EP0279066B1 - Druckmaschine - Google Patents

Druckmaschine Download PDF

Info

Publication number
EP0279066B1
EP0279066B1 EP87118998A EP87118998A EP0279066B1 EP 0279066 B1 EP0279066 B1 EP 0279066B1 EP 87118998 A EP87118998 A EP 87118998A EP 87118998 A EP87118998 A EP 87118998A EP 0279066 B1 EP0279066 B1 EP 0279066B1
Authority
EP
European Patent Office
Prior art keywords
printing
printing machine
machine according
electrode
forme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87118998A
Other languages
English (en)
French (fr)
Other versions
EP0279066A2 (de
EP0279066A3 (en
Inventor
Wolfgang Dr. Dipl.-Chem. Scheer
Hartmut Dipl.-Phys. Fuhrmann
Gerhard Prof. Dipl.-Chem. Kossmehl
Matthias Dipl.-Chem. Niemitz
Detlef Dipl.-Chem. Kabbeck-Kupijai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manroland AG
Original Assignee
MAN Roland Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Roland Druckmaschinen AG filed Critical MAN Roland Druckmaschinen AG
Publication of EP0279066A2 publication Critical patent/EP0279066A2/de
Publication of EP0279066A3 publication Critical patent/EP0279066A3/de
Application granted granted Critical
Publication of EP0279066B1 publication Critical patent/EP0279066B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1041Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by modification of the lithographic properties without removal or addition of material, e.g. by the mere generation of a lithographic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/20Duplicating or marking methods; Sheet materials for use therein using electric current

