EP0352612B1 - Verfahren zur Herstellung einer Druckform - Google Patents

Verfahren zur Herstellung einer Druckform Download PDF

Info

Publication number
EP0352612B1
EP0352612B1 EP89113215A EP89113215A EP0352612B1 EP 0352612 B1 EP0352612 B1 EP 0352612B1 EP 89113215 A EP89113215 A EP 89113215A EP 89113215 A EP89113215 A EP 89113215A EP 0352612 B1 EP0352612 B1 EP 0352612B1
Authority
EP
European Patent Office
Prior art keywords
electrode
process according
counter
carrier
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89113215A
Other languages
English (en)
French (fr)
Other versions
EP0352612A1 (de
Inventor
Gerhard Prof. Kossmehl
Matthias Niemitz
Detlef Kabbeck-Kupijai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manroland AG
Original Assignee
MAN Roland Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883825850 external-priority patent/DE3825850A1/de
Application filed by MAN Roland Druckmaschinen AG filed Critical MAN Roland Druckmaschinen AG
Publication of EP0352612A1 publication Critical patent/EP0352612A1/de
Application granted granted Critical
Publication of EP0352612B1 publication Critical patent/EP0352612B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1033Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials by laser or spark ablation

Definitions

  • the invention relates to a method for producing a printing form, in which the printing form is locally influenced by means of electrochemical or electrical control signals output by a control device.
  • the printing forms for the planographic printing process which are customary today are generally produced outside the printing press by photochemical means, resulting in downtimes of the machine and personnel costs for the replacement of the printing forms.
  • Electronically stored data containing all of the information can be used today for the production of the printing forms.
  • a printing press is known from EP-A 101266 with which such electronically coded printing information is used in order to carry out a direct production or new production of the printing form located in the printing press. As a result, it is no longer necessary to change the printing form and the associated downtime of the machine and the personnel expenses.
  • the known printing press is characterized in that the printing form cylinder surface has a hydrophilic surface forming the printing form, which is washed by means provided in the printing press, coated with a hydrophobic layer and then, for. B. can be acted upon by a laser beam.
  • the redesign The printing form requires a short interruption of the printing process by switching on the washing, coating and laser device when the image changes while the machine is in operation. The previous color layer is washed off and the hydrophobic layer is renewed, which is removed locally with the laser beam in accordance with the image to be printed. The laser beam is controlled using the coded print information.
  • the method consists in using a printing form completely coated with an electrically conductive polymer.
  • the differentiation into image and non-image areas is achieved by an electrochemical influence on the polymer layer, which can be either in a hydrophilic or a hydrophobic form.
  • This method is further developed according to the invention in accordance with claims 1 and 2 in such a way that a polymer is deposited and removed again on an electrically conductive carrier material at the locations provided for this purpose.
  • the printing form is coated with a polymer, either a hydrophilic support with a hydrophobic or a hydrophobic support with a hydrophilic polymer, or the printing form is completely coated and partly removed and completely coated again for redesign.
  • a polymer is electrochemically generated on the substrate from a solution containing a suitable monomer at the designated locations.
  • the polymer can be removed electrochemically in the absence of the monomer, so that the original can be deleted and rewritten.
  • the carrier material for the artwork is electrically conductive, which means that it functions as an electrode in the electrochemical deposition or removal of the polymer. If, according to one embodiment of the invention, the support represents the non-image areas on the printing original, the support material must be correspondingly hydrophilic in order to be able to hold off the printing ink in connection with the fountain solution.
  • hydrophilic carrier material z. B. nickel or its alloys, which have the required hydrophilicity after suitable chemical and / or electrochemical pretreatment.
  • a printing form whose surface consists of nickel is exposed to an anodic current (preferably 10-500 mA / cm2) in a suitable electrolyte.
  • an electrolyte preferably 10-500 mA / cm2
  • B dilute nitric acid.
  • the nickel is thus electrochemically etched and given a surface structure that is favorable for the adhesion of the polymer.
  • the material with which the carrier is coated is an electrically conductive polymer. It is known that aromatics and heteroaromatics or their substitution products can be oxidized electrochemically and polymerized in the process. This creates coatings on the anode, the properties (adhesion, wetting behavior) of which depend very much on the test parameters (anode surface, monomer, concentrations, electrolyte, temperature, current density, etc.).
  • Aromatics and heteroaromatics such as thiophene, pyrrole, furan, indole, carbazole, benzothiophenes and their substitution products such as 3-alkyl-, primarily 3-methyl-, 3-alkyloxy- are particularly suitable as monomers which can be converted into suitable polymers by oxidized polymerization.
