EP0339497B1 - Procédé et dispositif pour extruder des tiges ou pour extruder des tubes - Google Patents

Procédé et dispositif pour extruder des tiges ou pour extruder des tubes Download PDF

Info

Publication number
EP0339497B1
EP0339497B1 EP89107169A EP89107169A EP0339497B1 EP 0339497 B1 EP0339497 B1 EP 0339497B1 EP 89107169 A EP89107169 A EP 89107169A EP 89107169 A EP89107169 A EP 89107169A EP 0339497 B1 EP0339497 B1 EP 0339497B1
Authority
EP
European Patent Office
Prior art keywords
mandrel
strand
compaction
ram
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89107169A
Other languages
German (de)
English (en)
Other versions
EP0339497A2 (fr
EP0339497A3 (fr
Inventor
Karl Schedlbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SCHEDLBAUER, KARL
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19883814068 external-priority patent/DE3814068A1/de
Priority claimed from DE19883814085 external-priority patent/DE3814085A1/de
Priority claimed from DE19883816630 external-priority patent/DE3816630A1/de
Application filed by Individual filed Critical Individual
Publication of EP0339497A2 publication Critical patent/EP0339497A2/fr
Publication of EP0339497A3 publication Critical patent/EP0339497A3/fr
Application granted granted Critical
Publication of EP0339497B1 publication Critical patent/EP0339497B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/22Extrusion presses; Dies therefor
    • B30B11/26Extrusion presses; Dies therefor using press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/28Moulding or pressing characterised by using extrusion presses

