EP0348716B1 - Temperaturschalter - Google Patents

Temperaturschalter Download PDF

Info

Publication number
EP0348716B1
EP0348716B1 EP89110509A EP89110509A EP0348716B1 EP 0348716 B1 EP0348716 B1 EP 0348716B1 EP 89110509 A EP89110509 A EP 89110509A EP 89110509 A EP89110509 A EP 89110509A EP 0348716 B1 EP0348716 B1 EP 0348716B1
Authority
EP
European Patent Office
Prior art keywords
radiation
tube
temperature switch
switch according
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP89110509A
Other languages
English (en)
French (fr)
Other versions
EP0348716A2 (de
EP0348716A3 (de
Inventor
Gerhard Gössler
Eugen Wilde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EGO Elektro Geratebau GmbH
Original Assignee
EGO Elektro Gerate Blanc und Fischer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25869461&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0348716(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE19883821496 external-priority patent/DE3821496A1/de
Priority claimed from DE19883821495 external-priority patent/DE3821495A1/de
Application filed by EGO Elektro Gerate Blanc und Fischer GmbH filed Critical EGO Elektro Gerate Blanc und Fischer GmbH
Publication of EP0348716A2 publication Critical patent/EP0348716A2/de
Publication of EP0348716A3 publication Critical patent/EP0348716A3/de
Application granted granted Critical
Publication of EP0348716B1 publication Critical patent/EP0348716B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • H05B1/0216Switches actuated by the expansion of a solid element, e.g. wire or rod
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/742Plates having both lamps and resistive heating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/46Thermally-sensitive members actuated due to expansion or contraction of a solid
    • H01H37/48Thermally-sensitive members actuated due to expansion or contraction of a solid with extensible rigid rods or tubes