  • 3,4-dialkyloxy- mainly 3-methoxy-, 3,4-dimethoxy-, 3-alkylthio-, especially 3-methylthio-, 3,4-bis (methylthio) thiophene, pyrrole, furan, 2, 2′-bithienyl, 2,2 ′, 5 ′, 2 ⁇ -terthienyl, Di-2-thienyl sulfide, methane, 1,2-di-2-thienylethylene, aniline, substituted anilines, p-phenylenediamine, diphenylamine, 4,4'-diaminodiphenylmethane, ether, sulfide or mixtures of the monomers mentioned.
  • Inert salts are used as conductive salts under the conditions of the electrochemical reaction, in particular inorganic conductive salts such as ammonium, lithium, sodium tetrafluoroborates, -perchlorates, -sulfates, -hydrogen sulfates; quaternary ammonium salts such as tetraalkylammonium perchlorates, tetrafluoroborates, hexafluorophosphates, hexafluoroantimonates, hexafluoroarsenates, methanesulfonates, toluenesulfonates, trifluoromethanesulfonates, trifluoroacetates; other alkyl sulfonates and sulfates such as lauryl sulfate and other anionic surfactants such as e.g.
  • B. alkyl carboxylates These salts are dissolved in solvents which are also inert under the conditions of the electrochemical reaction, such as acetonitrile, 1,2-dimethoxyethane, methanesulfonic acid, dichloromethane, 1-methyl-2-pyrrolidone, nitrobenzene, nitroethane, nitromethane, dichloromethane, propionitrile, propylene carbonate, Tetrahydrofuran, benzonitrile and sulfolane, water, water in combination with surfactants or mixtures of the solvents mentioned.
  • solvents which are also inert under the conditions of the electrochemical reaction, such as acetonitrile, 1,2-dimethoxyethane, methanesulfonic acid, dichloromethane, 1-methyl-2-pyrrolidone, nitrobenzene, nitroethane, nitromethane, dichloromethane, propionitrile, propylene carbonate, Tetrahydrofuran
  • the printing form is assigned an electrolyte solution and electrodes, which are integrated into the printing press.
  • the electrolyte solution preferably contains conductive salts which are inert under the conditions of the electrochemical reaction and have sufficient solubility in the solvent used in each case.
  • the monomer or the monomer mixture from the electrolyte solution is deposited on the appropriately pretreated carrier material using a current density of preferably 0.1 to 20 mA / cm 2 as a polymer at the locations provided for this purpose.
  • the polymer must be removed at the points to be deleted. In the absence of the monomer, this is also done electrochemically with an anodic current of preferably 10-500 mA / cm2 in suitable electrolytes, such as, for. B. dilute nitric acid, with the same control as in the deposition.
  • suitable electrolytes such as, for. B. dilute nitric acid
  • Fig. 1 the image transfer cylinders of a printing press are shown, which work according to the flat printing or offset printing method.
  • the paper 10 to be printed is guided between a printing cylinder 11 and a rubber cylinder 12 and thereby takes up the printing ink applied to the rubber cylinder 12.
  • the color distributed in accordance with a typeface or a graphic image is transferred from a printing form 13, which is clamped on a likewise rotatable forme cylinder 14, to the rubber cylinder 12.
  • the image to be printed is imaged on the printing form 13 by areas which are water-repellent, ie. H. are hydrophobic.
  • the printing form 13 passes through a dampening unit 15.
  • the hydrophobic areas are not wetted by the dampening solution on the surface, while the dampening solution is bound to the hydrophilic areas.
  • the moistened surface then passes through an inking unit 16, with which the printing ink is applied.
  • the hydrophilic areas do not accept any printing ink.
  • the color is assumed at the hydrophobic areas representing the image parts.
  • the printing form consists of a carrier made of an electrically conductive material that is either hydrophilic or hydrophobic.
  • the carrier 13 can also be an electrically conductive layer which forms the surface of a printing plate or a forme cylinder 14.
  • a washing system 17 and an electrolyte system 18 are also provided in the printing press. After completing the print sequence, an image will be printed without the press switch off, the washing system 17 and the electrolyte system 18 switched on. After the printing ink has been delivered to the rubber cylinder 12, the printing form 13 passes through the washing system 17, with which the ink residues are washed off the printing form, in order to be subsequently acted upon by the electric field of the electrolyte system 18, with which the polymer applied in places on the carrier 13 according to an image Will get removed.
  • the redesign of the printing form 13 to produce a new image is carried out as follows.
  • the printing form 13 is in contact with an electrolyte solution 20 containing a monomer and is located with the latter between a first electrode 21, which is formed by the forme cylinder 14, and a counter electrode 22, which is designed as an electrode roller according to FIG. 1.
  • the electrolytic solution 20 consists of a conductive salt dissolved in a sufficient amount in a solvent.
  • an information transmission unit 24 which consists of an information distribution system 25 located in the editorial office and a control unit 26 located on or in the printing press.
  • the entire information intended for printing is electronically stored via so-called full-page break systems or full-page assembly systems for newspaper and illustration printing, or electronically encoded on the way via facsimile transmission systems.