Definitions

  • the invention relates to a method and an apparatus for extruding or extruding a mixture of small plant parts with binders, the mixture being pressed into a curing channel by a press ram with compression from a filling and pressing chamber.
  • extrusion presses are extrusion presses that produce hollow extrusions using one or more mandrels.
  • Standing mandrels are mandrels that are fixed in the pressing direction and over which the material is pressed in sliding friction.
  • these mandrels are provided with electrical resistance heaters as soon as their cross-section permits.
  • the compression is controlled in these extrusion tube presses, as in extrusion presses, by reducing the pressing force of clamping elements on the outer surface of the extrusion in the curing channel.
  • a control with two pressures, a low pressure during pressing, the level of which determines the compression, and a higher pressure during the remaining cycle time, are common.
  • a large number of clamping elements are used in the extrusion hydraulic cylinders, which are supplied with pressure oil by a pump.
  • the necessary many and long lines from the pump to the hydraulic cylinder result in a number of disadvantages:
  • the system reacts relatively sluggishly at press speeds of more than 0.05 m / s; here must already be switched to the lower stage at the beginning of the press stroke, so that when the final compression of the newly formed strand part has been reached, the lower pressure has actually set on all tensioning elements (DE-PS 29 32 406).
  • the higher the press speed the less precise the system works. Due to the large number of tensioning elements, even the smallest changes in the low pressure cause large changes in the pressing force of the extrusion die and thus in the compression of the weights and the specific weight of the strand. The system works with this inaccurately.
  • the friction between the mandrel and the strand reduces the proportion of the friction between the strand and the walls of the curing channel that is generated by the tensioning elements for controlling the weights.
  • the longer the mandrel is formed the less controllability of the compression. With longer mandrels, the compaction can only be controlled to a very small extent or not at all. This means that the heating power of heated standing mandrels is very low and the curing time can only be shortened slightly.
  • EP-A-14 67 52 discloses a method for extruding small vegetable parts, especially small wooden parts, which are mixed with weather-resistant material in particular. This process uses a piston extrusion press with an adjoining, heated curing channel, in which the batch filled in the press chamber is pre-compressed transversely to the extrusion axis before the extrusion stroke.
  • a batch mixed with a proportion of longer chips is subjected to an orientation influence, at least on the longer chips, during the filling into the baling chamber in such a way that the longer chips settle parallel or approximately parallel to the extrusion axis, and that a subsequent compression of the outer one Layers of the batch is made with such a low compression ratio that the oriented chips located in these layers remain fixed in position during the subsequent extrusion stroke.
  • strands manufactured according to these teachings have a low binding strength and cannot be used as components subject to bending stress, such as beam supports, etc. This method also results in a very high degree high weight of the strand, which can hardly be controlled or influenced.
  • the object of the invention is to propose a solution for the production of strands with extrusion presses, with which the homogeneity and strength of the products is decisively improved by lengthening the glue rest of the strand formed in the curing channel by the setting behavior thus positively changed.
  • extruded tube products which can withstand bending, so that they can be used as load-bearing components.
  • strands are to be produced from small parts, in particular from small wooden parts with binders, which can be pressed to the greatest possible material-specific compression and strength.
  • the resulting strand compression is controlled during the production process of the strands. This is done by a controlled increase in the forces that oppose the inward movement of the entrained mandrel.
  • the mandrel is braked by the sliding friction on the strand that has already been formed.
  • a hydraulic drive of the mandrel is switched to a braking position controlled by a valve. After completion of the press stroke, the press ram is fixed and the mandrel is pulled back hydraulically, whereupon the press ram also returns to its starting position.
  • the invention thus uses a moving mandrel which is of such a length that the static friction between it and the strand is greater than the compressive force required to compress the batch minus the frictional forces acting on the outer surfaces of the strand.
  • mandrels in press construction refers to mandrels which are guided through the extrusion die, run with the extrusion during extrusion and are withdrawn into their starting position after the press stroke has ended.
  • the moving mandrel is attached to a hydraulic cylinder, which prevents the mandrel from running along with the strand through a pressure relief valve, which acts as a brake, up to an adjustable and very quickly changing pressure. This pressure is selected and set so that the extrusion die can build up the compression pressure. Once the compression pressure has been reached, the new strand section produced by the press stroke is completed and is pressed out along the entire strand by its own length.
  • the thorn runs along this path with the strand.
  • the time and the distance that the extrusion die needs to be braked by the pressing speed to its forward end position in the rest position is minimized by increasing the force holding the mandrel. This has the advantage of shortening the pressing time and increasing the output of the press. At the same time, pressure peaks in the cylinder driving the extrusion die are prevented when switching from the pressing movement to the rest position.
  • the extrusion die When the extrusion die has reached the front end position and the strand has been pressed out by the length of the newly formed strand part, it remains in this position and is preferably secured against being pushed back by the strand by a hydraulic shut-off valve.
  • the mandrel which has run along with the length of the newly formed strand, is now pulled back into its starting position by overcoming the static friction. The extrusion die then moves back to its original position.
  • the strand on the mandrel is stretched with static friction over its long length according to the invention / this can protrude with appropriate profiles even beyond the end of the hardening channel, it cannot spring in its length in the mandrel region. This allows you to tie in a state of absolute rest and an optimal connection is made the parts of the batch. In the area outside the mandrel, the binder has already set so far that the glue rest of the press file is maintained.
  • the invention has a further advantage. If the mandrel, which is possible from a certain cross-section, is heated, for example by heat transfer oil, it can transfer a significant part of the thermal energy required to set the binder.
  • the heat supply via the mandrel thus represents heating from two sides, and can reduce the curing time of the binder by 30%, even up to 60%, if the strand has the appropriate profile.
  • the curing channel which is very complex, can be manufactured correspondingly shorter. In addition to the lower construction costs, this also results in a significant reduction in the space requirement of the extrusion tube press system.
  • the object is further achieved according to the invention in that the parts of the batch are transported by a closing slide from below a filling shaft through the filling opening of a filling space and from there fall into the filling space in free fall. After the slide has closed the filling opening of the filling chamber, the batch located in the filling chamber is z. B. 30% compressed.
  • a parallel curing channel adjoins the filling chamber with an inclined surface running in the pressing direction, which runs from a larger radius into a smaller radius, which cross-section is therefore smaller than the front of the filling chamber.
  • the partially compressed mixture is pressed by the extrusion die in such a way that the degree of partial compression is maintained until the extrusion die reaches the end of the filling space.
  • the extrusion die moves with an adjustable but preferably constant speed from its rear to its front end position.
  • the end of the strand that has already been pressed is below the front surface of the Sliding gate at the same height as the end of the filling chamber.
  • the mandrel is held in its rear setting by an adjustable force acting against the pressing direction.
  • the holding force of the mandrel acting against the pressing direction - until the end face of the extrusion die reaches the end of the filling chamber - is regulated in its direction and size in such a way that the compression is not increased, even though the extruded strand is squeezed. So there remains the distance between the end face of the extrusion die and the end of the previously pressed strand over the distance the extrusion die from the point at which the desired degree of compression is reached to the point at which the end faces of the extrusion die the leading edge of the closing slide, the same size.
  • the force required for the desired partial compression is greater than the friction between the strand and the curing channel, then the force must be directed against the pressing direction. If it is smaller, it must be directed in the pressing direction and the pushing out of the strand is supported by the mandrel.
  • the mandrel holding force Since the static friction is greater than the sliding friction, the mandrel holding force must be changed accordingly along the way. Likewise, the kinetic energy for accelerating the strand at rest to the speed of the extrusion die is changed by changing the size of the mandrel holding force Transfer extrusion stamp that the desired degree of partial compression does not change.
  • the total pressing force is a transporting force, which is composed of the pressing force of the extrusion die, the frictional force of the strand that has already been pressed, the part of the strand that is in the compression and the mandrel holding force. If the end face of the extrusion die moves from the filling chamber into the curing channel, the total compression force, realized in an ideally short way, is increased, so that the final compression of the extruded part to be compressed is established. This is done by changing the sizes and possibly the direction of the mandrel holding force.
  • the speed of the mandrel running or pressing along with the strand is reduced so that the static friction between the mandrel and the pressed strand is just retained.
  • the distance between the end face of the extrusion die and the end of the extruded strand is reduced to such an extent that the final compression of the extruded part is obtained.
  • the new part of the strand to be pressed is thus completed and the extrusion die and the mandrel move back into their position at the beginning of the pressing space in such a way that the mandrel pulls the strand back with the static friction between the mandrel and the strand against the pressing direction and pulls the extrusion die until the Face of the extrusion die and the end of the strand at the end of the filling space.
  • the backward movement of the extrusion die is stopped, but the mandrel is overcome by overcoming the Stiction between the mandrel and the strand moved into its rear end position and thus into its starting position.
  • the extrusion die then also moves back to its rear end position and to its starting position.
  • the desired partial compression and the precisely adjustable final compression can be controlled both by the pressure forces of the extrusion die and the mandrel as well as by time / travel relations of the press die and mandrel.
  • the invention is further based on the knowledge that the strength of pressed small parts, in particular small wooden parts with binders, in contrast to naturally grown wood, is greatest when they are compressed to such an extent that they deform plastically and permanently and close to one another pressed mixture, but their fiber structure is preserved and they do not flow.
  • the mandrel is to be moved in such a way that its end is at the beginning of the hardening zone.
  • the desired final compaction is then achieved by enlarging the mandrel that does not move in the longitudinal direction in this operation.
  • the cross-sectional enlargement takes place in the length of the strand section to be formed with the press stroke.
  • the mandrel part adjoining it in the strand has the same cross section and is somewhat smaller than the mandrel part which has been enlarged in cross section. After the final compaction, the mandrel cross-section of the expandable mandrel part is reduced to such an extent that the mandrel can be pulled out of the strand and brought into its end position without subsequent compression of the strand part produced with the press stroke.
  • the mandrel Due to the compression characteristic of the small parts to be compressed, the mandrel only has to be slightly enlarged will. According to this enlargement, the final compaction and the specific weight, which can be selected, adjusted and adjusted to the yield point of the material, result from the lowest compaction required to introduce the pre-compacted batch into the curing channel or to move the small parts parallel to the pressing direction is reproducible with every stroke.
  • the thickness of the oriented outer layer is determined by the reduction of the filling and pressing space onto the hardening channel, it is of course possible to carry out the compression in two stages without having to turn over the parts of the outer layer.
  • the batch is pre-compressed by the ram and then finally compressed and pressed out by widening the cross-section.
  • the invention teaches to bring the batch to be pre-compacted by the press ram into the curing channel by moving the press ram and mandrel, and subsequently to finally compress it by widening the cross-section of the mandrel. This can be particularly advantageous if the product to be produced is subjected to more pressure than bending strength.
  • the degree of enlargement of the mandrel does not of course have to be the same size in relation to its profile. Much more teaches the invention to adjust the cross-sectional enlargement of the wall thickness and the type of loading of the strand and thus to produce the same or, if this is advantageous, a different compression at each point of the strand cross-section. Furthermore, the invention is not limited to one mandrel, but also provides two or more mandrels, which may have the same or different cross sections, according to the profile of the strand.
  • the mandrels can be enlarged in different ways and the enlargement can take place not only simultaneously, but also at different times.
  • the workpiece is produced more cost-effectively and consists of a naturally renewable material, the processing of which is largely free of environmental problems.
  • the mandrel can be enlarged by one or more tension or compression parts.
  • the part of the mandrel that lies in the cavity of the strand part produced with the press stroke and is not moved in the longitudinal direction during the final compression with the entire mandrel is pressed against the walls of the cavity by longitudinal movement of the tension or compression parts and thus compresses the strand section to the final dimension.
  • the parts are moved such that the friction is reduced and the mandrel is pulled out of the strand and moved to its starting position without re-compressing the strand part.
  • the invention provides that the spikes are common to be pulled out individually or in groups with or without movement of the tension or compression parts in the mandrels in order to avoid recompaction.
  • the cross-sections of the mandrels are not enlarged at the same time or individually or in groups with corresponding extruded profiles. This is necessary with these extruded profiles so that the mandrel centers of gravity maintain their position in the extruded cross section. It has proven to be particularly advantageous and economical since, since there are no mechanical friction losses and the final compression can take place very quickly, the cross section of the mandrel can be made elastic in the region that can be expanded in cross section. The cross-sectional expansion is carried out, for example, by pressurizing with a liquid medium. In the depressurized state, the cross section corresponds to the mandrel part adjoining on the press ram side.
  • the cross section is expanded by the pressure of the medium in such a way that the strand section reaches its final compression. If necessary, the pressure of the medium is reduced to such an extent that the mandrel can be pulled out of the strand without re-compressing the strand part produced with the press stroke.
  • the elastic mandrel part with, for example, a metallic protective layer which protects it against the penetration of parts of the batch and, if necessary, reduces the friction against the strand.
  • the mandrel parts which cannot be expanded in cross section are connected to one another by a tensile or compressive element.
  • the jacket which can be expanded by pressure, can be secured in the pressing direction by supporting elements.
  • the mandrels can be heated. This can be done with a liquid Medium or by an electrical resistance heater.
  • Another idea of the invention is to design the mandrels with curved surfaces on the outside. This is advantageous with regard to the compression, the controllability of the extrusion tube press, the swelling behavior of the part of the strand that has not yet or not yet been adequately set, and the mobility of the strand in the curing channel. The less the strand has set through its binder, the more it swells. This swelling is prevented by the walls of the curing channel to the outside. However, if the swelling force becomes too great, the strand sticks in the curing channel and can no longer be pressed out. The mandrel could also jam if the expandable cross-section were not reduced by a necessary amount after the final compression.
  • the compacted mixture When the cross section of the mandrel is reduced, the compacted mixture tries to swell inwards, that is, into the cavity formed by the mandrel and to reduce the cross section of the cavity.
  • the boundary layer to the cavity behaves more or less like a vault. It is further compressed by the swelling and forms an increasing resistance to a reduction in cross-section until the swelling and compression forces are in equilibrium. The degree of reduction is very small due to the compression characteristic of the material. In practice, a deterioration of the surface is not or hardly detectable.
  • the cross section over the circumferential inclined surfaces 13 with the radius 14 is reduced to the cross-sectional dimension of the hardening duct 7.
  • this reduction is passed through the pre-compressed mixture, the parts on the outer layer are folded parallel to the outer surfaces .
  • the parts of the batch are not kinked or kinked due to the degree of pre-compaction, but retain their strength.
  • the thickness of the outer layer is determined by the degree of reduction. So with the same total compression or total weights, strands with different Strength are generated. For components subject to bending loads, e.g. B. load-bearing beam profiles, one will choose a higher flexural strength with lower overall compression and weights, for components subject to pressure, e.g. B. pallet blocks, correspondingly a higher total compression with higher compressive strength.
  • the press ram 5 passes over the rear end 9 of the curing channel 7 - moving into its predetermined front end position - the mandrel 6 is moved in such a way that the desired final degree of compaction is obtained.
  • the strand section produced with the press stroke is thus completed. Due to the static friction between mandrel 6 and strand 8, the strand and the press ram 5 are withdrawn by the mandrel 6 to such an extent that the end face 11 of the press ram 5 and the end 10 of the strand 8 are located at the rear end 12 of the curing channel 7. In this position, the press ram 5 stops and when the static friction is overcome, the mandrel 6 is pulled out of the strand 8 and moved into its starting position. Thereafter, the press ram 5 moves to its starting position and ends the press operation.
  • the invention is not limited to the use of the mandrel. Rather, any number of mandrels can be used, which can protrude through the filling and pressing space 4 into the curing channel 7 at any point.
  • the invention provides for the mandrels not to be pulled out of the strand at the same time, but rather individually or only a certain number of mandrels.
  • the invention further teaches that the mandrels for increasing or reducing the friction are designed to be conical or wedge-shaped in length or parts of the length. If the cross section of the thorn (s) is changed, this can also be done along non-straight lines.
  • a pallet block profile with two cavities is created.
  • Two press cylinders 19, 19 'with their piston rods 20, 20' are attached to the crossmember 15 of the filling and pressing space 16 with the press nozzle 17 to which the curing channel 18 is connected.
  • the extrusion die 21 is connected to the press cylinders 19, 19 'via the cylinder cross member 22.
  • the extruded tube punch 21, driven by the press cylinders 19, compresses the mixture in the filling and pressing space 16 and presses it by the length of the extruded part produced with the press stroke with the strand 23 already produced in the previous strokes into the curing channel 18.
  • the extrusion die 21 runs over the mandrels 24, 24 ', which are movably guided in the pressing direction by means of a mandrel traverse 25 with the mandrel holding cylinder 26.
  • the mandrels 24, 24 ' run in the pressing direction.
  • the level of compression is determined by the pressure in the mandrel holding cylinder 26 determined, which is precisely selectable, adjustable and reproducible with every cycle by a pressure relief valve attached to the cylinder or connected with lines.
  • a pressure relief valve attached to the cylinder or connected with lines.
  • the profile of the strand 23 is shown, which is formed by the boundary walls 27 and the closing slide 28 and the mandrels 24, 24 '.
  • the closing slide 28 is moved back and forth by a stroke transmitter 29 and, with its passage opening 30, enables the batch to fall from the filling shaft 31 into the filling and pressing space 16 in free fall.
  • a longitudinal section through an extruded tube pressing device the mixture 32 in the filling and pressing space 33 is pre-compressed by the pressing ram 34, the filling and pressing space 33 being closed by the closing slide 35.
  • the mandrel part 36 which can be expanded in cross section, is not expanded and has the cross section of the mandrel part 37 adjoining the press ram.
  • the strand 39 is located in the hardening channel 38 and therein the non-expandable mandrel part 40 on the hardening channel side.
  • the mandrel 41 is in its initial position.
  • the amount of precompression can be determined via the path or the pressing force of the press ram 34.
  • the next compression process is shown in FIG.
  • the batch was further compacted and moved to its final length by moving the small parts of its outer skin over the reduction 42 between the filling and pressing space 33 and the curing channel 38, so that at the end of this step the end 43 of the strand part 44 is at the beginning 45 of the curing channel 38.
  • the expanded mandrel part 36 is in the non-expanded state and is located in the strand part 44.
  • the strand part 44 produced with the press stroke has been completed and has extended the strand by its length.
  • the final compression takes place by widening the cross section of the mandrel part 36.
  • the cross section of the mandrel part 36 was expanded to a larger cross section than that of the mandrel part 40 located in the strand 39 This cross-sectional expansion was reduced to at least the cross section of the mandrel part 40 after the final compression before the mandrel 41 was pulled out.
  • FIG. 9 shows a longitudinal section through a mandrel 41.
  • the cross-sectionally expandable mandrel part 36 is expanded to the cross-section of the hardening channel-side mandrel part 40 or somewhat larger and between it and the press-die side mandrel part 37 kept such that it is not or not significantly longitudinally movable. The expansion took place via the pull wedge 46.
  • the cross section of the mandrel part 37 corresponds to that of the mandrel part 36.
  • the expandable mandrel part 36 can be made of a plastic material or, if it is not plastic, can be made with expansion slots.
  • FIG. 9 A cross section on the line I-I according to FIG. 9 is shown in FIG.
  • a round mandrel was selected, which is heated by an electrical resistance heater 47. The current is supplied through the bore 48.
  • the elastic, but not or almost incompressible mandrel part 36 is provided with a protective layer 49, for example metallic, which prevents the penetration of parts of the mixture and reduces the friction.
  • FIG. 11 shows a longitudinal section through a mandrel 41, in which the mandrel part 36 is widened under pressure, with a liquid medium in the cavity 57.
  • the applied protective layer 49 which reduces the friction and prevents the penetration of parts of the batch, is designed to be longitudinally stable and prevents the hose-like element 50 from laying excessively over the possibly rounded corners 52, 52 'when pressure is applied.
  • the protective layer 49 is also longitudinally stable in such a way that it can overcome the frictional forces of the strand 39 when the mandrel 41 is pulled out.
  • the invention is not limited to the named ways of expanding the mandrel part 36 but teaches that the advantages of the invention can also be achieved with other types of cross-sectional expansion.
  • Figure 12 shows the cross section of a profile that can be used for example as a wall element in house construction.
  • the lightweight construction with a large spacing of the outer surface 53 with oriented chips is advantageous here.
  • the cross-sectional expansion was carried out here from line 54 to strand wall 55.
  • Figure 13 shows a support profile, for example for prefabricated houses.
  • the final compression is also carried out here by expanding the mandrels from lines 54 to the inner walls 55 of the strand.
  • only the two outer surfaces 53 are oriented.
  • FIG. 14 shows a window or door profile in which all outer surfaces are oriented.
  • the final compaction was carried out by expanding the mandrel from lines 54 to strand walls 55.
  • the inner walls of the strand are formed with inner surfaces corrugated in the strand in order to support the swelling pressure.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Formation And Processing Of Food Products (AREA)

Claims (23)

  1. Procédé pour l'extrusion ou l'extrusion à tuyaux d'un mélange de particules végétales à des liants, dans lequel le mélange est pressuré à compression par un chasse-piston (5), d'un espace de remplissage et compactage (4) dans un passage de durcissement (7), et dans lequel le frottage statique entre la paroi extérieure du boudin et la paroi intérieure dudit passage de durcissement et ainsi entre la paroi intérieure du boudin et un mandrin (6) est utilisé pour tenir au moins une partie du boudin ainsi produit dans ledit passage de durcissement (7),
    caractérisé en ce que
    (a) indépendamment dudit chasse-piston (5, 34), au cours du mouvement et l'arrêt dudit chasse-piston, en fonction du degré de compactage contrôlable dudit mélange, un mandrin (6, 24, 41) à mouvement axial en sens d'extrusion est déplacé en sens d'extrusion dudit chasse-piston ou en sens opposé à cette direction de mouvement, et en ce qu'au moins au cours de la dernière partie du cycle de compactage, ledit mandrin est entraîné dans ledit passage de durcissement (7, 18, 38) par le frottage statique sur ledit boudin (8, 23, 39), qui est ensuite suffisamment grand, à une décélération contrôlée,
    et en ce qu'au cours du cycle de compactage, jusqu'à l'achèvement du degré final de compactage moyennant une force ajustable et variable durant le cycle de compactage, ledit mandrin, qui définit la cavité dudit boudin, est tenu en sa position d'extrémité arrière, ce qui cause l'arrêt du boudin en vertu du frottage statique;
    (b) ledit mélange est comprimé dans ledit espace de remplissage et compactage (4, 16) par le mouvement dudit chasse-piston (5, 34), et qu'après l'achèvement dudit degré de compactage souhaité, ledit mandrin (6, 24, 41) est déplacé de façon que le degré de compactage final souhaité soit achevé et que le boudin déjà comprimé est chassé dudit passage de durcissement (7, 18, 38);
    (c) après l'opération d'extrusion, les mandrin (6, 24, 41), et ensemble avec le dernier aussi le boudin extrudé (8, 23, 39) ainsi que ledit chasse-piston (5, 34), sont retirés, en vertu du frottage statique entre ledit mandrin et ledit boudin, jusqu'à ce que la face (11) dudit chasse-piston, et ainsi l'extrémité du boudin, arrivent audit espace de remplissage et compactage; (4, 16, 33); qu'ensuite ledit chasse-piston est arrêté et que ledit mandrin est retiré dans sa position de départ, après que ledit chasse-piston est également ramené dans sa position de départ pour libérer ledit espace de remplissage et compactage pour une opération de remplissage ultérieur, à la force, qui tient ledit mandrin après que le degré final de compactage, étant variée de façon que, malgré le changement du frottage entre le boudin et les parois de la filière de l'extrudeuse (17) dudit passage de durcissement, en vertu de la conversion du frottage statique dans un frottage de glissement, la force de compression dudit chasse-piston reste au même niveau environ;
    (d) ledit boudin est serré sur ledit mandrin par le frottage statique de façon que le boudin ne fait pas ressort élastique, et que ledit liant peut durcir en état de repos particulier.
  2. Procédé son la revendication 1,
    caractérisé en ce que ledit chasse-piston (5, 34) bande ledit mélange à un mouvement approprié dudit mandrin (6, 24, 41) dudit espace de remplissage et compactage (4, 16, 33) dans les passage de durcissement (7, 18, 38), pendant que le degré de compactage est conservé jusqu'à ce que ledit chasse-piston arrive à l'extrémite dudit espace de remplissage et compactage, et qu'ensuite ledit chasse-piston est pressé dans ledit passage de durcissement jusqu'à un point où il arrive dans la position déterminée, et en ce qu'au cours de cette opération de compactage dans ledit passage de durcissement ledit mandrin est déplacé de façon que le degré degré de compactage reste constant et qu'un compactage homogène ultérieur dudit mélange pré-compacté soit obtenu.
  3. Procédé son la revendication 1 ou 2,
    caractérisé en ce que las particules contenues sur las faces extérieures dudit mélange pre-compacté dans ledit espace de remplissage et compactage (4, 16, 33) sont pliées au cours dur transfert dans ledit passage de durcissement (7, 18, 38) en vertu du fait que ledit passage de durcissement présente une plus petite section transversale.
  4. Procédé selon la revendication 3,
    caractérisé en ce que les particules dans les faces extérieures du mélange pré-compacté sont pliées de façon qu'en fonction du degré de pré-compactage, les particules dans le mélange pré-compacté ne sont flambées, en conservant leur résistance mécanique.
  5. Procédé son la revendication 3 ou 4,
    caractérisé en ce que ceux particules dans le mélange, qui sont pliées en parallèle aux faces extérieures, constituent une couche extérieure à un plus haut degré de compactage, et en ce que la résistance mécanique et la force portante du boudin sont augmentées.
  6. Procédé son une quelconque des revendications 1 à 5,
    caractérisé en ce que l'épaisseur de ladite couche extérieure à compactage élevé, est définie par la mesure de la réduction (13, 14) entre l'extrémité dudit espace de remplissage et compactage (9) et le début dudit passage de durcissement (12).
  7. Procédé son une quelconque des revendications 1 à 6,
    caractérisé en ce que ledit mandrin (6, 24, 41) est chauffable, et tranfère, en vertu de sa longueur, une partie essentielle de l'énergie de durcissement dans les ledit boudin (8, 23, 39).
  8. Procédé selon une quelconque des revendications 1 à 7,
    caractérisé en ce que les mélange pré-compacté et compacté ultérieurement est soumis à une opération de compactage ultérieur par élargissement de ladite section transversale dudit mandrin (41), de façon que ledit mélange atteigne sa densité ou respectivement son poids final sélectable et ajustable, qui est reproductible pour chaque cycle.
  9. Procédé son la revendication 8,
    caractérisé en ce que les mélange subit un pré-compactage par le mouvement dudit chasse-piston (34), arrive dans ledit passage de remplissage et compactage (38), en cet état de pré-compactage, sous l'action dudit chasse-piston et dudit mandrin (41), et subit là un compactage ultérieur, en vertu du mouvement dudit chasse-piston et dudit mandrin, jusqu'à ce qu'il atteigne sa longueur finale et son degré de compactage final, sous l'action d'élargissement de la section transversale dudit mandrin.
  10. Procédé son la revendication 8 ou 9,
    caractérisé en ce que le degré de compactage est sélectable, ajustable et reproductible pour chaque cycle de compactage par élargissement de la section transversale dudit mandrin (41), en partant du compactage minimal possible, qui est requis pour plier les particules dans la couche extérieure du mélange dans une orientation parallèle au sens d'extrusion, jusqu'à la limite de fluage du matériel.
  11. Procédé son une quelconque des revendications 1 à 10,
    caractérisé en ce qu'un milieu liquide ou gazeux chauffé s'écoule par le mandrin employé (41).
  12. Dispositif pour réaliser le procédé selon les revendications 1 à 11, comprenant un chasse-piston (5), un espace de remplissage et compactage (4), un passage de durcissement (7) et un mandrin (6), ainsi que les mécanismes nécessaires pour entraîner ledit chasse-piston,
    caractérisé en ce qu'un mandrin (6, 24, 41) à mouvement axial est prévu des moyens moteurs, est passé par les espace de remplissage et compactage (4, 16, 33) par les chasse-piston (5, 34), et fait saillie dudit espace de remplissage et compactage et s'étend dans ledit passage de durcissement (7, 18, 38), ledit mandrin étant conçu à une longueur telle que le frottage statique entre ledit mandrin et le boudin (8, 23, 39) sur passe la force d'extrusion réduite par les forces de frottage qui sont actives sur les faces extérieures dudit boudin, et en ce que des moyens sont prévus pour un élargissement variable de la section transversale dudit mandrin (41).
  13. Dispositif selon la revendication 12,
    caractérisé en ce que plusieurs mandrins (6, 24, 41) sont prévus, dont chacun présent une section transversale et une longueur choisie à volonté.
  14. Dispositif selon la revendications 12 ou 13,
    caractérisé en ce que le(s)dit(s) mandrin(s) (6, 24, 41) peut (peuvent) être conçu(s) pour une variation sur toute leur longueur, au moins en partie, en forme de coin ou en forme conique, et/ou de façon que leurs sections transversales soient variables suivant des lignes non-linéaires.
  15. Dispositif selon une quelconque des revendications 12 à 14,
    caractérisé en ce que ledit mandrin (6, 24, 41) est conçu pour être variable sur sa longueur, afin d'augmenter ou réduire le frottement entre ledit mandrin et le boudin (8, 23, 39), de façon que le profile varie suivant des contours extérieurs non-rectilignes.
  16. Dispositif selon une quelconque des revendications 12 à 15,
    caractérisé en ce que des ou plus mandrins définissent des cavités dont chacun a un profil particulier.
  17. Dispositif selon une quelconque des revendications 12 à 16,
    caractérisé en ce que les mandrin (41) est élargi dans cette partie de sa longueur, qui se trouve au dedans du tronçon de boudin (44) formé par ledit espace de compactage (33).
  18. Dispositif selon la revendication 12 ou 17,
    caractérisé en ce que l'élargissement de la section transversale dudit mandrin (41) est achevé moyennant des coins de traction (46) mobiles en sens longitudinal.
  19. Dispositif selon la revendication 18,
    caractérisé en ce que la section transversale dudit tronçon de mandrin (36) élargissable est élastique en ce qui concerne la pression.
  20. Dispositif selon la revendication 19,
    caractérisé en ce que la section transversale dudit mandrin (41) peut subir un élargissement moyennant la pression d'un milieu liquide ou gazeux.
  21. Dispositif selon la revendication 19 ou 20,
    caractérisé en ce que ledit tronçon de mandrin (36) élastique à la pression est prévu d'une couche de protection (49) qui empêche la pénétration des particules contenues dans le mélange.
  22. Dispositif selon une quelconque des revendications 12 à 21,
    caractérisé en ce que lesdits mandrins sont conçus d'une forme ovale pour l'appui du boudin à l'encontre de la pression de gonflement.
  23. Dispositif selon une quelconque des revendications 12 à 22,
    caractérisé en ce que lesdits mandrins sont prévus des faces extérieures convexes pour l'appui de la pression de gonflement.
EP89107169A 1988-04-26 1989-04-20 Procédé et dispositif pour extruder des tiges ou pour extruder des tubes Expired - Lifetime EP0339497B1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19883814068 DE3814068A1 (de) 1988-04-26 1988-04-26 Verfahren und vorrichtung zum strangrohrpressen eines gemenges aus pflanzlichen kleinteilen mit bindemitteln
DE3814085 1988-04-26
DE3814068 1988-04-26
DE19883814085 DE3814085A1 (de) 1988-04-26 1988-04-26 Verfahren und vorrichtung zur steuerung der verdichtung beim strang- und strangrohrpressen von kleinteilen, insbesondere holzkleinteilen, mit bindemitteln
DE19883816630 DE3816630A1 (de) 1988-04-26 1988-05-16 Verfahren und vorrichtung zum strangrohrpressen von kleinteilen, insbesondere holzkleinteilen mit bindmitteln
DE3816630 1988-05-16

Publications (3)

Publication Number Publication Date
EP0339497A2 EP0339497A2 (fr) 1989-11-02
EP0339497A3 EP0339497A3 (fr) 1991-04-10
EP0339497B1 true EP0339497B1 (fr) 1994-11-09

Family

ID=27197532

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89107169A Expired - Lifetime EP0339497B1 (fr) 1988-04-26 1989-04-20 Procédé et dispositif pour extruder des tiges ou pour extruder des tubes

Country Status (3)

Country Link
EP (1) EP0339497B1 (fr)
AT (1) ATE113893T1 (fr)
DE (1) DE58908617D1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4117659C2 (de) * 1991-05-29 1996-05-02 Karl Schedlbauer Vorrichtung zum dosierten Einbringen eines Gemenges aus Kleinteilen, insbesondere pflanzlicher Kleinteile in den Füll- und Preßraum einer Strang- oder Strangrohrpresse
EP0718079B1 (fr) * 1994-12-14 1999-09-29 Karl Schedlbauer Procédé et dispositif pour la fabrication de panneaux et bandes tubulaires
DE19980473D2 (de) * 1998-03-25 2001-06-21 Karl Schedlbauer Verfahren und Vorrichtung zur Herstellung eines Profilmateriales
EP1238792A3 (fr) * 2001-01-13 2003-05-14 Karl Schedlbauer Procédé et dispositif d'extrusion en continu de profilés pleins ou tubulaires à partir de petits morceaux
DE202020100117U1 (de) * 2020-01-10 2021-04-13 Pfeifer Holz Gmbh Strangpresseinrichtung und Strangpressprodukt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE977639C (de) * 1950-06-04 1967-11-23 Otto Kreibaum Presse zur Herstellung von Spanplatten
DE1058658B (de) * 1956-03-19 1959-06-04 E H Leo Pungs Dr Ing Dr Ing Verfahren und Einrichtung zur kontinuierlichen Herstellung von Holzspan-Formpresskoerpern, insbesondere Holzspanplatten
US3578523A (en) * 1966-05-21 1971-05-11 Alfred Graf Zu Erbach Furstena Extrusion molding of particle board having particular surface characteristic
BE719721A (fr) * 1967-08-21 1969-02-03
US3530552A (en) * 1968-04-29 1970-09-29 Glen H Calder Extrusion device

Also Published As

Publication number Publication date
ATE113893T1 (de) 1994-11-15
DE58908617D1 (de) 1994-12-15
EP0339497A2 (fr) 1989-11-02
EP0339497A3 (fr) 1991-04-10

Similar Documents

Publication Publication Date Title
EP0025114B1 (fr) Procédé et dispositif pour extruder un mélange de copeaux végétaux et d'agglomérants
DE60114275T2 (de) Verfahren zur Herstellung eines verstärkten thermoplastischen Werkstücks und Form
DE2535989C3 (de) Vorrichtung zum Ausharten stranggepreßter Körper
EP0339497B1 (fr) Procédé et dispositif pour extruder des tiges ou pour extruder des tubes
EP1066138B1 (fr) Procede et dispositif permettant de fabriquer un materiau profile
EP0638401B1 (fr) Procédé et dispositif pour extruder des profils, en particulier pour extruder des tubes à partir d'un mélange de copeaux végétaux et de liants
DE3222113A1 (de) Verfahren und vorrichtung zur steigerung der biegefestigkeit von strangpresserzeugnissen aus gemischen v. pflanzlichen kleinteilen u. bindemitteln
DE19830542A1 (de) Verfahren und Vorrichtung zur Leistungssteigerung, zur Verbesserung der Biegefestigkeit, der Steuerung der Verdichtung und zur Längsorientierung der Kleinteile beim Strang- und Strangrohrpressen von flächigen Kleinteilen
DE2539674A1 (de) Verfahren zum kontinuierlichen herstellen von stangen, voll- und hohlprofilen aus pulver-, faser- oder spanfoermigen werkstoffen, vorzugsweise aus ligno- zellulose, die mit bindemitteln versehen sind
EP0130359B1 (fr) Procédé de fabrication de barres porteuses, profilés, poutres et identiques en petits morceaux végétaux comprimés
CH527054A (de) Verfahren und Vorrichtung zur Herstellung von beliebig langen Platten, Blöcken oder sonstigen geformten Teilen aus expandierfähigen Kunststoffen
EP1415778A2 (fr) Presse et procédé de pressage du bois
DE3814099A1 (de) Verfahren und vorrichtung zum strang- und stranrohrpressen von kleinteilen, insbesondere holzkleinteilen, mit bindemitteln
DE3814068A1 (de) Verfahren und vorrichtung zum strangrohrpressen eines gemenges aus pflanzlichen kleinteilen mit bindemitteln
EP1198331B1 (fr) Procede pour extruder des petites pieces vegetales
DE3816630A1 (de) Verfahren und vorrichtung zum strangrohrpressen von kleinteilen, insbesondere holzkleinteilen mit bindmitteln
DE4339742C2 (de) Vorrichtung zum Aushärten einer Bahn einer Formmasse
EP0718079B1 (fr) Procédé et dispositif pour la fabrication de panneaux et bandes tubulaires
DE3814103C2 (de) Verfahren und Vorrichtung zum Strangpressen eines Gemenges aus pflanzlichen Kleinteilen mit Bindemitteln
DE4027583C2 (de) Vorrichtung zum Pressen von Strangteilen
DE3814085A1 (de) Verfahren und vorrichtung zur steuerung der verdichtung beim strang- und strangrohrpressen von kleinteilen, insbesondere holzkleinteilen, mit bindemitteln
DE10153193A1 (de) Verfahren und Vorrichtung zum Aushärten von Strängen aus Kleinteilen mit Bindemitteln nach einer Strangpresse
DE1704787A1 (de) Verfahren zur kontinuierlichen Herstellung von Profilen aller Art aus faserverstaerkten Kunststoffen und Einrichtungen hierzu
DE3906107A1 (de) Quadratische presse
DE102009040491A1 (de) Brikettierpresse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19911004

17Q First examination report despatched

Effective date: 19921103

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19941109

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19941109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19941109

Ref country code: GB

Effective date: 19941109

REF Corresponds to:

Ref document number: 113893

Country of ref document: AT

Date of ref document: 19941115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58908617

Country of ref document: DE

Date of ref document: 19941215

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SCHEDLBAUER, KARL

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950430

Ref country code: LI

Effective date: 19950430

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19941109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: AUV

Free format text: DAS OBENGENANNTE PATENT IST, MANGELS BEZAHLUNG DER 7. JAHRESGEBUEHR, ERLOSCHEN.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000425

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010411

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010918

Year of fee payment: 13

BERE Be: lapsed

Owner name: SCHEDLBAUER KARL

Effective date: 20010430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20020430

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020701

Year of fee payment: 14

EUG Se: european patent has lapsed

Ref document number: 89107169.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021231

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20031101