Definitions

  • the invention relates to a printing press which works in the planographic printing process and is equipped with a printing form which has wettable and non-wettable areas corresponding to an image to be printed, means being provided by means of which these areas of the printing form for changing the image locally and without the To have to remove printing form, can be reversed and a control device is assigned to the printing press, with which the electrical control signals for local influencing of the printing form can be generated.
  • printing forms are used which are clamped on a printing form cylinder and which are used for image transmission for the printing process.
  • the printing form contains two areas, namely the water-repellent area representing the image parts and the water-accepting area representing the non-image parts.
  • the printing form is wetted by means of a so-called dampening system with dampening solution, such as a water / alcohol mixture, the dampening solution being bound to the surface of the printing form in the non-image areas.
  • dampening solution such as a water / alcohol mixture
  • the dampening solution is thus only displaced or emulsified into the hydrophobic image areas by the printing ink subsequently applied to the printing form.
  • the color thus applied to the printing form is finally printed on a sheet of paper using a rubber cylinder.
  • the printing form is produced outside of the printing press with the respective image, so that there are downtimes and personnel costs for the machine for the replacement of printing forms.
  • electronically stored data can be used today, which contain all of the information to be printed.
  • An electrochemical imaging method is known from US Pat. No. 4,068,588, in which an electrolyte containing an electrochromic material is introduced between two direct current electrodes, the printing form to be imaged as an anode and the counter electrode coated with a photoconductor as a cathode. An electrochromic image is thus deposited on the printing form by means of the photoconductor. This is intended to solve the task of creating a printing form in which visual control of the image quality is facilitated.
  • EP-A 0 160 920 discloses a one-step electrochemical process for reproduction layers. However, such an image formation process is obviously not carried out within a printing press.
  • a printing press is known from EP-A 101266 with which such electronically coded printing information is used in order to carry out a direct production or new production of the printing form located in the printing press. As a result, it is no longer necessary to change the printing form and the associated downtime of the machine and the personnel expenditure.
  • the known printing press is characterized in that the printing form cylinder surface has a hydrophilic surface forming the printing form, which is washed by means provided in the printing press, coated with a hydrophobic layer and then, for. B. can be acted upon by a laser beam.
  • the redesign of the printing form requires a brief interruption in the printing process by switching on the washing, coating and laser device when the image changes while the machine is in operation.
  • the previous color layer is washed off and the hydrophobic layer is renewed, which is removed locally with the laser beam in accordance with the image to be printed.
  • the laser beam is controlled using the coded print information.
  • the invention has for its object to find another solution for a printing press of the type mentioned, with which the printing area can be converted in a simple manner and with simple manufacturing technology.
  • the printing form can be designed in the form of a film which is clamped onto a plate or a cylinder, wherein either the entire film or only the film surface consists of the electrically controllable material. But it is also possible to design the plate or cylinder surface as a printing form, i. i.e. to coat with the material.
  • controllable material With selectively applied electrical currents or fields from different directions, the controllable material is selectively brought into one or the other state.
  • the sum of the points in one state represents the image areas and that of the other the non-image areas.
  • the state of the associated material point can be reversed by reversing the polarity of the electrical signal.
  • the control can also be carried out electrochemically with a suitable electrolyte solution.
  • the material is an electrically conductive polymer.
  • electrically conductive polymers can be produced by electrochemical polymerization of aromatics and heteroaromatics or their substitution products.
  • flexible, electrically conductive polymer films are formed on the anode, which contain positively charged polymer chains and negative counterions from the electrolyte solution.
  • the polymer formed on the anode by electrochemical oxidation is hydrophilic due to its salt-like character. Polymers charged in this way can be reversibly converted into an uncharged state which is hydrophobic by a simple electrochemical reduction. From this state, it can be returned to the charged state by electrochemical oxidation.
  • the properties of this material can be repeated and partially varied between the two states by partial oxidation or reduction.
  • Appropriate local control means that the information to be printed can be transferred to the polymer forming the printing form in such a way that uncharged areas and non-image areas are created for the image parts.
  • a suitable polymer for a printing form is, for example, polypyrrole, which has the following structure:
  • the polypyrrole is hydrophobic.
  • this polymer changes into a salt-like state, which, using e.g. B. NH4Br as the electrolyte receives the following structure for a polymer unit:
  • Aromatics and heteroaromatics such as thiophene, pyrrole, furan, indole, carbazole, benzothiophenes and their substitution products such as 3-alkyl-, especially 3-methyl-, 3-alkyloxy are particularly suitable as monomers which can be converted into suitable polymers by oxidative polymerization -, 3,4-dialkyloxy-, mainly 3-methoxy-, 3,4-dimethoxy-, 3-alkylthio-, especially 3-methylthio-, 3,4-bis (methylthio) -thiophene, -pyrrole, -furan, 2,2 ⁇ -bithienyl, 2,2 ⁇ , 5 ⁇ , 2 ⁇ -terthienyl, di-2-thienyl sulfide, methane, 1,2-di-2-thienylethylene, aniline, substituted anilines, p-phenylenediamine, diphenylamine, 4,4 ⁇ -diaminodiphenylmethane, ether
  • Inert salts are used as conductive salts under the conditions of the electrochemical reaction, in particular inorganic conductive salts such as ammonium, lithium, sodium tetrafluoroborates, -perchlorates, -sulfates, -hydrogen sulfates; quaternary ammonium salts such as tetraalkylammonium perchlorates, tetrafluoroborates, hexafluorophosphates, hexafluoroantimonates, hexafluoroarsenates, methanesulfonates, toluenesulfonates, trifluoromethanesulfonates, trifluoroacetates; other alkyl sulfonates and sulfates such as lauryl sulfate and other anionic surfactants such.
  • inorganic conductive salts such as ammonium, lithium, sodium tetrafluoroborates, -perchlorates, -
  • B. alkyl carboxylates These salts are dissolved in solvents which are also inert under the conditions of the electrochemical reaction, such as acetonitrile, 1,2-dimethoxyethane, methanesulfonic acid, dichloromethane, 1-methyl-2-pyrrolidone, nitrobenzene, nitroethane, nitromethane, dichloromethane, propionitrile, propylene carbonate, Tetrahydrofuran, benzonitrile and sulfolane.
  • solvents which are also inert under the conditions of the electrochemical reaction, such as acetonitrile, 1,2-dimethoxyethane, methanesulfonic acid, dichloromethane, 1-methyl-2-pyrrolidone, nitrobenzene, nitroethane, nitromethane, dichloromethane, propionitrile, propylene carbonate, Tetrahydrofuran, benzonitrile and sulfolane.
  • an electrolyte solution and electrodes are assigned to the printing form, which are integrated into the printing press.
  • the electrolyte solution preferably contains conductive salts which are inert under the conditions of the electrochemical reaction and have sufficient solubility in the solvent used in each case.
  • Organic solvents such as acetonitrile, nitromethane, but also water with conductive salts such as tetrabutylammonium and tetraethylammonium salts can be used as solvents.
  • conductive salts such as tetrabutylammonium and tetraethylammonium salts
  • Alkali metal salts and alkyl sulfonates are best used for aqueous solvents.
  • the surface of the forme cylinder which forms or receives the printing form can be used as the first electrode, in that it is designed accordingly and configured either as a homogeneous or matrix-like electrode.
  • the counterelectrode is an electrode provided as an additional component in the printing press, which, depending on the configuration of the first electrode, is designed in a matrix-like or homogeneous manner, in such a way that one electrode is homogeneous and the other is matrix-like.
  • the counterelectrode can be designed as a metal roller with a slightly roughened surface, which is rotatably mounted in a tub with electrolyte solution and serves to convey the electrolyte solution.
  • This function can also be performed with a counterelectrode, which has a sieve-like outer surface, but which at the same time can have a cleaning effect on the printing form, if the counterelectrode is designed in such a way that electrolyte solution under sufficient pressure into the contact zone between printing form and Counter electrode can be pressed.
  • This embodiment has the advantage that the printing form is simultaneously freed from the color of the previous printing process during a rewriting process.
  • counter electrodes can be designed in the form of electrode strips, each with a width of one or more grid spacings.