  • These Information is passed on via an interface to a machine computer, which processes the information into control signals 27 with which the electrodes 21, 22 are acted upon by voltage or current pulses 23 via microprocessors 28.
  • the image is broken down into halftone dots, as is customary in printing technology.
  • a grid of 30 / cm is common in newspaper printing, and a grid of 120 / cm in high-quality illustration printing.
  • Each of these halftone dots must be separately controllable in order to produce the print areas by reversing them according to the image.
  • the electrode 21 located on the surface of the forme cylinder 14 is designed as an electrode matrix, each electrode element being assigned to a grid point.
  • FIG. 3 shows a top view of the greatly enlarged electrode matrix 21.
  • a plurality of microprocessors 28 are provided for controlling the individual electrode elements 30, a certain number of electrode elements 30 being assigned to a microprocessor 28.
  • the microprocessors are arranged in the forme cylinder 14 on the back of the electrode 21, as shown in cross-section in FIG. 1 and with thicker lines in FIG. 3. For example, a 1 cm 2 grid area could each be controlled by a microprocessor 28.
  • the electrode elements 30 (FIG. 3) are or are not controlled with the control device, depending on whether the point in question already has the state desired for the new image or not.
  • the electrode elements 30 can be driven in sequence or line by line at the same time.
  • the electrolyte solution 20 located in a container is conveyed by the counter electrode roller 22, which is designed as a homogeneous electrode with a rough surface.
  • the electrolyte solution can also be introduced into the reversing zone with a separate feed device.
  • the counter-electrode roller 22 is rotated, thereby entraining an electrolyte film 40 over the rough surface and conveying it into the gap 29 between the printing form 13 and the counter-electrode (22).
  • the applied polymer is removed again for a redesign of the image.
  • a further variant is the formation of an electrode with a sieve-like outer surface, through which electrolyte solution is pressed into the contact zone 29 under sufficient pressure during the rewriting process and the color is thereby kept out of the gap. This makes it possible to save a separate cleaning process with a separate washing system 17.
  • the electrode on the forme cylinder 14 can be made homogeneous and the counter electrode 22 can be designed in a matrix.
  • the counter electrode 22 can be designed in a matrix.
  • a matrix electrode as the counter electrode, it can also be made in several parts. If several counter electrodes are used, the grid density can be reduced. It is conceivable to produce the matrix electrode from electrode strips in single or multiple grid spacing or to use only one electrode line with which the entire printing form is treated line by line by the printing form (13) passing through the forming zone.
  • Another way of producing the matrix electrode is to use a homogeneous electrode, for example a metal roller, which is coated with a photoconductor.
  • a homogeneous electrode for example a metal roller, which is coated with a photoconductor.
  • 5 shows an exemplary embodiment in which the forme cylinder (51) receiving the printing form (50) is designed as a homogeneous electrode, while the counter electrode (52) takes over the function of the matrix electrode.
  • the counter electrode consists of a homogeneous electrode jacket, for example made of metal, which is coated with a photoconductor 53.
  • the photoconductor is imagewise exposed on a surface line of the counter electrode 52 by means of a radiation source 54.
  • the photoconductor 53 becomes conductive at the exposed points 55, so that when the conductive point 55 enters the contact zone 56 to the forme cylinder 51, the required current between the Forme cylinder electrode 51 and the counter electrode 53 can flow to reverse the printing form 50.
  • the information to be transmitted is here controlled via the light source 54 and briefly stored on the photoconductor 53.
  • the photoconductor preferably has the property of only briefly maintaining the conductivity introduced by the exposure.
  • the conductivity should be maintained up to the contact zone 56. After the line to be transferred has left the contact zone 56 again, the conductive points 52 do not have to become conductive again in order to allow a new description for the next rotation of the counter electrode 53.
  • organic photoconductors can be used as the photoconductor 53.
  • the desired opening and closing requirements of the photoconductor 53 can be influenced by applying or introducing afterglow substances in such a way that the conductive state is prolonged in time.
  • a thermal treatment is also conceivable with which the exposed areas 57 are acceleratedly rendered non-conductive after passing through the contact point 56. Otherwise, the diameter of a drum-like counter electrode 53 and the arrangement of the radiation source 54 will be determined in accordance with the opening and closing characteristics of the selected photoconductor.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Druckform, bei dem mittels von einer Steuereinrichtung ausgegebenen elektrochemischen oder elektrischen Steuersignalen die Druckform örtlich beeinflußt wird.
  • Die heute üblichen Druckformen für das Flachdruckverfahren werden im allgemeinen außerhalb der Druckmaschine auf fotochemischem Wege hergestellt, wobei sich Standzeiten der Maschine und Personalkosten der Maschine für das Auswechseln der Druckformen ergeben.
  • Für die Herstellung der Druckformen können heute elektronisch gespeicherte Daten verwendet werden, die die gesamte Information enthalten.
  • Aus der EP-A 101266 ist eine Druckmaschine bekannt, mit der derartige elektronisch codiert vorliegende Druckinformationen genutzt werden, um eine direkte Herstellung bzw. Neuherstellung der in der Druckmaschine befindlichen Druckform vorzunehmen. Hierdurch ist ein Auswechseln der Druckform und die damit verbundene Standzeit der Maschine und der Pesonalaufwand nicht mehr nötig.
  • Die bekannte Druckmaschine zeichnet sich dadurch aus, daß die Druckformzylinder-Oberfläche eine die Druckform bildende hydrophile Oberfläche hat, die mittels in der Druckmaschine vorhandenen Einrichtungen gewaschen, mit einer hydrophoben Schicht beschichtet und anschließend, z. B. von einem Laserstrahl beaufschlagt werden kann. Die Neugestaltung der Druckform erfordert eine kurze Unterbrechung des Druckprozesses, indem bei Bildwechsel während des Betriebes der Maschine die Wasch-, Beschichtungs- und Lasereinrichtung eingeschaltet werden. Dabei wird die vorhergehende Farbschicht abgewaschen und die hydrophobe Schicht erneuert, die mit dem Laserstrahl örtlich entsprechend dem zu druckenden Bild entfernt wird. Der Laserstrahl wird mit Hilfe der codierten Druckinformation gesteuert.
  • Aus der EP-A-0 160 920 ist es bekannt, ein hydrophobes Polymer von einem flächigen, hydrophilen Träger, der in eine Elektrolytlösung eintaucht, Material zu entfernen, um entsprechend einem zu druckenden Bild eine Druckform zu erzeugen. Diese Druckform muß dann jedoch später auf einen Formzylinder eingespannt werden.
  • Bei dem Vorschlag nach der Hauptpatentanmeldung P 37 05 439 ergibt sich die Möglichkeit, die Druckvorlage innerhalb der Druckmaschine, ohne den Umweg über ein optisches Verfahren mit Hilfe der von der elektronisch gespeicherten Information geregelten elektrischen Ansteuerung herzustellen und zu verändern, ohne die Druckmaschine anhalten und die Druckform austauschen zu müssen. Das Verfahren besteht darin, daß eine mit einem elektrisch leitfähigen Polymer vollständig beschichtete Druckform verwendet wird. Die Differenzierung in Bild- und Nichtbildbereiche wird hierbei durch eine eletrochemische Beeinflussung der Polymerschicht, die entweder in einer hydrophilen oder einer hydrophoben Form vorliegen kann, erreicht.
  • Dieses Verfahren wird erfindungsgemäß nach Anspruch 1 bzw. 2 dahingehend weiterentwickelt, daß auf einem elektrisch leitfähigen Trägermaterial an den dafür vorgesehenen Stellen auf elektrochemischem Wege ein Polymer abgeschieden und wieder entfernt wird.
  • Hierbei wird nur ein Teil der Druckform mit einem Polymer, und zwar entweder ein hydrophiler Träger mit einem hydrophoben oder ein hydrophober Träger mit einem hydrophilen Polymer, oder die Druckform wird vollständig beschichtet und teilweise entfernt und zur Umgestaltung wieder vollständig beschichtet.
  • Mit punktuell angelegten elektrischen Strömen bzw. Feldern wird auf dem Trägermaterial aus einer Lösung, die ein geeignetes Monomer enthält, an den dafür vorgesehenen Stellen ein Polymer elektrochemisch erzeugt. Mit derselben Anordnung läßt sich das Polymer bei Abwesenheit des Monomers elektrochemisch wieder entfernen, so daß die Druckvorlage gelöscht und wieder neu beschrieben werden kann.
  • Damit ergibt sich auch die Möglichkeit, aus einer mit einem geeigneten Polymer vollständig beschichteten Druckform durch elektronisches Entfernen des Polymers an den dafür vorgesehenen Stellen eine Druckvorlage zu erzeugen.
  • Das Trägermaterial für die Druckvorlage ist elektrisch leitfähig, womit es bei der elektrochemischen Abscheidung bzw. Entfernung des Polymers als Elektrode fungiert. Wenn der Träger gemäß einer Ausgestaltung der Erfindung auf der Druckvorlage die Nichtbildbereiche darstellt, muß das Trägermaterial entsprechend hydrophil sein, um in Verbindung mit dem Feuchtmittel die Druckfarbe abhalten zu können.
  • Als hydrophiles Trägermaterial eignet sich z. B. Nickel oder seine Legierungen, welche nach geeigneter chemischer und/oder elektrochemischer Vorbehandlung die benötigte Hydrophilie aufweisen.
  • Eine Druckform, deren Oberfläche aus Nickel besteht, wird in einem geeigneten Elektrolyten einem anodischen Strom (vorzugsweise 10-500 mA/cm²) ausgesetzt. Als Elektrolyt eignet sich z. B. verdünnte Salpetersäure. Das Nickel wird so elektrochemisch geätzt und erhält eine für die Haftung des Polymers günstige Oberflächenstruktur.
  • Erfindungsgemäß ist das Material, mit dem der Träger belegt wird, ein elektrisch leitfähiges Polymer. Es ist bekannt, das Aromaten und Heteroaromaten bzw. ihre Substitutionsprodukte elektrochemisch oxidiert und dabei polymerisiert werden können. Dabei entstehen auf der Anode Überzüge, deren Eigenschaften (Haftung, Benetzungsverhalten) sehr stark von den Versuchsparametern (Anodenoberfläche, Monomer, Konzentrationen, Elektrolyt, Temperatur, Stromdichte etc.) abhängen.
  • Als Monomere, die durch oxidierte Polymerisation in geeignete Polymere überführt werden können, eignen sich insbesondere Aromaten und Heteroaromaten wie Thiophen, Pyrrol, Furan, Indol, Carbazol, Benzothiophene und ihre Substitutionsprodukte wie 3-Alkyl-, vornehmlich 3-Methyl-, 3 Alkyloxy-, 3,4-Dialkyloxy-, vornehmlich 3-Methoxy-, 3,4-Dimethoxy-, 3-Alkylthio-, besonders 3-Methylthio-, 3,4-Bis(methylthio)thiophen, -pyrrol, -furan, 2,2′Bithienyl, 2,2′,5′,2˝-Terthienyl, Di-2-thienylsulfid, -methan, 1,2-Di-2-thienylethylen, Anilin, substituierte Aniline, p-Phenylendiamin, Diphenylamin, 4,4′-Diaminodiphenylmethan, -ether, -sulfid oder Mischungen der genannten Monomere.
  • Als Leitsalze werden unter den Bedingungen der elektrochemischen Reaktion inerte Salze verwendet, insbesondere anorganische Leitsalze wie Ammonium-, Lithium-, Natriumtetrafluoroborate, -perchlorate, -sulfate, -hydrogensulfate; quartäre Ammoniumsalze wie Tetraalkylammoniumperchlorate, -tetrafluoroborate, -hexafluorophosphate, -hexafluorantimonate, -hexafluoroarsenate, -methansulfonate, -toluolsulfonate, -trifluormethansulfonate, -trifluoracetate; andere Alkylsulfonate und -sulfate wie Laurylsulfat und andere anionische Tenside, wie z. B. Alkylcarboxylate. Diese Salze werden in Lösemitteln gelöst, die ebenfalls unter den Bedingungen der elektrochemischen Reaktion inert sind wie Acetonitril, 1,2-Dimethoxyethan, Methansulfonsäure, Dichlormethan, 1-Methyl-2-pyrrolidon, Nitrobenzol, Nitroethan, Nitromethan, Dichlormethan, Propionitril, Propylencarbonat, Tetrahydrofuran, Benzonitril und Sulfolan, Wasser, Wasser in Verbindung mit Tensiden oder Mischungen der genannten Lösemittel.
  • Zur Herstellung und Umwandlung der Druckvorlage werden der Druckform eine Elektrolytlösung und Elektroden zugeordnet, die in die Druckmaschine integriert werden. Die Elektrolytlösung enthält vorzugsweise Leitsalze, die unter den Bedingungen der elektrochemischen Reaktion inert sind und eine ausreichende Löslichkeit in dem jeweils verwendeten Lösemittel besitzen.
  • Auf dem entsprechend vorbehandelten Trägermaterial wird das Monomer oder die Monomermischung aus der Elektrolytlösung unter Anwendung einer Stromdichte von vorzugsweise 0,1 bis 20 mA/cm² als Polymer an den dafür vorgesehenen Stellen abgeschieden.
  • Zur Umgestaltung der Druckvorlage muß das Polymer an den zu löschenden Stellen wieder entfernt werden. Dies geschieht bei Abwesenheit des Monomers ebenfalls elektrochemisch bei einem anodischen Strom von vorzugsweise 10-500 mA/cm² in geeigneten Elektrolyten, wie z. B. verdünnter Salpetersäure, mit derselben Ansteuerung wie bei der Abscheidung. Dabei wird die ursprüngliche Trägeroberfläche wieder regeneriert und kann erneut beschrieben werden.
  • Die Erfindung wird anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
    • Fig. 1 die Druckwalzen einer Druckmaschine im Querschnitt,
    • Fig. 2 eine Steuereinheit im Blockschaltbild,
    • Fig. 3 ein Detail aus Fig. 1.
    • Fig. 4 ein zweites Ausführungsbeispiel.
  • In Fig. 1 sind die Bildübertragungszylinder einer Druckmaschine dargestellt, die nach dem Flachdruck- bzw. Offsetdruck-Verfahren arbeiten. Das zu bedruckende Papier 10 wird zwischen einem Druckzylinder 11 und einem Gummizylinder 12 geführt und nimmt dabei die auf den Gummizylinder 12 aufgebrachte Druckfarbe auf. Die entsprechend einem Schriftbild oder einem graphischen Bild verteilte Farbe wird von einer Druckform 13, die auf einem ebenfalls drehbaren Formzylinder 14 aufgespannt ist, auf den Gummizylinder 12 übertragen. Das zu druckende Bild ist auf der Druckform 13 durch Bereiche abgebildet, die wasserabweisend, d. h. hydrophob sind. Im Druckvorgang durchläuft die Druckform 13 ein Feuchtwerk 15. Die hydrophoben Bereiche werden dabei vom Feuchtmittel auf der Oberfläche nicht benetzt, während an den hydrophilen Bereichen das Feuchtmittel gebunden wird. Die angefeuchtete Oberfläche durchläuft anschließend ein Farbwerk 16, womit die Druckfarbe aufgetragen wird. Die hydrophilen Bereiche nehmen dabei keine Druckfarbe an. Dagegen wird an den die Bildteile darstellenden hydrophoben Bereichen die Farbe angenommen.
  • Die Druckform besteht aus einem Träger aus einem elektrisch leitenden Material, das entweder hydrophil oder hydrophob ist. Der Träger 13 kann auch eine elektrisch leitfähige Schicht sein, die die Oberfläche einer Druckplatte bzw. eines Formzylinders 14 bildet.
  • In der Druckmaschine sind ferner eine Waschanlage 17 und eine Elektrolytanlage 18 vorgesehen. Nach Beendigung der Druckfolge einer Bildvorlage werden, ohne die Druckmaschine abzuschalten, die Waschanlage 17 und die Elektrolytanlage 18 eingeschaltet. Dabei durchläuft die Druckform 13 nach der Druckfarbenabgabe an den Gummizylinder 12 die Waschanlage 17, mit der die Farbreste von der Druckform abgewaschen werden, um anschließend vom elektrischen Feld der Elektrolytanlage 18 beaufschlagt zu werden, womit das stellenweise auf dem Träger 13 nach einer Bildvorlage aufgebrachte Polymer entfernt wird. Die Umgestaltung der Druckform 13 zur Erzeugung eines neuen Bildes wird wie folgt durchgeführt.
  • In Fig. 2 ist eine prinzipielle Anordnung für die Umsteuerung dargestellt. Die Druckform 13 steht in Kontakt mit einer ein Monomer enthaltenden Elektrolytlösung 20 und befindet sich mit dieser zwischen einer ersten Elektrode 21, die vom Formzylinder 14 gebildet wird und einer Gegenelektrode 22, die gemäß Fig. 1 als Elektrodenwalze ausgebildet ist. Die Elektrolytlösung 20 besteht aus einem in ausreichender Menge in einem Lösungsmittel gelösten Leitsalz.
  • Zur Einleitung des Elektrolytprozesses ist eine Informationsübertragungseinheit 24 vorgesehen, die aus einem in der Redaktion befindlichen Informationsaufteilungssystem 25 und einer an bzw. in der Druckmaschine befindlichen Steuereinheit 26 besteht. In der Redaktion werden die gesamten für einen Druck vorgesehenen Informationen über sogenannte Ganzseitenumbruch-Systeme bzw. Ganzseitenmontage-Systeme für Zeitungs- und Illustrationsdruck elektronisch eingespeichert oder auf dem Weg über Faksimile-Übertragungssysteme elektronisch codiert. Diese Informationen werden über Interface an einen Maschinencomputer weitergegeben, der die Informationen in Steuersignale 27 umarbeitet, mit denen über Mikroprozessoren 28 die Elektroden 21, 22 mit Spannungs- bzw. Stromimpulsen 23 beaufschlagt werden.
  • Um die Bildbereiche an der Druckform 13 herstellen zu können, wird das Bild, wie in der Drucktechnik üblich, in Rasterpunkte zerlegt. Im Zeitungsdruck ist beispielsweise ein Raster 30/cm üblich, im qualitativ hochwertigen Illustrationsdruck ein Raster von 120/cm. Jeder dieser Rasterpunkte muß getrennt ansteuerbar sein, um die Druckbereiche durch Umsteuerung entsprechend dem Bild herzustellen. Hierzu ist die an der Oberfläche des Formzylinders 14 befindliche Elektrode 21 als Elektrodenmatrix ausgebildet, wobei jedes Elektrodenelement jeweils einem Rasterpunkt zugeordnet ist.
  • Fig. 3 zeigt eine Draufsicht der stark vergrößerten Elektrodenmatrix 21. Zur Ansteuerung der einzelnen Elektrodenelemente 30 sind eine Vielzahl von Mikroprozessoren 28 vorgesehen, wobei einem Mikroprozessor 28 eine bestimmte Zahl von Elektrodenelementen 30 zugeordnet werden. Die Mikroprozessoren sind in dem Formzylinder 14 an der Rückseite der Elektrode 21 angeordnet, wie es in Fig. 1 im Querschnitt und in Fig. 3 mit stärkeren Linien dargestellt ist. Dabei könnte beispielsweise eine 1 cm²-Rasterfläche jeweils von einem Mikroprozessor 28 angesteuert werden.
  • Zur Herstellung eines Druckmusters 31 auf der Druckform 13 werden die Elektrodenelemente 30 (Fig. 3) mit der Steuereinrichtung angesteuert oder nicht angesteuert, je nachdem, ob der betreffende Punkt bereits den für das neue Bild erwünschten Zustand hat oder nicht. Die Elektrodenelemente 30 können der Reihe nach oder zeilenweise gleichzeitig angesteuert werden.
  • Gemäß Fig. 1 erfolgt die Förderung der in einem Behälter befindlichen Elektrolytlösung 20 durch die Gegenelektrodenwalze 22, die als homogene Elektrode mit rauher Oberfläche ausgebildet ist. Die Elektrolytlösung kann auch mit einer separaten Zuführungseinrichtung in die Umsteuerzone eingebracht werden.
  • Für einen Umsteuerungsvorgang, bei der die Eletrolytanlage 18 in Betrieb genommen wird, wird die Gegenelektrodenwalze 22 gedreht, womit sie über die rauhe Oberfläche einen Elektrolytfilm 40 mitreißt und in den Spalt 29 zwischen Druckform 13 und Gegenelektrode (22) befördert.
  • Durch Umkehrung der Spannungsrichtung und Anwendung eines Elektrolyten ohne einem Monomer wird das aufgebrachte Polymer für eine Neugestaltung des Bildes wieder entfernt.
  • Eine weitere Variante ist die Ausbildung einer Elektrode mit einer siebartigen Mantelfläche, durch die während des Umschreibvorganges Elektrolytlösung unter ausreichendem Druck in die Kontaktzone 29 gepreßt und dabei die Farbe aus dem Spalt herausgehalten wird. Hierdurch ist es möglich, einen getrennten Reinigungsvorgang mit einer gesonderten Waschanlage 17 einzusparen.
  • Die Anordnung und Ausgestaltung der homogenen bzw. matrixartigen Elektroden kann beliebig ausgeführt werden. So kann selbstverständlich die Elektrode an dem Formzylinder 14 homogen und die Gegenelektrode 22 matrixartig ausgeführt sein. Bei einer Matrixelektrode als Gegenelektrode kann diese auch mehrteilig ausgeführt werden. Bei der Verwendung von mehreren Gegenelektroden ist eine Verringerung der Rasterdichte möglich. Es ist vorstellbar, die Matrixelektrode aus Elektrodenstreifen im einfachen oder mehrfachen Rasterabstand herzustellen oder nur eine Elektrodenzeile zu verwenden, mit der zeilenweise die gesamte Druckform behandelt wird, indem die Druckform (13) die Umformzone durchläuft.
  • Eine weitere Art, die Matrixelektrode herzustellen, ist die Verwendung einer homogenen Elektrode, beispielsweise einer Metallwalze, die mit einem Fotoleiter beschichtet ist. In Fig. 5 ist ein Ausführungsbeispiel hierzu gezeigt, bei dem der die Druckform (50) aufnehmende Formzylinder (51) als homogene Elektrode ausgebildet ist, während die Gegenelektrode (52) die Funktion der Matrixelektrode übernimmt.
  • Die Gegenelektrode besteht aus einem homogenen Elektrodenmantel, beispielsweise aus Metall, der mit einem Fotoleiter 53 beschichtet ist. Der Fotoleiter wird an einer Mantellinie der Gegenelektrode 52 bildmäßig mittels einer Strahlenquelle 54 belichtet. Der Fotoleiter 53 wird an den belichteten Stellen 55 leitend, so daß bei Eintritt der leitenden Stelle 55 in die Kontaktzone 56 zum Formzylinder 51 der erforderliche Strom zwischen der Formzylinderelektrode 51 und der Gegenelektrode 53 zum Umsteuern der Druckform 50 fließen kann. Die zu übertragende Information wird hierbei über die Lichtquelle 54 eingesteuert und auf den Fotoleiter 53 kurzzeitig eingespeichert.
  • Der Fotoleiter hat vorzugsweise die Eigenschaft, die durch die Belichtung eingebrachte Leitfähigkeit nur kurzzeitig aufrecht zu erhalten. Dabei soll die Leitfähigkeit bis zur Kontaktzone 56 beibehalten werden. Nachdem die gerade zu übertragende Zeile die Kontaktzone 56 wieder verlassen hat, müssen die leitfähigen Stellen 52 wieder nicht leitend werden, um eine erneute Beschreibung für die nächste Umdrehung der Gegenelektrode 53 zu ermöglichen. Als Fotoleiter 53 können insbesondere organische Fotoleiter verwendet werden.
  • Die gewünschten Auf- und Zuschalterfordernisse des Fotoleiters 53 können durch Auf- oder Einbringen nachleuchtender Stoffe derart beeinflußt werden, daß der leitfähige Zustand zeitlich verlängert wird. Es ist auch eine thermische Behandlung vorstellbar, mit der die belichteten Stellen 57 nach dem Durchfahren der Kontaktstelle 56 beschleunigt nichtleitend gemacht werden. Im übrigen wird man den Durchmesser einer trommelartigen Gegenelektrode 53 sowie die Anordnung der Strahlenquelle 54 entsprechend der Auf- und Zuschaltcharakteristik des gewählten Fotoleiters bestimmen.

Claims (18)

  1. Verfahren zur Herstellung einer mindestens teilweise mit einem hydrophilen Träger beschichteten Druckform (13, 50) mittels von einer Steuereinheit (26) ausgegebenen elektrochemischen oder elektrischen Steuersignalen (27), wobei über die Steuersignale (27) mittels einer ersten Elektrode (21, 51) und einer Gegenelektrode (22, 52), die als Elektrodenwalze ausgebildet ist, auf dem hydrophilen Träger entsprechend einem zu druckenden Bild hydrophobes Polymer abgeschieden oder von dem Träger entfernt wird.
  2. Verfahren zur Herstellung einer mindestens teilweise mit einem hydrophoben Träger beschichteten Druckform (13, 50) mittels von einer Steuereinheit (26) ausgegebenen elektrochemischen oder elektrischen Steuersignalen (27), wobei über die Steuersignale (27) mittels einer ersten Elektrode (21, 51) und einer Gegenelektrode (22, 52), die als Elektrodenwalze ausgebildet ist, auf dem hydrophoben Träger entsprechend einem zu druckenden Bild hydrophiles Polymer abgeschieden oder von dem Träger entfernt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß auf dem Träger ein elektrisch leitfähiges Polymer abgeschieden oder entfernt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß ein durch oxidative Polymerisation von Aromaten oder Heteroaromaten hergestelltes Polymer verwendet wird.
  5. Verfahrennach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, daß die Gegenelektrode (22, 52) in eine Elektrolytlösung (20) eintaucht.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Elektrolytlösung (20) für den elektrochemischen Prozeß Leitsalze enthält, die unter den Bedingungen der elektrochemischen Reaktion inert sind.
  7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß als die erste Elektrode (21, 51) eine Druckform (13, 50) oder die Oberfläche eines die Druckform (13, 50) aufnehmenden Formzylinders (14) verwendet wird, und daß die Gegenelektrode (22, 52) gegenüber der Druckform (13, 50) oder dem Formzylinder (14) verschiebbar vorgesehen wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die erste Elektrode (21, 51) oder die Gegenelektrode (22, 52) rasterartig ansteuerbar ausgebildet ist.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die erste Elektrode (21, 51) oder die Gegenelektrode (22, 52) aus einer Elektrodenreihe besteht, die für jede Zeile neu angesteuert wird.
  10. Verfahren nach den Ansprüchen 7 und 8, dadurch gekennzeichnet, daß die Oberfläche der Druckform (13, 50) oder des Formzylinders (14) oder die Gegenelektrode (22, 52) als Elektrodenmatrix (21, Fig. 3) mit Elektrodenelementen (30) ausgebildet ist.
  11. Verfahren nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, daß die Gegenelektrode (22) eine rauhe Oberfläche aufweist und die Elektrolytlösung (20) an die Druckform (13, 50) fördert.
  12. Verfahren nach einem der Ansprüche 5 bis 11, dadurch gekennzeichnet, daß Mittel vorgesehen sind, mit denen die Elektrolytlösung (20) in die Umsteuerzone gepreßt wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Gegenelektrode (52) mit einem Fotoleiter (53) beschichtet wird, und daß eine zur punktuellen Belichtung des Fotoleiters (53) dienende Strahlenquelle (54) der Gegenelektrode (52) zugeordnet wird.
  14. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß auf der Rückseite der Elektrodenmatrix (21, Fig. 3) Mikroprozessoren (28) zur An- und Umsteuerung der Elektrodenelemente (30) angeordnet werden.
  15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Monomer Aromaten oder Heteroaromaten wie Thiophen, Pyrrol, Furan, Indol, Carbazol, Benzothiophene und ihre Substitutionsprodukte wie 3-Alkyl-, vornehmlich 3-Methyl-, 3-Alkyloxy-, vornehmlich 3,4-Dialkyloxy-, vornehmlich 3-Methoxy, 3,4-Dimethoxy-, 3-Alkylthio-, besonders 3-Methylthio-, 3,4-Bis (methylthio)-thiophen, -pyrrol, -furan, 2,2′-Bithienyl, 2,2′,5′,2˝-Terthienyl, Di-2-thienylsulfid, -methan 1,2-Di-2-thienylethylen, Anilin, substituierte Aniline, p-Phenylendiamin, Diphenylamin, 4,4′-Diaminodiphenylmethan, -ether, -sulfid oder Mischungen davon verwendet werden, die in Lösemitteln gelöst oder emulgiert werden, die unter den Bedingungen der elektrochemischen Reaktion inert sind.
  16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Lösemittel Acetonitril, 1,2-Dimethoxyethan, Methansulfonsäure, Dichlormethan, 1-Methyl-2-pyrrolidon, Nitrobenzol, Nitroethan, Nitromethan, Dichlormethan, Propionitril, Propylencarbonat, Tetrahydrofuran, Benzonitril, Sulfolan, Wasser oder Gemische dieser Lösemittel verwendet werden.
  17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß als Leitsalze anorganische Leitsalze wie Ammonium-, Lithium-, Natriumtetrafluoroborate, -perchlorate, -sulfate, -hydrogensulfate; quartäre Ammoniumsalze wie Tetraalkylammoniumperchlorate, -tetrafluoroborate, -hexafluorophosphate, -hexafluoroantimonate, -hexafluoroarsenate, -methansulfonate, -toluolsulfonate, -trifluormethansulfonate, -trifluoracetate; andere Alkylsulfonate und -Sulfate wie Laurylsulfat und andere anionische Tenside, wie z. B. Alkylcarboxylate oder Mischungen davon verwendet werden, die unter den Bedingungen der elktrochemischen Reaktion inert sind.
  18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das abgeschiedene Polymer von dem Träger wieder entfernt wird.
EP89113215A 1988-07-29 1989-07-19 Verfahren zur Herstellung einer Druckform Expired - Lifetime EP0352612B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3825850 1988-07-29
DE19883825850 DE3825850A1 (de) 1987-02-20 1988-07-29 Verfahren zur herstellung einer druckform

Publications (2)

Publication Number Publication Date
EP0352612A1 EP0352612A1 (de) 1990-01-31
EP0352612B1 true EP0352612B1 (de) 1993-03-10

Family

ID=6359871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89113215A Expired - Lifetime EP0352612B1 (de) 1988-07-29 1989-07-19 Verfahren zur Herstellung einer Druckform

Country Status (4)

Country Link
US (1) US5145758A (de)
EP (1) EP0352612B1 (de)
JP (1) JPH0274344A (de)
DE (1) DE58903702D1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2245866B (en) * 1990-07-07 1995-03-15 Heidelberger Druckmasch Ag Printing machine with print image formation system
DE4235242C1 (de) * 1992-10-20 1993-11-11 Roland Man Druckmasch Löschbare Druckform
GB2304628B (en) * 1995-09-07 1998-09-23 Kodak Ltd Printing plate product
GB2304629B (en) * 1995-09-07 1998-09-23 Kodak Ltd Electrode for use in writing information on a printing plate
JP3606047B2 (ja) 1998-05-14 2005-01-05 セイコーエプソン株式会社 基板の製造方法
US6374737B1 (en) 2000-03-03 2002-04-23 Alcoa Inc. Printing plate material with electrocoated layer
US6405651B1 (en) * 2000-03-03 2002-06-18 Alcoa Inc. Electrocoating process for making lithographic sheet material
GB2374818B (en) * 2001-04-23 2005-01-12 Secr Defence Surface for promoting droplet formation
US6610458B2 (en) 2001-07-23 2003-08-26 Kodak Polychrome Graphics Llc Method and system for direct-to-press imaging
US6742454B2 (en) * 2001-10-30 2004-06-01 Heidelberger Druckmaschinen Ag Method for modifying an image surface of a printing plate
JP2003261801A (ja) * 2002-03-08 2003-09-19 Brother Ind Ltd インクジェット記録用水性インク及びインクジェット記録方法
WO2015010933A1 (en) * 2013-07-23 2015-01-29 Basf Se Oxiranyl derivatives as additives for electrolytes in lithium-ion batteries

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3106155A (en) * 1960-07-28 1963-10-08 Eastman Kodak Co Electrolytic recording with organic polymers
US3638567A (en) * 1969-05-13 1972-02-01 Xerox Corp Method of preparing and utilizing a gravure printing master
JPS5280902A (en) * 1975-12-26 1977-07-07 Fuji Xerox Co Ltd Offset printing method employing image recording element
DE2725093C3 (de) * 1977-06-03 1984-04-05 Rudolf Dr.-Ing. 2300 Kiel Hell Druckverfahren und Anordnung zu dessen Durchführung
EP0101266A3 (de) * 1982-08-09 1985-04-03 Milliken Research Corporation Druckverfahren und Vorrichtung
US4729310A (en) * 1982-08-09 1988-03-08 Milliken Research Corporation Printing method
US4718340A (en) * 1982-08-09 1988-01-12 Milliken Research Corporation Printing method
JPS59171963A (ja) * 1983-03-18 1984-09-28 Fuji Photo Film Co Ltd 電子写真製版材料
DE3416867A1 (de) * 1984-05-08 1985-11-14 Hoechst Ag, 6230 Frankfurt Einstufiges elektrochemisches bilderzeugungsverfahren fuer reproduktionsschichten
JPS61255898A (ja) * 1985-04-30 1986-11-13 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション 熱的に誘導される化学変化を用いた改良印刷装置
DE3705439A1 (de) * 1987-02-20 1988-09-01 Man Technologie Gmbh Druckmaschine
US4849314A (en) * 1987-11-04 1989-07-18 E. I. Du Pont De Nemours And Company Photohardenable electrostatic master containing electron acceptor or donor
DE3740079A1 (de) * 1987-11-26 1989-06-08 Man Technologie Gmbh Elektrische aufzeichnungseinrichtung fuer druckformen von druckmaschinen

Also Published As

Publication number Publication date
DE58903702D1 (de) 1993-04-15
US5145758A (en) 1992-09-08
EP0352612A1 (de) 1990-01-31
JPH0274344A (ja) 1990-03-14

Similar Documents

Publication Publication Date Title
EP0279066B1 (de) Druckmaschine
EP0262475B1 (de) Druckmaschine
EP0352612B1 (de) Verfahren zur Herstellung einer Druckform
DE69001900T2 (de) Hochgeschwindigkeits-elektrokoagulationsdruckverfahren und -vorrichtung.
EP1473154A2 (de) Druckverfahren und Druckmaschine
DE69810733T2 (de) Vorrichtung zur Herstellung einer Druckplatte und Drucker und Drucksystem die diese Vorrichtung verwenden
DE2058529A1 (de) Verfahren und Vorrichtung zur Wiedergabe bzw. Vervielfaeltigung einer Bildvorlage
DE69226604T2 (de) Photoelektrochemisches Abbildungssystem
CH694159A5 (de) Verfahren zum Gravieren von Gravurzylindern.
DE3835091C2 (de)
EP1219417B1 (de) Maskenerstellung zur Herstellung einer Druckform
DE3825850A1 (de) Verfahren zur herstellung einer druckform
DE3809915C2 (de)
DE69026656T2 (de) Bilderzeugungsvorrichtung
EP1260360B1 (de) Verfahren zum Aufbringen von Druckfarben auf einen Bedruckstoff
DE69519765T2 (de) Druckplatte und Verfahren zu deren Herstellung
DE4021662C2 (de) Druckmaschine mit elektrochemisch veränderbarer Druckform
DE69801194T2 (de) Mehrfarben -Elektrokoagulationsdruckverfahren und Vorrichtung
DE4119111A1 (de) Verfahren zur herstellung von druckformen
US6113772A (en) Method for making lithographic printing plates based on electroplating
DE69811470T2 (de) GT-Verfahren zur Herstellung von lithographischen Druckplatten durch Elektroplattieren
DE60003988T2 (de) Elektrokoagulationsdruckverfahren und Vorrichtung zur Erzeugung von erhöhter Bildauflösung
DE4031860C2 (de)
DE1126215B (de) Verfahren zur galvanischen Herstellung von Flachdruckplatten
CH484752A (de) Stahlstichdruckplatte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19900203

17Q First examination report despatched

Effective date: 19911015

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 58903702

Country of ref document: DE

Date of ref document: 19930415

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930614

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89113215.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950614

Year of fee payment: 7

Ref country code: CH

Payment date: 19950614

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950615

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950621

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950626

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950629

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960731

Ref country code: CH

Effective date: 19960731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960719

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970402

EUG Se: european patent has lapsed

Ref document number: 89113215.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST