Ref document number: 82178

Country of ref document: AT

Date of ref document: 19921115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. ANTON AUSSERER

REF Corresponds to:

Ref document number: 58902669

Country of ref document: DE

Date of ref document: 19921217

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19921216

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960603

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960617

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960624

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960724

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970610

Ref country code: AT

Effective date: 19970610

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050610