  • a single electrode strip is also conceivable, which is controlled anew for each new line.
  • the microprocessors required to control the rewriting process can preferably be attached to the rear of the matrix electrode.
  • the invention extends to a method for producing a printing form, which is characterized by the features of claims 14 to 17.
  • Fig. 1 the image transfer cylinders of a printing press are shown, which work according to the flat printing or offset printing method.
  • the paper (10) to be printed is guided between a printing cylinder (11) and a rubber cylinder (12) and takes up the printing ink applied to the rubber cylinder (12).
  • the color distributed according to a typeface or a graphic image is transferred from a printing form (13), which is clamped on a likewise rotatable form cylinder (14), to the rubber cylinder (12).
  • the image to be printed is imaged on the printing form (13) by areas which are water-repellent, ie. H. are hydrophobic.
  • the printing form (13) passes through a dampening unit (15).
  • the hydrophobic areas are not wetted by the dampening solution on the surface, while the dampening solution is bound to the hydrophilic areas.
  • the moistened surface then passes through an inking unit (16), with which the printing ink is applied.
  • the hydrophilic areas do not accept any printing ink.
  • the color is assumed at the hydrophobic areas representing the image parts.
  • the printing form (13) can be produced from any material which can assume both a water-absorbing and a water-repellent state, a change in state in one or the other direction being able to be brought about by means of electrical or electrochemical pulses.
  • Examples of such materials are electrically conductive polymers that can be produced by electrochemical polymerization.
  • An electrically conductive polymer can be produced, for example, as follows: 0.05 to 0.1 mol / l of monomer and 0.1 to 1 mol / l of a conducting salt, for example an alkali metal salt, are dissolved in a solvent. A polymer is deposited on the anode by using a current density of 0.1 to 1 mA / cm2.
  • Medium-polar organic solvents such as acetonitrile, nitromethane or dichloromethane can be used as solvents, which are suitable for less polar monomers, such as.
  • B. thiophene and its derivatives and tetrabutylammonium or tetraethylammonium salts are suitable as a monomer or conductive salt.
  • Other solvents are water or water / organic solvent mixtures, for which polar monomers such as pyrrole, aniline and their derivatives and salts such as alkali metal salts or alkyl sulfonates are suitable.
  • the printing form (13) is formed according to FIG. 1 as a layer up to about 10 ⁇ m thick, which is applied to the form cylinder (14).
  • the layer (13) is preferably deposited by electrochemical polymerization directly onto the forme cylinder (14) designed as an anode.
  • the layer can also be applied to a carrier film (eg made of aluminum) and stretched onto the forme cylinder with this film.
  • a washing system (17) and an electrolyte system (18) are also provided in the printing press. After the printing sequence of an original has ended, the washing system (17) and the electrolyte system (18) are switched on without switching off the printing machine. After the printing ink has been delivered to the rubber cylinder (12), the printing form (13) passes through the washing system (17), with which the ink residues are washed off the printing form, in order then to be acted upon by the electric field of the electrolyte system (18). This is where the printing form (13) is reversed to produce a new image, as will be described below.
  • the printing form (13) is in contact with an electrolyte solution (20) and is located with it between a first electrode (21), which is formed by the forme cylinder (14), and a counter electrode (22), which is designed as an electrode roller according to FIG. 1 is.
  • the electrolyte solution (20) consists of a conductive salt dissolved in a sufficient amount in a solvent.
  • the substances used in the production of the polymer can be used as conductive salts and solvents. Water is preferably used as the solvent of the conductive salt for the reversal in the machine.
  • an information transmission unit (24) which consists of an information distribution system (25) located in the editorial office and a control unit (26) located on or in the printing press.
  • an information distribution system (25) located in the editorial office
  • a control unit (26) located on or in the printing press.
  • the entire information intended for printing is electronically stored via so-called full-page wrap systems or full-page assembly systems for newspaper and illustration printing or electronically encoded on the way via facsimile transmission systems.
  • This information is passed on via an interface to a machine computer, which processes the information into control signals (27) with which voltage or current pulses (23) are applied to the electrodes (21, 22) via microprocessors (28).
  • the polymer forming the printing form (13) is reversibly charged or discharged, i. that is, a transfer or rewriting of the printing form (13) takes place by reversing the voltage.
  • the image is broken down into halftone dots, as is customary in printing technology.
  • a grid of 30 / cm is common in newspaper printing, and a grid of 120 / cm in high-quality illustration printing.
  • Each of these halftone dots must be separately controllable in order to produce the print areas by reversing them according to the image.
  • the electrode (21) located on the surface of the forme cylinder (14) is designed as an electrode matrix, each electrode element being assigned to a grid point.
  • FIG. 3 shows a top view of the greatly enlarged electrode matrix (21).
  • a large number of microprocessors (28) are provided for controlling the individual electrode elements (30), a certain number of electrode elements (30) being assigned to a microprocessor (28).
  • the microprocessors are arranged in the forme cylinder (14) on the back of the electrode (21), as shown in cross section in FIG. 1 and with thicker lines in FIG. 3. For example, a 1 cm2 grid area could be controlled by a microprocessor (28).
  • the electrode elements (30) (Fig. 3) are controlled or not controlled with the control device, depending on whether the point in question already has the state desired for the new image or not .
  • the electrode elements (30) can be activated in sequence or line by line at the same time.
  • the electrolyte solution (20) in a container is conveyed by the counter-electrode roller (22), which is designed as a homogeneous electrode with a rough surface.
  • the electrolyte solution can also be introduced into the reversing zone with a separate feed device.
  • the counter electrode roller (22) is rotated, thereby entraining an electrolyte film (40) over the rough surface and into the gap (29) between the printing form (13) and the counter electrode (22) promoted.
  • Another variant is the formation of an electrode with a sieve-like outer surface, through which electrolyte solution is pressed into the contact zone (29) under sufficient pressure during the rewriting process and the color is thereby kept out of the gap. This makes it possible to save a separate cleaning process with a separate washing system (17).
  • the electrode on the forme cylinder (14) can be homogeneous and the counterelectrode (22) can be designed in a matrix.
  • a matrix electrode as the counter electrode, it can also be made in several parts. If several counter electrodes are used, the grid density can be reduced. It is conceivable to produce the matrix electrode from electrode strips in single or multiple grid spacing or to use only one electrode line with which the entire printing form is treated line by line by the printing form (13) passing through the forming zone.
  • FIG. 4 shows an exemplary embodiment in which the forme cylinder (51) receiving the printing form (50) is designed as a homogeneous electrode, while the counter electrode (52) takes over the function of the matrix electrode.
  • the counter electrode consists of a homogeneous electrode jacket, for example made of metal, which is coated with a photoconductor (53).
  • the photoconductor is exposed imagewise on a surface line of the counterelectrode (52) by means of a radiation source (54).
  • the photoconductor (53) becomes conductive at the exposed points (55), so that when the conductive point (55) enters the contact zone (56) to the forme cylinder (51), the required current between the forme cylinder electrode (51) and the counter electrode (52 ) can flow to reverse the printing form (50).
  • the information to be transmitted is controlled via the light source (54) and briefly stored on the photoconductor (53).
  • the photoconductor preferably has the property of only briefly maintaining the conductivity introduced by the exposure.
  • the conductivity should be maintained up to the contact zone (56). After the line to be transferred has left the contact zone (56) again, the conductive points (55) do not have to become conductive again in order to allow a new description for the next rotation of the counter electrode (52).
  • Organic photoconductors can in particular be used as the photoconductor (53).
  • the desired opening and closing requirements of the photoconductor (53) can be influenced by applying or inserting afterglow substances such that the conductive state is prolonged. Thermal treatment is also conceivable with which the exposed areas (57) after passing through the contact area (56) accelerated to be made non-conductive. Otherwise, the diameter of a drum-like counterelectrode (52) and the arrangement of the radiation source (54) will be determined in accordance with the switch-on and switch-on characteristics of the selected photoconductor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)

Description

  • Die Erfindung bezieht sich auf eine Druckmaschine, die im Flachdruckverfahren arbeitet und mit einer Druckform ausgestattet ist, die entsprechend einem zu druckenden Bild benetzbare und nicht benetzbare Bereiche aufweist, wobei Mittel vorgesehen sind, mit denen diese Bereiche der Druckform für einen Bildwechsel örtlich und ohne die Druckform entfernen zu müssen, umsteuerbar sind und der Druckmaschine eine Steuereinrichtung zugeodnet ist, mit der die elektrische Steuersignale zur örtlichen Beeinflussung der Druckform erzeugbar sind.
  • Bei Druckmaschinen, die nach dem Flachdruckverfahren arbeiten, werden Druckformen verwendet, die auf einem Druckformzylinder aufgespannt werden und die zur Bildübertragung für den Druckvorgang dienen. Dazu enthält die Druckform jeweils zwei Bereiche, nämlich den die Bildteile darstellenden, wasserabweisenden Bereich und den die Nichtbildteile darstellenden, wasserannehmenden Bereich.
  • Beim Druckvorgang wird die Druckform mittels eines sogenannten Feuchtwerks mit Feuchtmittel, wie Wasser/Alkohol-Gemisch benetzt, wobei das Feuchtmittel in den Nicht-Bildbereichen an der Druckformoberfläche gebunden wird. Das Feuchtmittel wird somit nur auf den hydrophoben Bildbereichen von der anschließend auf die Druckform aufgebrachten Druckfarbe verdrängt bzw. in diese emulgiert. Die auf diese Weise auf die Druckform aufgebrachte Farbe wird schließlich über einen Gummizylinder auf einen Papierbogen abgedruckt.
  • Im allgemeinen wird die Druckform außerhalb der Druckmaschine mit dem jeweiligen Abbild hergestellt, so daß sich Standzeiten und Personalkosten der Maschine für das Auswechseln von Druckformen ergeben. Für die Herstellung der Druckformen können heute elektronisch gespeicherte Daten verwendet werden, die die gesamte und zu druckende Information enthalten.
  • Aus der US-A 4,068,588 ist ein elektrochemisches Bilderzeugungsverfahren bekannt, bei dem zwischen zwei Gleichstromelektroden ein Elektrolyt, der ein elektrochromes Material beinhaltet, eingeleitet wird, die zu bebildernde Druckform als Anode, die mit einem Photoleiter beschichtete Gegenelektrode als Kathode geschaltet ist. Somit wird auf der Druckform mittels des Photoleiters ein elektrochromes Bild abgelegt. Damit soll die Aufgabe gelöst werden, eine Druckform zu schaffen, bei der eine visuelle Kontrolle der Bildqualität erleichtert ist.
  • Im IBM TECHNICAL DISCLOSURE BULLETIN, Band 20, Nr. 10, März 1978, Seiten 4176 bis 4177 ist ein Herstellungsverfahren für elektrochemisch umsteuerbare Materialien offenbart.
  • Aus der EP-A 0 160 920 ist ein einstufiges elektrochemisches Verfahren für Reproduktionsschichten bekannt. Ein solches Bilderzeugungsverfahren wird jedoch offensichtlich nicht innerhalb einer Druckmaschine durchgeführt.
  • Aus der EP-A 101266 ist eine Druckmaschine bekannt, mit der derartige elektronisch codiert vorliegende Druckinformationen genutzt werden, um eine direkte Herstellung bzw. Neuherstellung der in der Druckmaschine befindlichen Druckform vorzunehmen. Hierdurch ist ein Auswechseln der Druckform und die damit verbundene Standzeit der Maschine und der Personalaufwand nicht mehr nötig.
  • Die bekannte Druckmaschine zeichnet sich dadurch aus, daß die Druckformzylinder-Oberfläche eine die Druckform bildende hydrophile Oberfläche hat, die mittels in der Druckmaschine vorhandenen Einrichtungen gewaschen, mit einer hydrophoben Schicht beschichtet und anschließend, z. B. von einem Laserstrahl, beaufschlagt werden kann. Die Neugestaltung der Druckform erfordert eine kurze Unterbrechung des Druckprozesses, indem bei Bildwechsel während des Betriebes der Maschine die Wasch-, Beschichtungs- und Lasereinrichtung eingeschaltet werden. Dabei wird die vorhergehende Farbschicht abgewaschen und die hydrophobe Schicht erneuert, die mit dem Laserstrahl örtlich entsprechend dem zu druckenden Bild entfernt wird. Der Laserstrahl wird mit Hilfe der codierten Druckinformationen gesteuert.
  • Der Erfindung liegt die Aufgabe zugrunde, eine andere Lösung für eine Druckmaschine der eingangs genannten Art zu finden, mit der in einer einfachen Art und mit fertigungstechnisch einfachen Mitteln die Druckbereich-Umbildung durchführbar ist.
  • Die Aufgabe wird erfindungsgemäß mit den im Anspruch 1 gekennzeichneten Merkmalen gelöst.
  • Hiermit ergibt sich die Möglichkeit, die Druckvorlage innerhalb der Druckmaschine auf der Druckform zu erzeugen oder zu verändern, ohne die Druckmaschine anhalten und die Druckform austauschen zu müssen. Die Übertragung der codierten Informationen erfolgt vielmehr über eine elektrische Ansteuerung der Druckform, womit sich gegenüber der bekannten Einrichtung eine wesentliche Platzeinsparung und Verfahrensvereinfachung erzielen läßt. Außerdem werden keine kostspieligen Beschichtungs- und Strahleneinrichtungen benötigt und es findet keine Materialübertragung statt, die vor jeder Bilderneuerung wieder entfernt werden muß.
  • Die Druckform kann dabei in Form einer Folie ausgebildet sein, die auf eine Platte oder einen Zylinder aufgespannt wird, wobei entweder die gesamte Folie oder nur die Folienoberfläche aus dem elektrisch ansteuerbaren Material besteht. Es ist aber auch möglich, die Platten- bzw. Zylinderoberfläche als Druckform auszugestalten, d. h., mit dem Material zu beschichten.
  • Mit punktuell angelegten elektrischen Strömen oder Feldern von unterschiedlichen Richtungen wird das ansteuerbare Material punktuell in den einen oder den anderen Zustand gebracht. Die Summe der Punkte in dem einen Zustand stellen die Bildbereiche und die der anderen die Nichtbildbereiche dar. Durch Umpolen des elektrischen Signals ist der Zustand des zugehörigen Materialpunktes umkehrbar. Die Ansteuerung kann auch elektrochemisch mit einer geeigneten Elektrolytlösung erfolgen.
  • Gemäß einer Ausgestaltung der Erfindung ist das Material ein elektrisch leitfähiges Polymer.
  • Elektrisch leitfähige Polymere können bekannterweise durch elektrochemische Polymerisation von Aromaten und Heteroaromaten bzw. ihren Substitutionsprodukten hergestellt werden. Bei der Polymerisation entstehen auf der Anode flexible, elektrisch leitfähige Polymerfilme, die positiv geladene Polymerketten und negative Gegenionen aus der Elektrolytlösung enthalten. Das auf der Anode durch elektrochemische Oxidation entstandene Polymer ist aufgrund seines salzartigen Charakters hydrophil. Derartig geladene Polymere lassen sich durch eine einfache elektrochemische Reduktion reversibel in einen ungeladenen Zustand, der hydrophob ist, überführen. Von diesem Zustand kann es durch eine elektrochemische Oxidation wieder in den geladenen Zustand überführt werden.
  • Durch eine elektrische Ansteuerung, d. h. durch partielle Oxidation bzw. Reduktion können die Eigenschaften dieses Materials wiederholt und beliebig zwischen den beiden Zuständen variiert werden. Durch entsprechende örtliche Ansteuerung läßt sich die zu druckende Information auf das die Druckform bildende Polymer in der Weise übertragen, daß für die Bildteile ungeladene Bereiche und die Nichtbildteile geladene Bereiche erzeugt werden.
  • Ein für eine Druckform geeignetes Polymer ist z.B. Polypyrrol, das die folgende Struktur hat:
    Figure imgb0001
  • In diesem Zustand ist das Polypyrrol hydrophob. Durch anodische Oxidation in einer Elektrolytlösung geht dieses Polymer in einen salzartigen Zustand über, der unter Anwendung von z. B. NH₄Br als Elektrolyt die nachstehende Struktur für eine Polymerbaueinheit erhält:
    Figure imgb0002
  • Durch diese Oxidation wird das Polypyrrol in einen hydrophilen Zustand gebracht.