Definitions

  • the invention relates to a temperature switch according to the preamble of claim 1 and is based on GB-A-2'192'279.
  • a temperature switch is described in EP-B-116 861, in which a web made of the insulating material of the radiant heater in which it is installed causes radiation shielding and thus a temporary delay in response. This makes it possible to bring the radiant heater to a higher temperature level in the heating-up or parboiling phase, which is then lowered to a steady state during further operation, which certainly does not damage the glass ceramic plate in continuous operation.
  • this increases the switching amplitude or hysteresis, so that the switching frequency can be reduced to a permissible value under all conditions.
  • EP-B-150 087 discloses a temperature switch for heating a glass ceramic plate, in which a quartz glass tube is used which selectively only absorbs radiation with a wavelength which is reflected back from the glass ceramic plate in order to respond to the temperature switch to the temperature of the glass ceramic plate allow. The radiation coming from the radiation source should be let through. This means that a temporary response delay cannot be achieved.
  • DE-A-34 40 156 describes a temperature switch with a tube made of quartz glass or ceramic, which forms a shell for an expansion rod.
  • the rod is made of a nickel-chrome alloy.
  • the document does not contain any indication of a temporary delay in response.
  • the object of the invention is to provide a temperature switch which avoids the disadvantages of the prior art and is particularly simple and effective.
  • the tube preferably at least partially comprises or consists of a radiation-absorbing material
  • the radiation-absorbing material primarily absorbs and absorbs the radiation from the radiant heater. So initially it does not come to the expansion rod. However, the tube heats up and in turn emits heat, albeit with a delay, to the expansion rod through natural radiation and convection. Since the material of the tube has a lower, but not completely negligible expansion coefficient than the expansion rod, the increased initial heating of the tube compared to the expansion rod also results in a certain counter compensation. which increases the delay effect. In further operation, the switching amplitude, which is very low due to the very sensitive switch basic characteristic, is increased as desired and the switching frequency is thus reduced.
  • This retarding effect can be dimensioned as desired in that the tube either completely or partially has the radiation-absorbing material. This could be designed as a coating, for example. However, the tube itself is preferably made from radiation-absorbing material.
  • the retarding effect is further improved if the tube has an increased thermal inertia. This means that it has an increased mass and / or specific heat so that the radiant heat is stored before it is passed on to the expansion rod. After the heating element has been switched off, this heat still acts on the expansion rod and delays its cooling. A low thermal conductivity of the pipe material also contributes to this.
  • the tube preferably consists of a sintered ceramic material, for example of cordierite, which has excellent radiation absorption properties with low reflection values.
  • the tube from a glass ceramic, in particular with low transmission properties.
  • Low transmission properties can be created by adding a metal oxide.
  • Manufacture from radiation-absorbing, non-transmissive quartz has also proven successful.
  • the expansion rod consists at least partially of a chromium-iron-aluminum alloy which is heat-treated at a temperature above 800 ° C (approx. 1100 K), preferably above 1100 ° C (approx. 1400 K)
  • the switching amplitude has increased significantly, for example from ⁇ 2 K to ⁇ 5.5 K.
  • the chromium-iron-aluminum alloy which preferably contains approximately 22% chromium and approximately 5% aluminum, is available under the name "Kanthal A, Al, AF" from AB Kanthal, Sweden, and was previously used as electrical Resistor material used. In conjunction with the heat treatment, it causes the specified values of the thermal delay or increase in the switching amplitude.
  • the temperature switch can be used particularly advantageously in the case of a radiant heating element with at least one high-temperature radiant heater, for example a heating resistor enclosed by a lamp bulb. Because of its fast response, the switching amplitude could otherwise become very small and thus result in an increased switching frequency, which would be inadmissible, especially because of the high starting currents of such high-temperature radiant heaters.
  • the temporary response delay effect can be dimensioned such that it allows a brief initial overheating of the glass ceramic plate, which due to its short duration does not cause any damage, but it can also be dimensioned so that it delays the heating of the glass ceramic plate, which is present anyway due to the higher mass of the glass ceramic plate compensated.
  • the drawing shows a schematic representation of a radiant heater 11, which is arranged below a glass ceramic plate 12 and heats it.
  • a carrier shell 33 there is insulation 42.