  • Als Monomere, die durch oxidative Polymerisation in geeignete Polymere überführt werden können, eignen sich insbesondere Aromaten und Heteroaromaten wie Thiophen, Pyrrol, Furan, Indol, Carbazol, Benzothiophene und ihre Substitutionsprodukte wie 3-Alkyl-, vornehmlich 3-Methyl-, 3-Alkyloxy-, 3,4-Dialkyloxy-, vornehmlich 3-Methoxy-, 3,4-Dimethoxy-, 3-Alkylthio-, besonders 3-Methylthio-, 3,4-Bis(methylthio)-thiophen, -pyrrol, -furan, 2,2ʹ-Bithienyl, 2,2ʹ,5ʹ,2ʺ-Terthienyl, Di-2-thienylsulfid, -methan, 1,2-Di-2-thienylethylen, Anilin, substituierte Aniline, p-Phenylendiamin, Diphenylamin, 4,4ʹ-Diaminodiphenylmethan, -ether, -sulfid.
  • Als Leitsalze werden unter den Bedingungen der elektrochemischen Reaktion inerte Salze verwendet, insbesondere anorganische Leitsalze wie Ammonium-, Lithium-, Natriumtetrafluoroborate, -perchlorate, -sulfate, -hydrogensulfate; quartäre Ammoniumsalze wie Tetraalkylammoniumperchlorate, -tetrafluoroborate, -hexafluorophosphate, -hexafluoroantimonate, -hexafluoroarsenate, -methansulfonate, -toluolsulfonate, -trifluormethansulfonate, -trifluoracetate; andere Alkylsulfonate und -sulfate wie Laurylsulfat und andere anionische Tenside wie z. B. Alkylcarboxylate. Diese Salze werden in Lösungsmitteln gelöst, die ebenfalls unter den Bedingungen der elektrochemischen Reaktion inert sind wie Acetonitril, 1,2-Dimethoxyethan, Methansulfonsäure, Dichlormethan, 1-Methyl-2-pyrrolidon, Nitrobenzol, Nitroethan, Nitromethan, Dichlormethan, Propionitril, Propylencarbonat, Tetrahydrofuran, Benzonitril und Sulfolan.
  • Zur Durchführung der Umwandlung werden der Druckform eine Elektrolytlösung und Elektroden zugeordnet, die in die Druckmaschine integriert werden. Die Elektrolytlösung enthält vorzugsweise Leitsalze, die unter den Bedingungen der elektrochemischen Reaktion inert sind und eine ausreichende Löslichkeit in dem jeweils verwendeten Lösungsmittel besitzen.
  • Als Lösungsmittel können organische Lösungsmittel, wie Acetonitril, Nitromethan,aber auch Wasser mit Leitsalzen, wie Tetrabutylammonium- und Tetraethylammoniumsalze verwendet werden. Für wässrige Lösungsmittel finden am besten Alkalimetallsalze und Alkylsulfonate Verwendung.
  • Als erste Elektrode kann die die Druckform bildende oder aufnehmende Oberfläche des Formzylinders benutzt werden, indem diese entsprechend ausgebildet und entweder als homogene oder matrixartige Elektrode ausgestaltet wird. Die Gegenelektrode ist dabei eine in der Druckmaschine als zusätzliches Bauteil vorgesehene Elektrode, die je nach der Ausgestaltung der ersten Elektrode matrixartig oder homogen ausgebildet ist,und zwar so, daß eine Elektrode homogen und die andere matrixartig ist.
  • Bei der Verwendung einer matrixartigen ersten Elektrode kann die Gegenelektrode als Metallwalze mit leicht angerauhter Oberfläche ausgebildet eine, die in einer Wanne mit Elektrolytlösung drehbar gelagert ist und zur Förderung der Elektrolytlösung dient. Diese Funktion kann ebenfalls mit einer Gegenelektrode erfüllt werden, die eine siebartige Mantelfläche hat, die aber gleichzeitig eine die Druckform reinigende Wirkung haben kann, wenn die Gegenelektrode dabei so ausgeführt ist, daß durch die siebartige Mantelfläche Elektrolytlösung unter ausreichendem Druck in die Kontaktzone zwischen Druckform und Gegenelektrode gepreßt werden kann. Diese Ausführung hat den Vorteil, daß während eines Umschreibvorganges die Druckform gleichzeitig von der Farbe des vorhergehenden Druckvorganges befreit wird.
  • Bei der Verwendung einer homogenen ersten Elektrode ist es möglich, eine oder mehrere Gegenelektroden vorzusehen. Bei der Verwendung von mehreren Gegenelektroden ist eine Verringerung der Rasterdichte auf der Gegenelektrode möglich.
  • Mehrere Gegenelektroden können in der Form von Elektrodenstreifen ausgeführt werden, die jeweils eine Breite von einem einfachen oder mehrfachen Rasterabstand haben. Auch ein einziger Elektrodenstreifen ist denkbar, der für jede neue Zeile neu angesteuert wird.
  • Die für die Ansteuerung des Umschreibvorganges erforderlichen Mikroprozessoren können vorzugsweise an die Rückseite der Matrixelektrode angebracht werden.
  • Die Erfindung erstreckt sich auf ein Verfahren zur Herstellung einer Druckform, das durch die Merkmale der Ansprüche 14 bis 17 gekennzeichnet ist.
  • Die Erfindung wird anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1
    die Druckwalzen einer Druckmaschine im Querschnitt,
    Fig. 2
    eine Steuereinheit im Blockschaltbild,
    Fig. 3
    ein Detail aus Fig. 1.
    Fig. 4
    ein zweites Ausführungsbeispiel.
  • In Fig. 1 sind die Bildübertragungszylinder einer Druckmaschine dargestellt, die nach dem Flachdruck- bzw. Offsetdruck-Verfahren arbeiten. Das zu bedruckende Papier (10) wird zwischen einem Druckzylinder (11) und einem Gummizylinder (12) geführt und nimmt dabei die auf den Gummizylinder (12) aufgebrachte Druckfarbe auf. Die entsprechend einem Schriftbild oder einem graphischen Bild verteilte Farbe wird von einer Druckform (13), die auf einem ebenfalls drehbaren Formzylinder (14) aufgespannt ist, auf den Gummizylinder (12) übertragen. Das zu druckende Bild ist auf der Druckform (13) durch Bereiche abgebildet, die wasserabweisend, d. h. hydrophob sind. Im Druckvorgang durchläuft die Druckform (13) ein Feuchtwerk (15). Die hydrophoben Bereiche werden dabei vom Feuchtmittel auf der Oberfläche nicht benetzt, während an den hydrophilen Bereichen das Feuchtmittel gebunden wird. Die angefeuchtete Oberfläche durchläuft anschließend ein Farbwerk (16), womit die Druckfarbe aufgetragen wird. Die hydrophilen Bereiche nehmen dabei keine Druckfarbe an. Dagegen wird an den die Bildteile darstellenden hydrophoben Bereichen die Farbe angenommen.
  • Die Druckform (13) kann aus jedem Material hergestellt werden, das sowohl einen wasseraufnehmenden als auch einen wasserabweisenden Zustand annehmen kann, wobei eine Zustandsänderung in eine oder die andere Richtung über elektrische bzw. elektrochemische Impulse herbeiführbar ist. Beispiele für derartige Materialien sind elektrisch leitfähige Polymere, die durch elektrochemische Polymerisation hergestellt werden können.
  • Ein elektrisch leitfähiges Polymer kann beispielsweise wie folgt hergestellt werden:
    In einem Lösungsmittel werden 0,05 bis 0,1 mol/l Monomer und 0,1 bis 1 mol/l eines Leitsalzes, beispielsweise ein Alkalimetallsalz gelöst. Durch Anwendung einer Stromdichte von 0,1 bis 1 mA/cm² scheidet sich auf der Anode ein Polymer ab.
  • Als Lösungsmittel können mittelpolare organische Lösungsmittel wie Acetonitril, Nitromethan oder Dichlormethan verwendet werden, die für wenig polare Monomere, wie z. B. Thiophen und seine Derivate und Tetrabutylammonium- oder Tetraethylammoniumsalze als Monomer bzw. Leitsalz geeignet sind. Andere Lösungsmittel sind Wasser oder Mischungen Wasser/organische Lösungsmittel, für die sich polare Monomere, wie Pyrrol, Anilin und ihre Derivate und Salze, wie Alkalimetallsalze oder Alkylsulfonate eignen. Als Leitsalze kommen grundsätzlich alle Salze in Frage, die unter den jeweils angewendeten Bedingungen der elektrochemischen Reaktion inert sind und die eine ausreichende Löslichkeit in dem jeweils verwendeten Lösungsmittel besitzen. Ferner sollten bei der elektrochemischen Polymerisation das Leitsalz und Monomer in ausreichender Menge gelöst vorliegen, während das entstehende Polymer in dem verwendeten Lösungsmittel unlöslich sein sollte.
  • Die Druckform (13) ist gemäß Fig. 1 als eine bis etwa 10 µm dicke Schicht ausgebildet, die auf den Formzylinder (14) aufgebracht ist. Vorzugsweise wird die Schicht (13) durch elektrochemische Polymerisation direkt auf den als Anode ausgebildeten Formzylinder (14) abgeschieden. Die Schicht kann auch auf eine Trägerfolie (z. B. aus Aluminium) aufgebracht und mit dieser Folie auf den Formzylinder aufgespannt werden.