  • Heating resistors 13 or 14 are provided in the form of a heating coil 13 partially embedded in the insulation 42 and in the form of a high-temperature radiant heater 14, which is, for example, a halogen lamp, the heating coil 15 of which is made of tungsten or similar materials is contained in a quartz lamp body 16 and, due to temperatures above 1500 K, has a radiation spectrum largely in the visible range.
  • a temperature sensor 20 of a temperature switch 21 projects through edges 17 of the insulation 12 reaching as far as the glass ceramic plate 12 and projects between the glass ceramic plate 12 and the radiators 13, 14 across the radiant heater.
  • the temperature switch 21 is a fixed but adjustable temperature limiter, the switch mechanism indicated as a snap switch 22 which switches off the radiators 13 and / or 14 or in another way reduces their output when the limit temperature is reached.
  • the temperature switch 21 can also open a second one have a different temperature-adjusted switching mechanism that can be used, for example, to display the hot state of the glass ceramic plate.
  • the switching mechanism 22 and possibly the further switching mechanism are actuated by an expansion rod 24. It is arranged in a tube 25, which consists of a material which has a substantially lower coefficient of thermal expansion than the expansion rod 24.
  • the expansion rod 24 is loaded by a spring 26 engaging a thickened head 30 of the expansion rod 24 in the switch head 27 of the temperature switch 21 lying outside the heated area of the radiant heater in the direction of the snap switch, so that it has one at its free end on a thread 28 arranged adjusting nut 29 against the end of the tube 25 and thus the tube also pulls against the switch head.
  • This so-called tension rod arrangement in which the tension rod is the thermally active part, enables a relatively simple assembly because the temperature sensor is held in a force-fitting manner by the spring itself and the adjustment accuracy does not suffer despite some flexibility of the attachment.
  • the expansion rod 24 consists of a chromium-iron-aluminum alloy, which preferably contains approximately 22% chromium and 5% aluminum and which is manufactured by AB Kanthal, Sweden, under the name Kanthal A or Al or AF as a heating conductor. Alloy is produced.
  • the rod made of this material after being provided with a head 30 for the engagement of the spring 26 and the thread 28, is subjected to a pre-aging in a temperature above 800 ° C, preferably at about 1200 ° C in a normal atmosphere. This also reduces the stress caused by the mechanical deformation. This surprisingly increases the switching amplitude by approximately ⁇ 3 K.
  • Cordierite is a mixed crystal made from the oxides of magnesium, aluminum and silicon (2 MgO x 2 Al2O3 x 5 SiO2).
  • the ceramic KER 410 is fired from clay-containing magnesium silicate-containing masses at temperatures around 1400 ° C and has as its main component the mineral cordierite. It can also be made via the melt phase and subsequent crystallization treatment (see D.M. Müller, "Sintered Cordierite Glass-Ceramic Bodies", Corning N.Y., U.S. Patent 3,926,648).
  • Cordierite is a sintered material that is mainly radiation absorbing.
  • This material is a glass ceramic with low transmission and high radiation absorption, which is achieved by adding a metal oxide.
  • a tube 25 made of opaque quartz was successfully examined, for example from the material 'Rotosil' from Heraeus.
  • the radiopacity and absorption capacity have been achieved by adding metal oxides.
  • the switching amplitude should be in the order of magnitude between 4 and 10 K (preferably 5 to 7 K) in order to achieve a switching frequency that is below 5 switching operations per minute. Otherwise, the maximum number of switching operations per minute specified by the respective local regulations (due to network or radio interference) could be exceeded.
  • the radiation-absorbing design of the tube 25 is particularly advantageous when the thermal mass is increased. This can be done by substantially exceeding the usual wall thickness of 1 mm for pipes of this type and preferably up to 3 mm. It would also be possible to provide other heat-storing means on the pipe. It is also conceivable to provide the radiation-absorbing properties in a surface coating, while the tube has heat-storing properties. By using a pipe material with low thermal conductivity, the heat transfer from the pipe to the expansion rod can be hindered, which would also be achievable by means of intermediate insulation measures.
  • the radiation-absorbing material used on the tube is preferably radiation-absorbing in the entire wavelength range which is essential for the radiation heating, in particular in the area which comes directly from the respective radiation source, so that the response behavior is mainly from the heating and not from secondary radiators, e.g. the glass ceramic plate. This characteristic is guaranteed for the materials described, but can also be achieved with other materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Thermally Actuated Switches (AREA)
  • Electric Stoves And Ranges (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Switches With Compound Operations (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Glass Compositions (AREA)

Description

    Temperaturschalter
  • Die Erfindung betrifft einen Temperaturschalter nach dem Oberbegriff des Anspruchs 1 und geht aus von der GB-A-2′192′279.
  • Aus der EP-B-116 861 ist ein Temperaturschalter beschrieben, bei dem ein Steg aus dem Isoliermaterial des Strahlheizkörpers, in den er eingebaut ist, eine Strahlungsabschirmung und damit eine temporäre Ansprechverzögerung bewirkt. Dadurch ist es möglich, in der Anheiz- bzw. Ankochphase den Strahlheizkörper auf ein höheres Temperaturniveau zu bringen, das dann beim weiteren Betrieb auf einen Beharrungszustand abgesenkt wird, der mit Sicherheit keine Schädigung der Glaskeramikplatte im Dauerbetrieb bewirkt.
  • Außerdem wird dadurch die Schaltamplitude bzw. -hysterese vergrößert, so daß die Schalthäufigkeit unter allen Bedingungen auf einen zulässigen wert gesenkt werden kann.
  • Aus der EP-B-150 087 geht ein Temperaturschalter für die Beheizung einer Glaskeramikplatte hervor, bei dem ein Quarzglasrohr verwendet wird, das selektiv nur Strahlung mit einer Wellenlänge absorbiert, die von der Glaskeramikplatte zurückgestrahlt wird, um den Temperaturschalter auf die Temperatur der Glaskeramikplatte ansprechen zu lassen. Die von der Strahlungsquelle kommende Strahlung soll durchgelassen werden. Damit kann eine temporäre Ansprechverzögerung nicht erreicht werden.
  • Zum gleichen Zweck und aufbauend auf dem gleichen Prinzip wird bei der WO85/01412 (entsprechend GB-A-2 192 279) der Ausdehnungsstab oder das ihn umgebende Rohr mit einer Strahlung reflektierenden Beschichtung versehen. Diese reflektierende Beschichtung erfordert zusätzliche Maßnahmen bei der Herstellung und ist im Betrieb auch in ihrer Wirkung gefährdet, da die Reflektionsfähigkeit nachlassen kann.
  • Die DE-A-34 40 156 beschreibt einen Temperaturschalter mit einem Rohr aus Quarzglas oder Keramik, das eine Hülle für einen Ausdehnungsstab bildet. Der Stab besteht aus einer Nickel-Chrom-Legierung. Einen Hinweis auf eine temporäre Ansprechverzögerung enthält die Schrift nicht.
  • Aufgabe der Erfindung ist es, einen Temperaturschalter zu schaffen, der die Nachteile des Standes der Technik vermeidet und besonders einfach und wirksam aufgebaut ist.
  • Diese Aufgabe wird durch den Anspruch 1 gelöst.
  • Wenn vorzugsweise das Rohr zumindest teilweise ein strahlungsabsorbierendes Material aufweist, oder aus diesem besteht, dann nimmt das strahlungsabsorbierende Material primär die Strahlung des Strahlheizkörpers auf und absorbiert sie. Sie kommt also anfänglich nicht an den Ausdehnungsstab. Das Rohr heizt sich dabei jedoch auf und gibt seinerseits Wärme, wenn auch mit Verzögerung, durch Eigenstrahlung und Konvektion an den Ausdehnungsstab ab. Da das Material des Rohres zwar einen geringeren, jedoch nicht gänzlich vernachlässigbaren Ausdehnungskoeffizienten hat als der Ausdehnungsstab, bewirkt die erhöhte Anfangsaufheizung des Rohres gegenüber dem Ausdehnungsstab auch eine gewisse Gegenkompensation, was die Verzögerungswirkung noch verstärkt. Im weiteren Betrieb wird die infolge der sehr ansprechungsempfindlichen Schalter-Grundcharakteristik sehr geringe Schaltamplitude wunschgemäß vergrößert und damit die Schalthäufigkeit herabgesetzt.
  • Diese Verzögerungswirkung kann dadurch wunschgemäß bemessen werden, daß das Rohr entweder ganz oder teilweise das strahlungsabsorbierende Material aufweist. Dies könnte zum Beispiel als Beschichtung ausgebildet sein. Vorzugsweise ist aber das Rohr selbst aus strahlungsabsorbierendem Material hergestellt.
  • Die Verzögerungswirkung wird ferner verbessert, wenn das Rohr eine erhöhte thermische Trägheit aufweist. Das bedeutet, daß es eine erhöhte Masse und/oder spezifische Wärme aufweist, so daß die Strahlungswärme gespeichert wird, bevor sie an den Ausdehnungsstab weitergegeben wird. Diese Wärme wirkt nach dem Abschalten des Heizelementes noch auf den Ausdehnungsstab ein und verzögert seine Abkühlung. Auch eine geringe thermische Leitfähigkeit des Rohrmaterials trägt dazu bei.
  • Bevorzugt besteht das Rohr aus einem durchgesinterten keramischen Material, beispielsweise aus Cordierit, das ausgezeichnete Strahlungsabsorptions-Eigenschaften bei geringen Reflektionswerten aufweist.
  • Es ist jedoch auch vorteilhaft möglich, das Rohr aus einer Glaskeramik, insbesondere mit geringen Transmissions-Eigenschaften, herzustellen. Geringe Transmissions-Eigenschaften können durch eine Metalloxid-Beimischung erzeugt werden. Auch eine Herstellung aus strahlungsabsorbierendem, nichttransmissivem Quarzgut hat sich bewährt.
  • Wenn der Ausdehnungsstab bei einer bevorzugten Ausführung zumindest teilweise aus einer Chrom-Eisen-Aluminium-Legierung besteht, die bei einer Temperatur oberhalb 800 °C (ca. 1100 K), vorzugsweise oberhalb 1100 °C (ca. 1400 K) wärmebehandelt ist, wird erstaunlicherweise gegenüber dem üblichen Chrom-Nickel-Material, das für den Ausdehnungsstab bisher verwendet wurde, eine wesentliche Erhöhung der Schaltamplitude von beispielsweise ± 2 K auf ± 5,5 K erreicht. Die Chrom-Eisen-Aluminium-Legierung, die vorzugsweise ca. 22 % Chrom und ca. 5 % Aluminium enthält, ist unter der Bezeichnung "Kanthal A, Al, AF" von der Firma AB Kanthal, Schweden, erhältlich und wurde bisher als elektrisches Widerstandsmaterial verwendet. In Verbindung mit der Wärmebehandlung bewirkt es die angegebenen Werte der thermischen Verzögerung bzw. Erhöhung der Schaltamplitude.
  • Besonders vorteilhaft ist der Temperaturschalter bei einem Strahlungsheizelement mit wenigstens einem Hochtemperatur-Strahlheizkörper, beispielsweise einem von einem Lampenkolben umschlossenen Heizwiderstand, einsetzbar. Durch sein schnelles Ansprechen könnte die Schaltamplitude anderenfalls sehr klein werden und damit eine erhöhte Schalthäufigkeit zur Folge haben, die, vor allem auch wegen der hohen Anlaufströme derartiger Hochtemperatur-Strahlungsheizkörper unzulässig wäre. Die temporäre Ansprechverzögerungswirkung kann so bemessen sein, daß sie eine kurzzeitige Anfangsüberhitzung der Glaskeramikplatte zuläßt, die wegen ihrer Kurzzeitigkeit keine Schädigung auslöst, sie kann aber auch geringer bemessen sein, so daß sie die aufgrund der höheren Masse der Glaskeramikplatte ohnehin vorhandene Verzögerung der Aufheizung der Glaskeramikplatte kompensiert.
  • Weitere Vorteile der Erfindung gehen auch aus der nachfolgenden Beschreibung im Zusammenhang mit den Zeichnungen hervor.
  • Anhand der einzigen Zeichnungsfigur, die einen schematischen Längsschnitt durch ein Ausführungsbeispiel der Erfindung, d.h. einen Temperaturschalter zeigt, wird die Erfindung nachstehend erläutert.
  • Die Zeichnung zeigt in schematischer Darstellung einen Strahlheizkörper 11, der unterhalb einer Glaskeramikplatte 12 angeordnet ist und diese beheizt. In einer Trägerschale 33 liegt eine Isolation 42. Heizwiderstände 13 oder 14 sind in Form einer in die Isolation 42 teilweise eingebetteten Heizwendel 13 und in Form eines Hochtemperatur-Strahlheizkörpers 14 vorgesehen, bei dem es sich beispielsweise um eine Halogenlampe handelt, deren Heizwendel 15 aus Wolfram oder ähnlichen Materialien in einem Quarz-Lampenkörper 16 enthalten ist und die aufgrund von Temperaturen oberhalb 1500 K ein Abstrahlungsspektrum weitgehend im sichtbaren Bereich hat.
  • Durch bis zur Glaskeramikplatte 12 reichende Ränder 17 der Isolierung 12 ragt ein Temperaturfühler 20 eines Temperaturschalters 21 hindurch, der zwischen der Glaskeramikplatte 12 und den Heizkörpern 13, 14 quer über den Strahlheizkörper ragt.
  • Bei dem Temperaturschalter 21 handelt es sich um einen fest eingestellten, jedoch justierbaren Temperaturbegrenzer, dessen als Schnappschalter 22 angedeutetes Schaltwerk die Heizkörper 13 und/oder 14 abschaltet oder in anderer Weise ihre Leistung mindert, wenn die Begrenzungstemperatur erreicht ist. Der Temperaturschalter 21 kann noch ein zweites, auf eine andere Temperatur einjustiertes Schaltwerk besitzen, das beispielsweise zur Anzeige des Heißzustandes der Glaskeramikplatte verwendet werden kann.
  • Das Schaltwerk 22 und ggf. das weitere Schaltwerk wird durch einen Ausdehnungsstab 24 betätigt. Er ist in einem Rohr 25 angeordnet, das aus einem Material besteht, das gegenüber dem Ausdehnungsstab 24 einen wesentlich geringeren thermischen Ausdehnungskoeffizienten hat.
  • Der Ausdehnungsstab 24 ist durch eine an einem verdickten Kopf 30 des Ausdehnungsstabes 24 angreifende Feder 26 im außerhalb des beheizten Bereiches des Strahlheizkörpers liegenden Schalterkopf 27 des Temperaturschalters 21 in Richtung auf den Schnappschalter hin belastet, so daß er eine an seinem freien Ende auf einem Gewinde 28 angeordnete Justiermutter 29 gegen das Ende des Rohres 25 und damit das Rohr auch gegen den Schalterkopf zieht. Diese sog. Zugstab-Anordnung, bei der der Zugstab das thermisch aktive Teil ist, ermöglicht eine relativ einfache Montage, weil der Temperaturfühler durch die Feder selbst in kraftschlüssiger Anlage gehalten wird und trotz einiger Flexibilität der Anbringung die Justiergenauigkeit nicht leidet.
  • Der Ausdehnungsstab 24 besteht aus einer Chrom-Eisen-Aluminium-Legierung, die vorzugsweise ca. 22 % Chrom und 5 % Aluminium enthält und die von der Firma AB Kanthal, Schweden, unter der Bezeichnung Kanthal A bzw. Al bzw. AF als Heizleiter-Legierung hergestellt wird. Der aus diesem Material hergestellte Stab wird, nachdem er mit einem Kopf 30 für den Angriff der Feder 26 und dem Gewinde 28 versehen ist, einer Voralterung in einer Temperatur oberhalb 800 °C, vorzugsweise bei ca. 1200 °C in normaler Atmosphäre unterzogen. Dadurch wird auch die durch die mechanische Umformung entstehende Spannung abgebaut. Dadurch wird die Schaltamplitude überraschenderweise um etwa ± 3 K erhöht.
  • Das gegenüber dem Ausdehnungsstab-Material 24 geringer thermisch dehnende Rohr 25, das als Vergleichsnormal für den Ausdehnungsstab dient, besteht vorteilhaft aus einem hauptsächlich strahlungsabsorbierenden Material. Das bedeutet, daß es Strahlung praktisch nicht durchläßt, andererseits aber auch in größtem Umfang absorbiert und nicht reflektiert. Vorteilhaft konnte ein Material aus Keramik, insbesondere Cordierit KER 410, eingesetzt werden. Cordierit ist ein Mischkristall aus den Oxiden der Stoffe Magnesium, Aluminium und Silicium (2 MgO x 2 Al₂O₃ x 5 SiO₂). Die Keramik KER 410 wird aus tonsubstanz-magnesiumsilicat-haltigen Massen bei Temperaturen um 1400 °C gebrannt und besitzt als Hauptbestandteil das Mineral Cordierit. Es kann auch über die Schmelzphase und spätere Kristallisations-Behandlung hergestellt werden (vgl. D.M. Müller, "Sintered Cordierite Glass-Ceramic Bodies", Corning N.Y., US-PS 3 926 648). Bei Cordierit handelt es sich um ein durchgesintertes Material, das hauptsächlich strahlungsabsorbierend ist.
  • Ferner wurde als geeignetes Material ein Rohr 25 aus Glaskeramik verwendet, beispielsweise vom Typ Ceran 85573. Dieses Material ist eine Glaskeramik mit niedriger Transmission und hoher Strahlungsabsorption, die durch eine Metalloxid-Beimischung erreicht wird.
  • Ferner wurde mit Erfolg ein Rohr 25 aus undurchsichtigem Quarzgut untersucht, beispielsweise aus dem Material 'Rotosil' der Firma Heraeus. Auch hier ist die Strahlungsundurchlässigkeit und Absorptionsfähigkeit durch eine Beimischung von Metalloxiden erreicht worden.
  • In allen Fällen war es möglich, eine jeweils den Anforderungen entsprechende mehr oder weniger große thermische Verzögerung und Schaltamplitudenverzögerung zu erreichen. Insbesondere bei der Verwendung von Hochtemperatur-Strahlungsheizkörpern 14 war diese Verzögerung, was auch den Anforderungen der Praxis entspricht, größer, so daß beim ersten Ansprechen bei vorher kaltem Temperaturfühler die Abschaltung später erfolgt als beim nachfolgenden Dauerbetrieb. Vor allem wurde auch die Schalthysterese bzw. -amplitude vergrößert, ohne die Ansprechempfindlichkeit im übrigen zu beeinträchtigen. Die Schaltamplitude sollte etwa in der Größenordnung zwischen 4 und 10 K (bevorzugt 5 bis 7 K) liegen, um eine Schalthäufigkeit zu erreichen, die unter 5 Schaltungen pro Minute liegt. Anderenfalls könnte die durch jeweilige örtliche Bestimmungen festgelegte Maximalzahl von Schaltungen pro Minute (wegen Netz- bzw. Funkstörungen) überschritten werden. In diesem Zusammenhang wirkt die strahlungsabsorbierende Ausbildung des Rohres 25 besonders dann vorteilhaft, wenn die thermische Masse vergrößert wird. Dies kann dadurch geschehen, daß die bisher übliche Wandstärke für derartige Rohre von 1 mm wesentlich überschritten wird und vorzugsweise bis 3 mm gewählt wird. Auch ein Vorsehen anderer wärmespeichernder Mittel am Rohr wäre möglich. Es ist auch denkbar, die strahlungsabsorbierenden Eigenschaften in einer Oberflächenbeschichtung vorzusehen, während das Rohr wärmespeichernde Eigenschaften aufweist. Durch die Verwendung eines Rohrmaterials mit geringer thermischer Leitfähigkeit kann die Wärmeabgabe vom Rohr an den Ausdehnungsstab behindert werden, was auch durch zwischengeschaltete Isolationsmaßnahmen erreichbar wäre.
  • Vorzugsweise ist das am Rohr verwendete strahlungsabsorbierende Material im gesamten für die Strahlungs-Beheizung wesentlichen Wellenlängenbereich strahlungsabsorbierend, insbesondere in dem Bereich, der von der jeweiligen Strahlungsquelle direkt herrührt, so daß das Ansprechverhalten hauptsächlich von der Beheizung und nicht von Sekundärstrahlern, z.B. der Glaskeramikplatte, bestimmt wird. Diese Charakteristik ist bei den beschriebenen Materialien gewährleistet, ist aber auch mit anderen Materialien zu erreichen.

Claims (12)

  1. Temperaturschalter für eine eine Strahlungsquelle enthaltende Strahlungsheizung, mit wenigstens einem Schaltkontakt (22) und einem Temperaturfühler (20), der aus einem Ausdehnungsstab (24) aus einem Material mit höherem und einem diesen umgebenden Rohr (25) aus einem Material mit einem demgegenüber geringerem thermischen Ausdehnungskoeffizienten besteht, gekennzeichnet durch Mittel zur temporären, insbesondere bei Strahlung wirksamen, Ansprechverzögerung des Temperaturschalters (21), wobei das Rohr (25) zumindest teilweise ein strahlungsabsorbierendes Material aufweist, das die von der Strahlungsquelle (13, 14) kommende Strahlung hauptsächlich absorbiert.
  2. Temperaturschalter nach Anspruch 1, dadurch gekennzeichnet, daß das Rohr (25) ganz aus dem strahlungsabsorbierenden Material besteht.
  3. Temperaturschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rohr (25) eine erhöhte thermische Trägheit und/oder eine geringe thermische Leitfähigkeit aufweist.
  4. Temperaturschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rohr (25) aus einem durchgesinterten keramischen Material, vorzugsweise aus Cordierit, besteht.
  5. Temperaturschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Rohr (25) aus Glaskeramik, insbesondere einer Glaskeramik mit geringen Transmissions-Eigenschaften, besteht.
  6. Temperaturschalter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Rohr (25) aus einem strahlungsabsorbierenden, nichttransmissivem Quarzgut besteht.
  7. Temperaturschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Rohrmaterial eine Metalloxid-Beimischung enthält.
  8. Temperaturschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das strahlungsabsorbierende Material einen zumindest den von der Strahlungsquelle (13, 14) direkt herrührenden Wellenlängenbereich umfassenden Absorptionsbereich aufweist.
  9. Temperaturschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Ausdehnungsstab (24) zumindest teilweise aus einer Chrom-Eisen-Aluminium-Legierung besteht, die bei einer Temperatur oberhalb 800 °C (ca. 1100 K), vorzugsweise oberhalb 1100 °C (ca. 1400 K), wärmebehandelt ist.
  10. Temperaturschalter nach Anspruch 9, dadurch gekennzeichnet, daß die Chrom-Eisen-Aluminium-Legierung ca. 22 % Chrom und ca. 5% Aluminium enthält.
  11. Temperaturschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Ausdehnungsstab (24) federnd auf Zug belastet ist und durch eine justierbare Verbindung (28, 29) an seinem vom Schaltkontakt (22) entfernten Ende mit dem Rohr (25) verbunden ist.
  12. Temperaturschalter nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß er fest auf eine Begrenzungstemperatur eingestellt ist, wobei ein zweiter, eine Heißanzeige für eine Kochstelle betätigender Signalkontakt vorgesehen ist und/oder in einem Strahlungs-Heizelement (11) mit wenigstens einem Hochtemperatur-Strahlheizkörper (14) wie einem von einem Lampenkolben (16) umschlossenen Heizwiderstand (15) vorgesehen ist.
EP89110509A 1988-06-25 1989-06-10 Temperaturschalter Revoked EP0348716B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3821496 1988-06-25
DE19883821496 DE3821496A1 (de) 1988-06-25 1988-06-25 Temperaturschalter
DE3821495 1988-06-25
DE19883821495 DE3821495A1 (de) 1988-06-25 1988-06-25 Temperaturschalter

Publications (3)

Publication Number Publication Date
EP0348716A2 EP0348716A2 (de) 1990-01-03
EP0348716A3 EP0348716A3 (de) 1991-04-03
EP0348716B1 true EP0348716B1 (de) 1995-02-01

Family

ID=25869461

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89110509A Revoked EP0348716B1 (de) 1988-06-25 1989-06-10 Temperaturschalter

Country Status (5)

Country Link
US (1) US5055819A (de)
EP (1) EP0348716B1 (de)
AT (1) ATE118144T1 (de)
DE (1) DE58908957D1 (de)
ES (1) ES2066805T3 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929965A1 (de) * 1989-09-08 1991-03-14 Ego Elektro Blanc & Fischer Temperaturschalter
US5256860A (en) * 1993-01-22 1993-10-26 Therm-O-Disc, Incorporated Control for glass cooktops utilizing rod-shaped thermistor
IT240975Y1 (it) * 1996-10-25 2001-04-20 Whirpool Europ S R L Dispositivo di controllo della temperatura e di sicurezza associatoa un elemento riscaldante di un piano di cottura in vetroceramica
DE19846513A1 (de) * 1998-10-09 2000-04-13 Ego Elektro Geraetebau Gmbh Schalteinrichtung für eine elektrische Heizeinrichtung
ES2291291T3 (es) * 2001-01-10 2008-03-01 Electrovac Ag Limitador de temperatura.
AT409680B (de) * 2001-04-17 2002-10-25 Electrovac Temperaturbegrenzer
DE102018213625A1 (de) * 2018-08-13 2020-02-13 Siemens Aktiengesellschaft Schaltanlagentemperaturmessung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926648A (en) * 1974-06-07 1975-12-16 Corning Glass Works Sintered cordierite glass-ceramic bodies
DE2839161A1 (de) * 1978-09-08 1980-03-20 Ego Regeltech Temperaturbegrenzer fuer eine glaskeramik-kocheinheit
GB8324271D0 (en) * 1983-09-10 1983-10-12 Micropore International Ltd Thermal cut-out device
GB2192279B (en) * 1983-09-10 1988-10-26 Micropore International Ltd Thermal cut-out device for radiant heaters
AT385372B (de) * 1983-11-04 1988-03-25 Electrovac Vorrichtung zur regelung bzw. begrenzung wenigstens einer temperatur von strahlungsbzw. kontaktheizkoerpern von elektrischen kochgeraeten
IE55689B1 (en) * 1983-12-01 1990-12-19 Thorn Emi Patents Ltd Thermal limiter
US4700051A (en) * 1984-09-22 1987-10-13 E.G.O. Elektro-Gerate Blanc U. Fischer Radiant heater for cooking appliances
DE3817113A1 (de) * 1988-05-19 1989-11-30 Ego Elektro Blanc & Fischer Strahlheizkoerper

Also Published As

Publication number Publication date
EP0348716A2 (de) 1990-01-03
ES2066805T3 (es) 1995-03-16
DE58908957D1 (de) 1995-03-16
US5055819A (en) 1991-10-08
EP0348716A3 (de) 1991-04-03
ATE118144T1 (de) 1995-02-15

Similar Documents

Publication Publication Date Title
AT398013B (de) Überhitzungsschutzschalter für strahlungsheizer
DE69815142T2 (de) Quartzsubtrat heizelement
DE3406604C1 (de) Heizeinrichtung fuer Strahlungsheizstellen mit elektrischen Strahlungsheizelementen
CH649621A5 (de) Elektrische strahlungsheizeinrichtung fuer kochgeraete.
EP0471171A2 (de) Vorrichtung zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material
EP0250880B1 (de) Strahlheizkörper
DE2205132C3 (de) Elektrokochgerät
EP0212718A2 (de) Verfahren und Vorrichtung zum Innenbeschichten von Rohren
EP0348716B1 (de) Temperaturschalter
CH654966A5 (de) Elektrischer kochherd.
EP0234373A2 (de) Kocheinheit mit Strahlheizkörper
CH653509A5 (de) Elektrischer strahlungsheizkoerper.
EP0416335B1 (de) Temperaturschalter
EP0866641A2 (de) Elektrokochplatte
DE3821496A1 (de) Temperaturschalter
DE3821495A1 (de) Temperaturschalter
EP0114307B1 (de) Temperaturregeleinrichtung für ein Wärmegerät
DE2415153A1 (de) Gluehkathodenanordnung
DE3810586A1 (de) Beheizung fuer elektrische kochgeraete
DE19615243C1 (de) Elektrisch betreibbarer, stabförmiger Infrarotstrahler
EP1409421B1 (de) Vorrichtung und verfahren zum entspannen von gläsern, insbesondere von fernsehtrichter-halsansätzen
EP0513953B1 (de) Thermostat-Ventil
DE10060987A1 (de) Verfahren und Vorrichtung zum Keramisieren des Ausgangsglases einer Glaskeramik
EP1631121B1 (de) Infrarotheizelement und Vakuumkammer mit Substratheizung, insbesondere für Vakuumbeschichtungsanlagen
DE3322236A1 (de) Erwaermungsofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB GR IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19901217

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB GR IT LI SE

17Q First examination report despatched

Effective date: 19930107

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: E.G.O. ELEKTRO-GERAETE BLANC UND FISCHER GMBH & CO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB GR IT LI SE

REF Corresponds to:

Ref document number: 118144

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 58908957

Country of ref document: DE

Date of ref document: 19950316

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2066805

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950313

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950630

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: AKO-WERKE GMBH & CO. KG

Effective date: 19951030

Opponent name: CERAMASPEED LIMITED

Effective date: 19951027

Opponent name: ELECTROVAC, FABRIKATION ELEKTROTECHNISCHER SPEZIAL

Effective date: 19951025

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960528

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960617

Year of fee payment: 8

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960621

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960628

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960816

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970611

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19970623

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 970623