  • In der Druckmaschine ist ferner eine Waschanlage (17) und eine Elektrolytanlage (18) vorgesehen. Nach Beendigung der Druckfolge einer Bildvorlage wird, ohne die Druckmaschine abzuschalten, die Waschanlage (17) und die Elektrolytanlage (18) eingeschaltet. Dabei durchläuft die Druckform (13) nach der Druckfarbenabgabe an den Gummizylinder (12) die Waschanlage (17), mit der die Farbreste von der Druckform abgewaschen werden, um anschließend vom elektrischen Feld der Elektrolytanlage (18) beaufschlagt zu werden. Hier erfolgt die Umsteuerung der Druckform (13) zur Erzeugung eines neuen Bildes, wie im folgenden beschrieben wird.
  • In Fig. 2 ist eine prinzipielle Anordnung für die Umsteuerung dargestellt. Die Druckform (13) steht in Kontakt mit einer Elektrolytlösung (20) und befindet sich mit dieser zwischen einer ersten Elektrode (21), die vom Formzylinder (14) gebildet wird und einer Gegenelektrode (22), die gemäß Fig. 1 als Elektrodenwalze ausgebildet ist. Die Elektrolytlösung (20) besteht aus einem in ausreichender Menge in einem Lösungsmittel gelösten Leitsalz. Als Leitsalze und Lösungsmittel können die bei der Herstellung des Polymers eingesetzten Substanzen verwendet werden. Vorzugsweise wird für die Umsteuerung in der Maschine Wasser als Lösungsmittel des Leitsalzes eingesetzt.
  • Zur Einleitung des Elektrolytprozesses ist eine Informationsübertragungseinheit (24) vorgesehen, die aus einem in der Redaktion befindlichen Informationsaufteilungssystem (25) und einer an bzw. in der Druckmaschine befindlichen Steuereinheit (26) besteht. In der Redaktion werden die gesamten für einen Druck vorgesehenen Informationen über sogenannte Ganzseitenumbruch-Systeme bzw. Ganzseitenmontage-Systeme für Zeitungs- und Illustrationsdruck elektronisch eingespeichert oder auf dem Weg über Faksimile-Übertragungssysteme elektronisch codiert. Diese Informationen werden über Interface an einen Maschinencomputer weitergegeben, der die Informationen in Steuersignale (27) umarbeitet, mit denen über Mikroprozessoren (28) die Elektroden (21, 22) mit Spannungs- bzw. Stromimpulsen (23) beaufschlagt werden.
  • Je nach der Spannungsrichtung wird das die Druckform (13) bildende Polymer reversibel geladen oder entladen, d. h., eine Umladung bzw. Umschreibung der Druckform (13) erfolgt durch Spannungsumkehr.
  • Um die Bildbereiche an der Druckform (13) herstellen zu können, wird das Bild, wie in der Drucktechnik üblich, in Rasterpunkte zerlegt. Im Zeitungsdruck ist beispielsweise ein Raster 30/cm üblich, im qualitativ hochwertigen Illustrationsdruck ein Raster von 120/cm. Jeder dieser Rasterpunkte muß getrennt ansteuerbar sein, um die Druckbereiche durch Umsteuerung entsprechend dem Bild herzustellen. Hierzu ist die an der Oberfläche des Formzylinders (14) befindliche Elektrode (21) als Elektrodenmatrix ausgebildet, wobei jedes Elektrodenelement jeweils einem Rasterpunkt zugeordnet ist.
  • Fig. 3 zeigt eine Draufsicht der stark vergrößerten Elektrodenmatrix (21). Zur Ansteuerung der einzelnen Elektrodenelemente (30) sind eine Vielzahl von Mikroprozessoren (28) vorgesehen, wobei einem Mikroprozessor (28) eine bestimmte Zahl von Elektrodenelementen (30) zugeordnet werden. Die Mikroprozessoren sind in dem Formzylinder (14) an der Rückseite der Elektrode (21) angeordnet, wie es in Fig. 1 im Querschnitt und in Fig. 3 mit stärkeren Linien dargestellt ist. Dabei könnte beispielsweise eine 1 cm²-Rasterfläche jeweils von einem Mikroprozessor (28) angesteuert werden.
  • Zur Herstellung eines Druckmusters (31) auf der Druckform (13) werden die Elektrodenelemente (30) (Fig. 3) mit der Steuereinrichtung angesteuert oder nicht angesteuert, je nachdem,ob der betreffende Punkt bereits den für das neue Bild erwünschten Zustand hat oder nicht. Die Elektrodenelemente (30) können der Reihe nach oder zeilenweise gleichzeitig angesteuert werden.
  • Gemäß Fig. 1 erfolgt die Förderung der in einem Behälter befindlichen Elektrolytlösung (20) durch die Gegenelektrodenwalze (22), die als homogene Elektrode mit rauher Oberfläche ausgebildet ist. Die Elektrolytlösung kann auch mit einer separaten Zuführungseinrichtung in die Umsteuerzone eingebracht werden.
  • Für einen Umsteuerungsvorgang, bei der die Eletrolytanlage (18) in Betrieb genommen wird, wird die Gegenelektrodenwalze (22) gedreht, womit sie über die rauhe Oberfläche einen Elektrolytfilm (40) mitreißt und in den Spalt (29) zwischen Druckform (13) und Gegenelektrode (22) befördert.
  • Eine weitere Variante ist die Ausbildung einer Elektrode mit einer siebartigen Mantelfläche, durch die während des Umschreibvorganges Elektrolytlösung unter ausreichendem Druck in die Kontaktzone (29) gepreßt und dabei die Farbe aus dem Spalt herausgehalten wird. Hierdurch ist es möglich, einen getrennten Reinigungsvorgang mit einer gesonderten Waschanlage (17) einzusparen.
  • Die Anordung und Ausgestaltung der homogenen bzw. matrixartigen Elektroden kann beliebig ausgeführt werden. So kann selbstverständlich die Elektrode an dem Formzylinder (14) homogen und die Gegenelektrode (22) matrixartig ausgeführt sein. Bei einer Matrixelektrode als Gegenelektrode kann diese auch mehrteilig ausgeführt werden. Bei der Verwendung von mehreren Gegenelektroden ist eine Verringerung der Rasterdichte möglich. Es ist vorstellbar, die Matrixelektrode aus Elektrodenstreifen im einfachen oder mehrfachen Rasterabstand herzustellen oder nur eine Elektrodenzeile zu verwenden, mit der zeilenweise die gesamte Druckform behandelt wird, indem die Druckform (13) die Umformzone durchläuft.
  • Eine weitere Art, die Matrixelektrode herzustellen, ist die Verwendung einer homogenen Elektrode, beispielsweise einer Metallwalze, die mit einem Fotoleiter beschichtet ist. In Fig. 4 ist ein Ausführungsbeispiel hierzu gezeigt, bei dem der die Druckform (50) aufnehmende Formzylinder (51) als homogene Elektrode ausgebildet ist, während die Gegenelektrode (52) die Funktion der Matrixelektrode übernimmt.
  • Die Gegenelektrode besteht aus einem homogenen Elektrodenmantel, beispielsweise aus Metall, der mit einem Fotoleiter (53) beschichtet ist. Der Fotoleiter wird an einer Mantellinie der Gegenelektrode (52) bildmäßig mittels einer Strahlenquelle (54) belichtet. Der Fotoleiter (53) wird an den belichteten Stellen (55) leitend, so daß bei Eintritt der leitenden Stelle (55) in die Kontaktzone (56) zum Formzylinder (51) der erforderliche Strom zwischen der Formzylinderelektrode (51) und der Gegenelektrode (52) zum Umsteuern der Druckform (50) fließen kann. Die zu übertragende Information wird hierbei über die Lichtquelle (54) eingesteuert und auf den Fotoleiter (53) kurzzeitig eingespeichert.
  • Der Fotoleiter hat vorzugsweise die Eigenschaft, die durch die Belichtung eingebrachte Leitfähigkeit nur kurzzeitig aufrecht zu erhalten. Dabei soll die Leitfähigkeit bis zur Kontaktzone (56) beibehalten werden. Nachdem die gerade zu übertragende Zeile die Kontaktzone (56) wieder verlassen hat, müssen die leitfähigen Stellen (55) wieder nicht leitend werden, um eine erneute Beschreibung für die nächste Umdrehung der Gegenelektrode (52) zu ermöglichen. Als Fotoleiter (53) können insbesondere organische Fotoleiter verwendet werden.
  • Die gewünschten Auf- und Zuschalterfordernisse des Fotoleiters (53) können durch Auf- oder Einbringen nachleuchtender Stoffe derart beeinflußt werden, daß der leitfähige Zustand zeitlich verlängert wird. Es ist auch eine thermische Behandlung vorstellbar, mit der die belichteten Stellen (57) nach dem Durchfahren der Kontaktstelle (56) beschleunigt nichtleitend gemacht werden. Im übrigen wird man den Durchmesser einer trommelartigen Gegenelektrode (52) sowie die Anordnung der Strahlenquelle (54) entsprechend der Auf- und Zuschaltcharakteristik des gewählten Fotoleiters bestimmen.

Claims (20)

  1. Druckmaschine, die im Flachdruckverfahren arbeitet und mit einer Druckform ausgestattet ist, die hydrophobe und hydrophile Bereiche entsprechend einem zu druckenden Bild aufweist, wobei Mittel vorgesehen sind, mit denen diese Bereiche der Druckform für einen Bildwechsel örtlich und ohne die Druckform aus der Druckmaschine entfernen zu müssen, umsteuerbar sind und der Druckmaschine eine Steuereinrichtung zugeordnet ist, mit der die elektrischen Steuersignale zur örtlichen Beeinflussung der Druckform erzeugbar sind,
    dadurch gekennzeichnet, daß die Druckform (13, 50) als umsteuerbares Material (13) ein elektrisch leitfähiges Polymer enthält, das durch die elektrischen Steuersignale von einem hydrophoben Zustand in einen hydrophilen Zustand und umgekehrt überführbar ist.
  2. Druckmaschine nach Anspruch 1, dadurch gekennzeichnet, daß eine elektrochemische Ansteuerung (20 bis 23) vorgesehen ist.
  3. Druckmaschine nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Material ein durch oxidative Polymerisation von Aromaten oder Heteroaromaten hergestelltes Polymer ist.
  4. Druckmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Druckform (13) Elektroden (21, 22) zugeordnet sind, die zur Beeinflussung der Druckform auf elektrochemischem Wege von den Steuersignalen (23) örtlich ansteuerbar sind.
  5. Druckmaschine nach Anspruch 2, dadurch gekennzeichnet, daß die Elektrolytlösung (20) für den elektrochemischen Prozeß Leitsalze enthält, die unter den Bedingungen der elektrochemischen Reaktion inert sind.
  6. Druckmaschine nach Anspruch 4, dadurch gekennzeichnet, daß die Druckplatte bzw. die Oberfläche des die Druckform (13) aufnehmenden Formzylinders (14) als Elektrode (21) ausgebildet ist, und daß eine in der Elektrolytlösung (20) angeordnete und gegenüber dem Formzylinder (14) verschiebbar angebrachte Gegenelektrode (22) vorgesehen ist.
  7. Druckmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine der Elektroden (21) rasterartig ansteuerbar ausgebildet ist.
  8. Druckmaschine nach Anspruch 7, dadurch gekennzeichnet, daß die rasterartig ansteuerbare Elektrode aus einer Elektrodenreihe besteht, die für jede Zeile neu ansteuerbar ist.
  9. Druckmaschine nach Anspruch 7, dadurch gekennzeichnet, daß die Oberfläche der Druckplatte bzw. des Formzylinders (14) oder die Gegenelektrode (22) als Elektrodenmatrix ausgebildet ist.
  10. Druckmaschine nach Anspruch 4, dadurch gekennzeichnet, daß die Gegenelektrode (22) als rotierbarer Zylinder ausgebildet ist, der die Elektrolytlösung an die Druckform (13) fördert.
  11. Druckmaschine nach Anspruch 4, dadurch gekennzeichnet, daß Mittel vorgesehen sind, mit denen die Elektrolytlösung in die Umsteuerzone preßbar ist.
  12. Druckmaschine nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Gegenelektrode (52) mit einem Fotoleiter (53) beschichtet ist, und daß eine zur punktuellen Belichtung des Fotoleiters dienende Strahlenquelle (54) der Gegenelektrode zugeordnet ist.
  13. Druckmaschine nach Anspruch 7, dadurch gekennzeichnet, daß auf der Rückseite der Matrixelektrode (21) Mikroprozessoren (28) zur Ansteuerung der Matrixelektrodenelemente (30) angeordnet sind.
  14. Verfahren zur Herstellung einer Druckform, die mit elektrischer oder elektrochemischer Ansteuerung von einem hydrophoben in einen hydrophilen Zustand und umgekehrt überführbar ist, dadurch gekennzeichnet, daß ein zumindest die Druckformoberfläche bildendes Polymer durch elektrochemische Reaktion eines Monomers in einer Elektrolytlösung, das außer dem Monomer ein Leitsalz enthält, erzeugt wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß als Monomer Aromaten oder Heteroaromaten wie Thiophen, Pyrrol, Furan, Indol, Carbazol, Benzothiophene oder ihre Substitutionsprodukte verwendet werden, die in Lösungsmitteln gelöst werden, die unter den Bedingungen der elektrochemischen Reaktion inert sind.
  16. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß als Lösungsmittel Acetonitril, Nitrobenzol, Dichlormethan, Sulfolan oder dergleichen verwendet werden.
  17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß als Leitsalz anorganische Leitsalze, quartäre Ammoniumsalze, Alkylsulfonate oder anionische Tenside verwendet werden, die unter den Bedingungen der elektrochemischen Reaktion inert sind.
  18. Verfahren nach einem der Ansprüche 14 bis 17, dadurch gekennzeichnet, daß Elektroden verwendet werden, die unter den Reaktionsbedingungen inert sind.
  19. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß Elektroden verwendet werden, die zumindest oberflächig aus Metalloxid bestehen.
  20. Verfahren nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, daß Elektroden aus Kohlenstoff, insbesondere Faserkohlenstoff, verwendet werden.
EP87118998A 1987-02-20 1987-12-22 Druckmaschine Expired - Lifetime EP0279066B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19873705439 DE3705439A1 (de) 1987-02-20 1987-02-20 Druckmaschine
DE3705439 1987-02-20

Publications (3)

Publication Number Publication Date
EP0279066A2 EP0279066A2 (de) 1988-08-24
EP0279066A3 EP0279066A3 (en) 1990-02-28
EP0279066B1 true EP0279066B1 (de) 1992-12-09

Family

ID=6321415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87118998A Expired - Lifetime EP0279066B1 (de) 1987-02-20 1987-12-22 Druckmaschine

Country Status (5)

Country Link
US (1) US4872962A (de)
EP (1) EP0279066B1 (de)
JP (1) JPS63239057A (de)
DD (1) DD279848A5 (de)
DE (2) DE3705439A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145758A (en) * 1988-07-29 1992-09-08 Man Roland Druckmaschinen Ag Method of producing a printing image carrier
DE3836931C2 (de) * 1988-10-29 1993-11-04 Roland Man Druckmasch Druckform fuer eine druckmaschine mit wiederholt aktivierbaren und loeschbaren bereichen
DE3930584A1 (de) * 1989-09-13 1991-03-14 Basf Ag Auf elektrophotographischem wege hergestellte offsetdruckplatte mit hydrophilen betonerten bereichen und oleophilen unbetonerten bereichen
DE4006363C1 (de) * 1990-03-01 1991-01-17 Heidelberger Druckmaschinen Ag, 6900 Heidelberg, De
DE4021662C2 (de) * 1990-07-07 1994-04-28 Heidelberger Druckmasch Ag Druckmaschine mit elektrochemisch veränderbarer Druckform
GB2245866B (en) * 1990-07-07 1995-03-15 Heidelberger Druckmasch Ag Printing machine with print image formation system
US5188033A (en) * 1991-07-08 1993-02-23 Rockwell International Corporation Direct-to-press imaging system for use in lithographic printing
US5129321A (en) * 1991-07-08 1992-07-14 Rockwell International Corporation Direct-to-press imaging system for use in lithographic printing
US5206102A (en) * 1991-11-15 1993-04-27 Rockwell International Corporation Photoelectrochemical imaging system
DE4235242C1 (de) * 1992-10-20 1993-11-11 Roland Man Druckmasch Löschbare Druckform
DE19612927B4 (de) * 1995-05-11 2009-12-10 Kodak Graphic Communications Canada Company, Burnaby Druckmaschine und Bilderzeugungsverfahren für eine Druckmaschine
GB2304628B (en) * 1995-09-07 1998-09-23 Kodak Ltd Printing plate product
DE19748295A1 (de) * 1997-10-31 1999-05-06 Max Planck Gesellschaft Element mit extrem stark wasserabweisenden Trockenzonen an der Oberfläche
US5927206A (en) * 1997-12-22 1999-07-27 Eastman Kodak Company Ferroelectric imaging member and methods of use
US6890363B1 (en) 1999-05-24 2005-05-10 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6610458B2 (en) 2001-07-23 2003-08-26 Kodak Polychrome Graphics Llc Method and system for direct-to-press imaging
SE0103047D0 (sv) * 2001-09-14 2001-09-14 Acreo Ab Process relating to polymers
DE102008028675A1 (de) * 2008-06-17 2009-12-24 Wifag Maschinenfabrik Ag Elektro- oder magnetorheologische Druckmaschine
US20100251914A1 (en) * 2009-04-01 2010-10-07 Xerox Corporation Imaging member

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3079859A (en) * 1955-11-28 1963-03-05 Timefax Corp Electro-responsive planographic plate and methods of manufacture
US2951441A (en) * 1956-01-16 1960-09-06 Timefax Corp Lithographic printing plates and coatings therefor
US3106155A (en) * 1960-07-28 1963-10-08 Eastman Kodak Co Electrolytic recording with organic polymers
US3422759A (en) * 1966-06-02 1969-01-21 Xerox Corp Lithographic imaging system using photochromic and thermochromic materials
US3678852A (en) * 1970-04-10 1972-07-25 Energy Conversion Devices Inc Printing and copying employing materials with surface variations
GB1470657A (en) * 1973-07-11 1977-04-21 Vickers Ltd Lithographic printing blanks and their inscription
JPS5280902A (en) * 1975-12-26 1977-07-07 Fuji Xerox Co Ltd Offset printing method employing image recording element
JPS5944225B2 (ja) * 1976-04-27 1984-10-27 株式会社東京機械製作所 製版装置を付設した印刷装置
DE2725093C3 (de) * 1977-06-03 1984-04-05 Rudolf Dr.-Ing. 2300 Kiel Hell Druckverfahren und Anordnung zu dessen Durchführung
JPS58168562A (ja) * 1982-03-29 1983-10-04 ハリス・グラフィックス・コ−ポレ−ション 刷版製作方法及び装置
EP0101266A3 (de) * 1982-08-09 1985-04-03 Milliken Research Corporation Druckverfahren und Vorrichtung
DE3248178C2 (de) * 1982-12-27 1987-02-19 Forschungsgesellschaft Druckmaschinen E.V., 6000 Frankfurt Bildmäßige Beschichtung von Druckformen für den Flachdruck
DE3416867A1 (de) * 1984-05-08 1985-11-14 Hoechst Ag, 6230 Frankfurt Einstufiges elektrochemisches bilderzeugungsverfahren fuer reproduktionsschichten
AU4413585A (en) * 1984-06-28 1986-01-02 Milliken Research Corporation Fine resolution corona for lithographic imaging
JPS61255898A (ja) * 1985-04-30 1986-11-13 インタ−ナショナル・ビジネス・マシ−ンズ・コ−ポレ−ション 熱的に誘導される化学変化を用いた改良印刷装置
DE3633758A1 (de) * 1986-10-03 1988-04-07 Man Technologie Gmbh Druckmaschine

Also Published As

Publication number Publication date
DD279848A5 (de) 1990-06-20
JPS63239057A (ja) 1988-10-05
US4872962A (en) 1989-10-10
DE3705439A1 (de) 1988-09-01
EP0279066A2 (de) 1988-08-24
DE3783027D1 (de) 1993-01-21
EP0279066A3 (en) 1990-02-28

Similar Documents

Publication Publication Date Title
EP0279066B1 (de) Druckmaschine
EP0262475B1 (de) Druckmaschine
DE2111561C2 (de) Verfahren zum Herstellen eines Abdruckes sowie Verwendung einer Tellur enthaltenden Halbleiterschicht zum Offset-Drucken
DE69810733T2 (de) Vorrichtung zur Herstellung einer Druckplatte und Drucker und Drucksystem die diese Vorrichtung verwenden
EP0352612B1 (de) Verfahren zur Herstellung einer Druckform
EP1473154A2 (de) Druckverfahren und Druckmaschine
DE2058529A1 (de) Verfahren und Vorrichtung zur Wiedergabe bzw. Vervielfaeltigung einer Bildvorlage
DE3441593C2 (de)
DE69226604T2 (de) Photoelektrochemisches Abbildungssystem
EP0363932B1 (de) Druckform
EP1219417B1 (de) Maskenerstellung zur Herstellung einer Druckform
DE2842779C2 (de)
DE2856202C2 (de) Elektrophotographischer flexibler Metalldruckzylinderkörper
DE69026656T2 (de) Bilderzeugungsvorrichtung
DE69519765T2 (de) Druckplatte und Verfahren zu deren Herstellung
DE3825850A1 (de) Verfahren zur herstellung einer druckform
EP1260360B1 (de) Verfahren zum Aufbringen von Druckfarben auf einen Bedruckstoff
DE4021662C2 (de) Druckmaschine mit elektrochemisch veränderbarer Druckform
DE69801194T2 (de) Mehrfarben -Elektrokoagulationsdruckverfahren und Vorrichtung
DE4119111A1 (de) Verfahren zur herstellung von druckformen
DE2539845A1 (de) Druckform, verfahren zu ihrer herstellung sowie verwendung der druckform zum bedrucken von papier, kunststoff oder dergleichen
DE69811470T2 (de) GT-Verfahren zur Herstellung von lithographischen Druckplatten durch Elektroplattieren
DE60003988T2 (de) Elektrokoagulationsdruckverfahren und Vorrichtung zur Erzeugung von erhöhter Bildauflösung
CH484752A (de) Stahlstichdruckplatte
DE60010605T2 (de) Intermittierendes Elektrocoagulationsdruckverfahren und Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAN TECHNOLOGIE AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: M.A.N.-ROLAND DRUCKMASCHINEN AKTIENGESELLSCHAFT

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19900131

17Q First examination report despatched

Effective date: 19911015

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 3783027

Country of ref document: DE

Date of ref document: 19930121

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930310

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 87118998.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951116

Year of fee payment: 9

Ref country code: DE

Payment date: 19951116

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951127

Year of fee payment: 9

Ref country code: CH

Payment date: 19951127

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961231

Ref country code: CH

Effective date: 19961231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

EUG Se: european patent has lapsed

Ref document number: 87118998.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST