EP0328951A1 - Röntgenröhre - Google Patents

Röntgenröhre Download PDF

Info

Publication number
EP0328951A1
EP0328951A1 EP89101820A EP89101820A EP0328951A1 EP 0328951 A1 EP0328951 A1 EP 0328951A1 EP 89101820 A EP89101820 A EP 89101820A EP 89101820 A EP89101820 A EP 89101820A EP 0328951 A1 EP0328951 A1 EP 0328951A1
Authority
EP
European Patent Office
Prior art keywords
heat absorption
rotating anode
absorption body
ray tube
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89101820A
Other languages
English (en)
French (fr)
Other versions
EP0328951B1 (de
Inventor
Herbert Dipl.-Ing. Bittl (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0328951A1 publication Critical patent/EP0328951A1/de
Application granted granted Critical
Publication of EP0328951B1 publication Critical patent/EP0328951B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1266Circulating fluids flow being via moving conduit or shaft

Definitions

  • the invention relates to an x-ray tube with a fixed cathode and a rotating anode, which are arranged in an evacuated housing, with an axis connected to the housing, on which the rotating anode is rotatably arranged with the aid of bearings, and with a heat absorption body connected to the housing.
  • the rotating anode is designed as a hollow body, in the interior of which the heat absorption body engages, and the heat absorption body is subjected to a cooling medium for removing the heat transferred from the wall of the interior of the rotating anode by radiation to the outer surface of the heat absorption body opposite the wall of the interior.
  • the heat loss that occurs when X-rays are generated on the rotating anode is only partially released to the environment by radiation via the housing. A substantial part of the heat loss is transferred to the heat absorption body by radiation and dissipated from it by means of the cooling medium. This leads to a higher thermal load capacity of the rotating anode, since a larger amount of heat can be dissipated from it per unit of time.
  • An X-ray tube of the type mentioned is known from DE-0S 34 29 799.
  • the heat absorption body is attached to a shaft connected to the housing, the central axis of which is aligned with that of the axis on which the rotating anode is mounted.
  • the heat absorption body then engages from one end of the rotating anode into its interior.
  • the rotating anode thereof can only be mounted overhung; both bearings are thus on the side of the rotating anode facing away from the heat absorption body.
  • Such a storage leaves something to be desired in terms of its rigidity.
  • the invention has for its object to design an X-ray tube of the type mentioned so that a rigid mounting of the rotating anode is ensured and the manufacturing cost of the X-ray tube is low.
  • the heat absorption body is acted upon by the cooling medium, by having an on and an off from a channel running in the axis Flow opening is traversed, in which the cooling medium flows, there is in addition to a good dissipation of the heat absorbed by the heat absorption body, the advantage that an effective dissipation of the heat that reaches the bearings from the rotating anode by heat conduction is guaranteed.
  • the heat dissipation can be further improved if, according to a variant of the invention, the channel runs in the heat absorption body close to its outer surface.
  • embodiments of the invention provide that the channel branches into several partial channels in the area of the heat absorption body and that the wall of the interior of the rotating anode and / or the outer surface of the heat absorption body is blackened.
  • the channel for the cooling medium can be produced in a particularly simple manner if, according to a variant of the invention, the inlet opening of the channel is located at one end of the axis and the outlet opening at the other end.
  • Another variant of the invention provides that the X-ray tube is arranged in a protective housing filled with an electrically insulating liquid and the liquid in the protective housing flows through the channel as a cooling medium. In this way, e.g. with the help of a pump, a coolant flow can be generated through the channel with little effort.
  • one embodiment of the invention provides that the rotating anode has at its opposite ends a sleeve made of a material with a low thermal conductivity, in the bore of which the respective bearing is received.
  • a sleeve can form the stator of an electric motor that drives the rotating anode.
  • the X-ray tube according to the invention has a fixed cathode 1 and a rotating anode, designated overall by 2, which are arranged in an evacuated housing 3, which in turn is in a container with an electrically insulating liquid, e.g. Insulating oil, filled protective housing 4 is added.
  • a fixed axis 5 is connected to the housing 3, on which the rotating anode 2 is rotatably supported by means of two roller bearings 6, 7.
  • the rotating anode 2 is designed as a rotationally symmetrical hollow body.
  • the rotating anode 2 has a frustoconical section 8, at the smaller end of which a radially inwardly directed flange 9 is integrally connected.
  • a tubular part 10 adjoins the larger end of the frustoconical section 8, to which an annular disk 12 is fastened with its outer edge by means of schematically indicated screws 11.
  • the frustoconical section 8 of the rotating anode 2 is provided with a layer 13 made of a tungsten-rhenium alloy, onto which an electron beam 14 emanating from the cathode 1 is incident to produce an X-ray beam emerging through a radiation exit window 4a provided in the protective housing 4, of which only an X-ray 15 is shown.
  • a fixed, rotationally symmetrical heat absorption body 16 Arranged in the interior of the rotating anode 2 is a fixed, rotationally symmetrical heat absorption body 16 connected to the housing 3, on the outer surface 17 of which a large part of the heat loss generated by the generation of the X-ray beam is radiated from the wall 18 of the interior of the rotating anode 2.
  • the heat absorption body 16 is connected to the housing 3 in that it is attached to the axis 5.
  • the Axis 5 extends through the housing 3 and is connected at its ends in a vacuum-tight manner.
  • the rotating anode 2 is mounted on the axle 5 at one end by means of the roller bearing 6 and at its other end by means of the roller bearing 7.
  • a channel 19 runs in the axis 5, in which a cooling medium flows in order to dissipate the heat transferred from the rotating anode 2 to the heat absorption body 16.
  • the channel 19 branches in the area of the heat absorption body 16 into a plurality of subchannels, of which two, namely the subchannels 19a and 19b, are visible in FIG.
  • the channel 19 is closed in the region of the heat absorption body 16 by a stopper, so that the cooling medium flows through openings of the wall of the axis 5 arranged in the flow direction in front of the stopper into the subchannels 19a and 19b and by further flow downstream of the stopper in the wall of the stopper Axis 5 located Tiffept enters the portion of the channel 19 located behind the plug.
  • the heat transfer by radiation from the rotating anode 2 to the heat absorption body 16 is supported in that the wall 18 of the interior of the rotating anode 2 and the outer surface of the heat absorption body 16 are each provided with a layer of a suitable black material indicated by the reference numerals 17a and 18a.
  • the inflow opening 20 of the channel is at one end and the outflow opening 21 is at the other end of the axis 5.
  • the cooling medium flows in the channel 19 in the protective housing 4 liquid.
  • the required liquid flow is generated by means of a schematically indicated pump 22, which draws in liquid via a line 23, which takes its exit in the area of the outflow opening 21, and via a line 24, one connected to the protective housing 4 and into the inflow opening 20 of the channel 19 projecting pipe socket 25 is supplied.
  • a cooler 26 is connected into the liquid circuit in front of the pump 22. If a cooler is not required, the cooling circuit can also take place within the protective housing 4 in a manner not shown.
  • a pump is then provided in the interior of the protective housing 4, which feeds the liquid in the protective housing to the inflow opening 20 of the channel 19 in order to generate a liquid flow. No lines running outside the protective housing 4 are then required.
  • the rotating anode is at its opposite ends, i.e. on the flange 9 and on the disk 12, each provided with a sleeve 27 or 28, which is formed from a material with a low thermal conductivity and accommodates the respective roller bearing 6 or 7 in its bore.
  • the heat absorption body 16 and the axis 5, unlike in the figure, can be formed as composite components made of several materials with good thermal conductivity.
  • measures can be taken which make the heat transfer between the sleeves 27, 28 and the outer rings of the roller bearings 6, 7 mounted in these sleeves 27, 28 more difficult.
  • the outer rings of the roller bearings 6, 7 can e.g. only touch the holes in the sleeves 27, 28 in a punctiform manner.
  • the structure of the rotating anode 2 shown in the figure is only to be understood as an example. It is only essential that the rotating anode 2 is designed as a hollow body, in the interior of which the heat absorption body 16 can be arranged and acted upon by the cooling medium. As a result of the formation of the rotating anode 2 as a hollow body, this has a low moment of inertia, so that the rotating anode 2 has a short run-up time.
  • the housing 3 consists of two metallic housing parts 31 and 32 which are connected to one another by welding.
  • the housing part 31 is of a pot-shaped configuration and has a tubular extension 31a, the outer wall of which is surrounded by the stator 29, while the sleeve 28 forming the rotor with the coating 30 is located inside the tubular extension 31a.
  • the tubular extension 31a is provided at its free end with a bottom 31b which has a bore into which the axis 5 engages at one end.
  • the axis 5 is welded to the bottom 31b of the tubular extension 31a.
  • the other end of the axis 5 engages in a bore in the housing part 32 and is also fastened there by welding.
  • a tubular insulator 33 which receives the cathode 1, is attached laterally to the housing part 31.
  • the insulator 33 is connected to the housing part 31 with the interposition of a suitably shaped metal ring 34 by welding.
  • the housing part 32 is provided with a radiation exit window 32a made of a suitable material, e.g. Beryllium provided, which is arranged opposite the radiation exit window 4a of the protective housing 4.
  • a radiation exit window 32a made of a suitable material, e.g. Beryllium provided, which is arranged opposite the radiation exit window 4a of the protective housing 4.
  • a generator device 35 shown schematically, is provided for supplying power to the X-ray tube.
  • This contains a heating voltage source 36 for the heating voltage required for the cathode 1.
  • the generator device 35 also contains a high-voltage source 37, which emits the high voltage required for generating x-rays, which is present between the rotating anode 2 and the cathode 1. It also includes the genes Rator device 35, a voltage source 38 which outputs the operating voltage required for the electric motor 29 and 28 or 30 provided for driving the rotating anode 2.
  • the lines leading from the generator device 35 to the individual elements of the x-ray tube are indicated schematically in the figure.
  • the rotating anode 2 and the one connection of the stator 29 are at a common potential, namely ground potential. Since no insulation measures have been taken between the rotating anode 2 and the housing, all components of the X-ray tube are therefore at earth potential 39.
  • the X-ray tube is therefore of single-pole design. Among other things, this offers the advantage that no insulators are required between the stator 29 of the electric motor provided for driving the rotating anode 2 and the housing 3.
  • the stator 29 can thus be placed directly on the tubular extension 31a of the housing part 31, as shown in the figure.
  • the electric motor provided for driving the rotating anode 2 thus has a very small air gap, whereby the advantage of a very good grip and thus a short ramp-up time of the electric motor or the rotating anode 2 is achieved.

Abstract

Die Erfindung betrifft eine Röntgenröhre mit einer feststehenden Kathode (1) und einer Drehanode (2), welche in einem evakuierten Gehäuse (3) angeordnet sind, mit einer mit dem Gehäuse (3) verbundenen Achse (5), auf der die Drehanode (2) mit Hilfe von Lagern (6, 7) drehbar angeordnet ist, und mit einem mit dem Gehäuse (3) verbundenen Wärmeabsorptionskörper (16), wobei die Drehanode (2) als Hohlkörper ausgeführt ist, in dessen Innenraum der Wärmeabsorptionskörper (16) eingreift, und der Wärmeabsorptionskörper (16) von einem Kühlmedium zur Abfuhr der von der Wand (18) des Innenraumes der Drehanode (2) durch Strahlung auf die der Wand (18) des Innenraumes gegenüberliegende Mantelfläche (17) des Wärmeabsorptionskörpers (16) übertragenen Wärme beaufschlagt ist. Dabei ist vorgesehen, daß der Wärmeabsorptionskörper (16) an der Achse (5) angebracht ist, daß die Achse (5) sich durch das Gehäuse (3) hindurch erstreckt und daß die Drehanode (2) an ihren einander gegenüberliegenden Enden mittels jeweils eines Lagers (6, 7) auf der Achse (5) gelagert ist.

Description

  • Die Erfindung betrifft eine Röntgenröhre mit einer feststehen­den Kathode und einer Drehanode, welche in einem evakuierten Gehäuse angeordnet sind, mit einer mit dem Gehäuse verbundenen Achse, auf der die Drehanode mit Hilfe von Lagern drehbar ange­ordnet ist, und mit einem mit dem Gehäuse verbundenen Wärmeab­sorptionskörper, wobei die Drehanode als Hohlkörper ausgeführt ist, in dessen Innenraum der Wärmeabsorptionskörper eingreift, und der Wärmeabsorptionskörper von einem Kühlmedium zur Abfuhr der von der Wand des Innenraumes der Drehanode durch Strahlung auf die der Wand des Innenraumes gegenüberliegende Mantelfläche des Wärmeabsorptionskörpers übertragenen Wärme beansprucht ist.
  • Bei derartigen Röntgenröhren wird die bei der Erzeugung von Röntgenstrahlung auf der Drehanode anfallende Verlustwärme nur zum Teil durch Strahlung über das Gehäuse an die Umgebung abge­geben. Ein wesentlicher Teil der Verlustwärme wird durch Strah­lung auf den Wärmeabsorptionskörper übertragen und von diesem mittels des Kühlmediums abgeführt. Dies führt zu einer höheren thermischen Belastbarkeit der Drehanode, da von dieser pro Zeiteinheit eine größere Wärmemenge abgeführt werden kann.
  • Eine Röntgenröhre der eingangs genannten Art ist aus der DE-0S 34 29 799 bekannt. Dabei ist der Wärmeabsorptionskörper an einem mit dem Gehäuse verbundenen Schaft angebracht, dessen Mittelachse mit der der Achse, auf der die Drehanode gelagert ist, fluchtet. Der Wärmeabsorptionskörper greift dann von der einen Stirnseite der Drehanode her in deren Innenraum ein. In­folge der beschriebenen Ausbildung der bekannten Röntgenröhre kann deren Drehanode nur fliegend gelagert sein; beide Lager befinden sich also auf der von dem Wärmeabsorptionskörper ab­gewandten Seite der Drehanode. Eine solche Lagerung läßt aber hinsichtlich ihrer Steifigkeit zu wünschen übrig.
  • Um eine möglichst gute Wärmeabfuhr von der Drehanode auf den Wärmeabsorptionskörper zu ermöglichen, ist es bei der bekannten Röntgenröhre erforderlich, daß sich die Wand des Innenraumes der Drehanode und die Mantelfläche des Wärmeabsorptionskörpers in einem möglichst geringen Abstand voneinander befinden. Dies bedingt, daß bei der Herstellung der bekannten Röntgenröhre ein erheblicher Aufwand getrieben werden muß, um sicherzustellen, daß die Mittelachsen des Schaftes und des Wärmeabsorptionskör­pers exakt mit der der Achse fluchten, da andernfalls die Ge­fahr besteht, daß die Wand des Innenraumes der Drehanode den Wärmeabsorptionskörper streift.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Röntgenröhre der eingangs genannten Art so auszubilden, daß eine steife Lagerung der Drehanode gewährleistet und der Herstellungsaufwand der Röntgenröhre gering ist.
  • Diese Aufgabe wird nach der Erfindung dadurch gelöst, daß der Wärmeabsorptionskörper an der Achse angebracht ist, daß die Achse sich durch das Gehäuse hindurch erstreckt, und daß die Drehanode an ihren einander gegenüberliegenden Enden mittels jeweils eines Lagers auf der Achse gelagert ist. Es wird somit deutlich, daß im Falle der erfindungsgemäßen Röntgenröhre die Wand des Innenraumes der Drehanode äußerst dicht bei der Man­telfläche des Wärmeabsorptionskörpers angeordnet werden kann, ohne daß dazu ein besonderer Herstellungsaufwand getrieben wer­den muß, da der Wärmeabsorptionskörper an der Achse, auf der auch die Drehanode gelagert ist, angebracht ist. Außerdem er­gibt sich eine starre Lagerung der Drehanode, da diese im Falle der Erfindung an ihren einander gegenüberliegenden Enden auf der Achse gelagert ist, die sich im Falle der Erfindung - der Wärmeabsorptionskörper ist an der Achse angebracht - durch das Gehäuse hindurch erstreckt.
  • Wenn gemäß einer Variante der Erfindung der Wärmeabsorptions­körper von dem Kühlmedium beaufschlagt ist, indem er von einem in der Achse verlaufenden Kanal mit einer Ein- und einer Aus­ strömöffnung durchzogen ist, in dem das Kühlmedium strömt, er­gibt sich neben einer guten Abfuhr der von dem Wärmeabsorp­tionskörper aufgenommenen Wärme der Vorteil, daß auch eine wirksame Ableitung der Wärme, die von der Drehanode durch Wär­meleitung zu deren Lagern gelangt, gewährleistet ist.
  • Die Wärmeabfuhr kann weiter verbessert werden, wenn der Kanal nach einer Variante der Erfindung in dem Wärmeabsorptionskörper nahe bei dessen Mantelfläche verläuft. Um eine nochmalige Ver­besserung der Wärmeabfuhr zu erzielen, sehen Ausführungsformen der Erfindung vor, daß sich der Kanal im Bereich des Wärmeab­sorptionskörpers in mehrere Teilkanäle verzweigt und daß die Wand des Innenraumes der Drehanode und/oder die Mantelfläche des Wärmeabsorptionskörpers geschwärzt ist.
  • Der Kanal für das Kühlmedium kann dann auf besonders einfache Weise hergestellt werden, wenn sich nach einer Variante der Er­findung die Einströmöffnung des Kanales an dem einen Ende der Achse und die Ausströmöffnung an deren anderem Ende befindet.
  • Eine weitere Variante der Erfindung sieht vor, daß die Röntgen­röhre in einem mit einer elektrisch isolierenden Flüssigkeit gefüllten Schutzgehäuse angeordnet ist und die in dem Schutz­gehäuse befindliche Flüssigkeit als Kühlmedium durch den Kanal strömt. Auf diese Weise kann, z.B. unter Zuhilfenahme einer Pumpe, mit geringem Aufwand ein Kühlmittelstrom durch den Kanal erzeugt werden.
  • Um sicherzustellen, daß die Lager der Drehanode thermisch mög­lichst gering belastet sind, sieht eine Ausführungsform der Er­findung vor, daß die Drehanode an ihren einander gegenüberlie­genden Enden jeweils eine Hülse aus einem Werkstoff mit einem geringen Wärmeleitwert aufweist, in deren Bohrung das jeweilige Lager aufgenommen ist. Dabei kann eine Hülse den Stator eines zum Antrieb der Drehanode dienenden Elektromotors bilden.
  • Ein Ausführungsbeispiel der Erfindung ist in der einzigen Fig. der beigefügten Zeichnung im Längsschnitt schematisch darge­stellt.
  • Die erfindungsgemäße Röntgenröhre weist eine feststehende Ka­thode 1 und eine insgesamt mit 2 bezeichnete Drehanode auf, die in einem evakuierten Gehäuse 3 angeordnet sind, das seinerseits in einem mit einer elektrisch isolierenden Flüssigkeit, z.B. Isolieröl, gefüllten Schutzgehäuse 4 aufgenommen ist. Mit dem Gehäuse 3 ist eine feststehende Achse 5 verbunden, auf der die Drehanode 2 mit Hilfe von zwei Wälzlagern 6, 7 drehbar gelagert ist.
  • Wie aus der Fig. ersichtlich ist, ist die Drehanode 2 als rota­tionssymmetrischer Hohlkörper ausgeführt. Im einzelnen weist die Drehanode 2 einen kegelstumpfförmigen Abschnitt 8 auf, an dessen kleineres Ende sich ein radial nach innen gerichteter Flansch 9 einstückig anschließt. An das größere Ende des kegel­stumpfförmigen Abschnittes 8 schließt sich ein Rohrteil 10 ein­stückig an, an dem mit Hilfe von schematisch angedeuteten Schrauben 11 eine kreisringförmige Scheibe 12 mit ihrem äußeren Rand befestigt ist. Der kegelstumpfförmige Abschnitt 8 der Drehanode 2 ist mit einer Schicht 13 aus einer Wolfram-Rhenium-­Legierung versehen, auf die ein von der Kathode 1 ausgehender Elektronenstrahl 14 zur Erzeugung eines durch ein in dem Schutzgehäuse 4 vorgesehenen Strahlenaustrittsfenster 4a aus­tretenden Röntgenstrahlenbündels auftrifft, von dem nur ein Röntgenstrahl 15 dargestellt ist.
  • Im Innenraum der Drehanode 2 ist ein mit dem Gehäuse 3 verbun­dener, feststehender, rotationssymmetrischer Warmeabsorptions­körper 16 angeordnet, auf dessen Mantelfläche 17 ein großer Teil der von der bei der Erzeugung des Röntgenstrahlenbündels anfallenden Verlustwärme von der Wand 18 des Innenraumes der Drehanode 2 abgestrahlt wird.
  • Im einzelnen ist der Wärmeabsorptionskörper 16 dadurch mit dem Gehäuse 3 verbunden, daß er an der Achse 5 angebracht ist. Die Achse 5 erstreckt sich durch das Gehäuse 3 hindurch und ist an ihren Enden vakuumdicht mit diesem verbunden. Dabei ist die Drehanode 2 an ihrem einen Ende mittels des Wälzlagers 6 und an ihrem anderen Ende mittels des Wälzlagers 7 auf der Achse 5 ge­lagert. In der Achse 5 verläuft ein Kanal 19, in dem ein Kühl­medium zur Abfuhr der von der Drehanode 2 auf den Wärmeabsorp­tionskörper 16 übertragenen Wärme strömt. Der Kanal 19 ver­zweigt sich im Bereich des Wärmeabsorptionskörpers 16 in mehre­re Teilkanäle, von denen in der Fig. zwei, nämlich die Teil­kanäle 19a und 19b, sichtbar sind. Diese verlaufen in dem Wär­meabsorptionskörper 16 nahe bei dessen Mantelfläche 17, so daß eine wirksame Wärmeabfuhr mittels des Kühlmediums gewährleistet ist. Der Kanal 19 ist im Bereich des Wärmeabsorptionskörpers 16 durch einen Stopfen verschlossen, so daß das Kühlmedium durch in Strömungsrichtung vor dem Stopfen angeordnete Öffnungen der Wandung der Achse 5 in die Teilkanäle 19a und 19b einströmt und durch weitere in Strömungsrichtung hinter dem Stopfen in der Wandung der Achse 5 befindliche tiffnungen wieder in den hinter dem Stopfen befindlichen Abschnitt des Kanales 19 eintritt.
  • Der Wärmeübergang durch Strahlung von der Drehanode 2 auf den Wärmeabsorptionskörper 16 wird dadurch unterstützt, daß die Wand 18 des Innenraumes der Drehanode 2 und die Mantelfläche des Wärmeabsorptionskörpers 16 jeweils mit einer durch die Be­zugszeichen 17a und 18a angedeuteten Schicht eines geeigneten schwarzen Werkstoffes versehen sind.
  • Wie aus der Fig. anhand der die Strömungsrichtung im Kanal 19 angebenden Pfeile erkennbar ist, befindet sich die Einströmöff­nung 20 des Kanales an dem einen und die Ausströmöffnung 21 an dem anderen Ende der Achse 5. Als Kühlmedium strömt in dem Ka­nal 19 die in dem Schutzgehäuse 4 befindliche Flüssigkeit. Der erforderliche Flüssigkeitsstrom wird mittels einer schematisch angedeuteten Pumpe 22 erzeugt, die über eine Leitung 23, die ihren Ausgang im Bereich der Ausströmöffnung 21 nimmt, Flüssig­keit angesaugt und über eine Leitung 24 einem mit dem Schutzge­häuse 4 verbundenen und in die Einströmöffnung 20 des Kanales 19 ragenden Rohrstutzen 25 zugeführt wird. Dabei ist vor der Pumpe 22 ein Kühler 26 in den Flüssigkeitskreislauf geschaltet. Sofern ein Kühler nicht erforderlich ist, kann der Kühlkreis­lauf auch in nicht dargestellter Weise innerhalb des Schutzge­häuses 4 erfolgen. Es ist dann eine Pumpe im Innenraum des Schutzgehäuses 4 vorgesehen, die zur Erzeugung eines Flüssig­keitsstromes die in dem Schutzgehäuse befindliche Flüssigkeit der Einströmöffnung 20 des Kanales 19 zuführt. Es sind dann keine außerhalb des Schutzgehäuses 4 verlaufenden Leitungen erforderlich.
  • Die Drehanode ist an ihren einander gegenüberliegenden Enden, d.h. an dem Flansch 9 und an der Scheibe 12, jeweils mit einer Hülse 27 bzw. 28 versehen, die aus einem Werkstoff mit einem geringen Wärmeleitwert gebildet ist und in ihrer Bohrung das jeweilige Wälzlager 6 bzw. 7 aufnimmt. Dabei bildet die Hülse 28 als Rotor gemeinsam mit einem außerhalb des Gehäuses 3 ange­ordneten Stator 29 einen Elektromotor zum Antrieb der Drehanode 2. Sofern der Werkstoff der Hülse 28 nicht die zur Bildung ei­nes Rotors erforderlichen elektrischen Eigenschaften aufweist, kann ein geeigneter Belag, der in der Fig. mit 30 bezeichnet ist, auf der Hülse 28 angebracht sein.
  • Der Wärmeabsorptionskörper 16 und die Achse 5 können übrigens, anders als in der Fig. dargestellt, als Verbundbauteile aus mehreren gut wärmeleitenden Materialien gebildet sein. Außerdem können Maßnahmen getroffen sein, die den Wärmeübergang zwischen den Hülsen 27, 28 und den Außenringen der in diesen Hülsen 27, 28 angebrachten Wälzlager 6, 7 erschweren. So können die Außen­ringe der Wälzlager 6, 7 z.B. nur punktförmig an den Bohrungen der Hülsen 27, 28 anliegen.
  • Der in der Fig. dargestellte Aufbau der Drehanode 2 ist nur beispielhaft zu verstehen. Wesentlich ist nur, daß die Dreh­anode 2 als Hohlkörper ausgeführt ist, in dessen Innenraum der Wärmeabsorptionskörper 16 angeordnet und von dem Kühlmedium be­aufschlagt werden kann. Infolge der Ausbildung der Drehanode 2 als Hohlkörper weist diese ein geringes Trägheitsmoment auf, so daß sich eine kurze Hochlaufzeit der Drehanode 2 ergibt.
  • Wie aus der Fig. ersichtlich ist, besteht das Gehäuse 3 aus zwei metallischen Gehäuseteilen 31 und 32, die durch Schweißen miteinander verbunden sind. Im einzelnen ist das Gehäuseteil 31 von topfförmiger Gestalt und weist einen rohrförmigen Ansatz 31a auf, dessen Außenwand von dem Stator 29 umgeben ist, wäh­rend sich die den Rotor bildende Hülse 28 mit dem Belag 30 im Inneren des rohrförmigen Ansatzes 31a befindet. Der rohrförmige Ansatz 31a ist an seinem freien Ende mit einem Boden 31b ver­sehen, der eine Bohrung aufweist, in die die Achse 5 mit ihrem einen Ende eingreift. Die Achse 5 ist durch eine Schweißung mit dem Boden 31b des rohrförmigen Ansatzes 31a verbunden.
  • Das andere Ende der Achse 5 greift in eine Bohrung des Gehäuse­teiles 32 ein und ist dort ebenfalls durch Schweißen befestigt.
  • Im Bereich der Drehanode 2 ist seitlich an das Gehäuseteil 31 ein rohrförmiger Isolator 33 angesetzt, der die Kathode 1 auf­nimmt. Der Isolator 33 ist mit dem Gehäuseteil 31 unter Zwi­schenfügung eines geeignet geformten Metallringes 34 durch Schweißen verbunden.
  • Um den Austritt des Röntgenstrahlenbündels 15 aus dem Gehäuse 3 zu ermöglichen, ist das Gehäuseteil 32 mit einem Strahlenaus­trittsfenster 32a aus einem geeigneten Werkstsoff, z.B. Beryllium, versehen, das dem Strahlenaustrittsfenster 4a des Schutzgehäuses 4 gegenüberliegend angeordnet ist.
  • Zur Spannungsversorgung der Röntgenröhre ist eine schematisch dargestellte Generatoreinrichtung 35 vorgesehen. Diese enthält eine Heizspannungsquelle 36 für die für die Kathode 1 erforder­liche Heizspannung. Weiter enthält die Generatoreinrichtung 35 eine Hochspannungsquelle 37, die die zur Erzeugung von Röntgen­strahlen erforderliche, zwischen der Drehanode 2 und der Katho­de 1 anliegende Hochspannung abgibt. Außerdem umfaßt die Gene­ ratoreinrichtung 35 eine Spannungsquelle 38, die die für den zum Antrieb der Drehanode 2 vorgesehenen Elektromotor 29 und 28 bzw. 30 erforderliche Betriebsspannung abgibt. Die von der Ge­neratoreinrichtung 35 zu den einzelnen Elementen der Röntgen­röhre führenden Leitungen sind in der Fig. schematisch ange­deutet.
  • Wie aus der Fig. ersichtlich ist, liegen die Drehanode 2 und der eine Anschluß des Stators 29 auf einem gemeinsamen Poten­tial, nämlich Erdpotential. Da zwischen der Drehanode 2 und dem Gehäuse keinerlei Isolationsmaßnahmen getroffen sind, liegen somit alle Bauteile der Röntgenröhre auf Erdpotential 39. Die Röntgenröhre ist also einpolig ausgeführt. Dies bietet unter anderem den Vorteil, daß zwischen dem Stator 29 des zum Antrieb der Drehanode 2 vorgesehenen Elektromotors und dem Gehäuse 3 keinerlei Isolatoren erforderlich sind. Der Stator 29 kann so mit unmittelbar auf den rohrförmigen Ansatz 31a des Gehäusetei­les 31 aufgesetzt werden, so wie dies in der Fig. dargestellt ist. Der zum Antrieb der Drehanode 2 vorgesehene Elektromotor weist somit einen sehr geringen Luftspalt auf, wodurch der Vor­teil eines sehr guten Durchgriffes und damit einer kurzen Hoch­laufzeit des Elektromotors bzw. der Drehanode 2 erzielt wird.

Claims (9)

1. Röntgenröhre mit einer feststehenden Kathode (1) und einer Drehanode (2), welche in einem evakuierten Gehäuse (3) angeord­net sind, mit einer mit dem Gehäuse (3) verbundenen Achse (5), auf der die Drehanode (2) mit Hilfe von Lagern (6, 7) drehbar angeordnet ist, und mit einem mit dem Gehäuse (3) verbundenen Wärmeabsorptionskörper (16) wobei die Drehanode (2) als Hohl­körper ausgeführt ist, in dessen Innenraum der Wärmeabsorp­tionskörper (16) eingreift, und der Wärmeabsorptionskörper (16) von einem Kühlmedium zur Abfuhr der von der Wand (18) des In­nenraumes der Drehanode (2) durch Strahlung auf die der Wand (18) des Innenraumes gegenüberliegende Mantelfläche (17) des Wärmeabsorptionskörpers (16) übertragenen Wärme beaufschlagt ist, dadurch gekennzeichnet, daß der Wärmeabsorptionskörper (16) an der Achse (5) angebracht ist, daß die Achse (5) sich durch das Gehäuse (3) hindurch er­streckt, und daß die Drehanode (2) an ihren einander gegen­überliegenden Enden mittels jeweils eines Lagers (6, 7) auf der Achse (5) gelagert ist.
2. Röntgenröhre nach Anspruch 1, dadurch ge­kennzeichnet, daß der Wärmeabsorptionskörper (16) von einem in der Achse (5) verlaufenden Kanal (19, 19a, 19b) mit einer Ein- und einer Ausströmöffnung (20, 21) durchzogen ist, in dem das Kühlmedium strömt.
3. Röntgenröhre nach Anspruch 2, dadurch ge­kennzeichnet, daß der Kanal (19a, 19b) in dem Wärmeabsorptionskörper (16) nahe bei dessen Mantelfläche (17) verläuft.
4. Röntgenröhre nach Anspruch 2 oder 3, dadurch ge­kennzeichnet, daß sich der Kanal (19) im Bereich des Wärmeabsorptionskörpers (16) in mehrere Teilkanäle (19a, 19b) verzweigt.
5. Röntgenröhre nach einem der Ansprüche 1 bis 4, da­durch gekennzeichnet, daß die Wand (18) des Innenraumes der Drehanode (2) und/oder die Mantelfläche (17) des Wärmeabsorptionskörpers (16) geschwärzt ist.
6. Röntgenröhre nach einem der Ansprüche 1 bis 5, da­durch gekennzeichnet, daß sich die Ein­strömöffnung (20) des Kanales (19, 19a, 19b) an dem einen Ende der Achse (5) und die Ausströmöffnung (21) an deren anderem Ende befindet.
7. Röntgenröhre nach einem der Ansprüche 1 bis 6, da­durch gekennzeichnet, daß die Röntgen­röhre in einem mit einer elektrisch isolierenden Flüssigkeit gefüllten Schutzgehäuse (4) angeordnet ist und die in dem Schutzgehäuse (4) befindliche Flüssigkeit als Kühlmedium durch den Kanal (19, 19a, 19b) strömt.
8. Röntgenröhre nach einem der Ansprüche 1 bis 7, da­durch gekennzeichnet, daß die Drehanode (2) an ihren einander gegenüberliegenden Enden jeweils eine Hülse (27, 28) aus einem Werkstoff mit einem geringen Wärme­leitwert aufweist, in deren Bohrung das jeweilige Lager (6, 7) aufgenommen ist.
9. Röntgenröhre nach Anspruch 8, dadurch ge­kennzeichnet, daß die Hülse (28) den Rotor eines zum Antrieb der Drehanode (2) dienenden Elektromotors bildet.
EP89101820A 1988-02-15 1989-02-02 Röntgenröhre Expired - Lifetime EP0328951B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE8801941U 1988-02-15
DE8801941U DE8801941U1 (de) 1988-02-15 1988-02-15

Publications (2)

Publication Number Publication Date
EP0328951A1 true EP0328951A1 (de) 1989-08-23
EP0328951B1 EP0328951B1 (de) 1993-04-21

Family

ID=6820695

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89101820A Expired - Lifetime EP0328951B1 (de) 1988-02-15 1989-02-02 Röntgenröhre

Country Status (3)

Country Link
US (1) US4949369A (de)
EP (1) EP0328951B1 (de)
DE (2) DE8801941U1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19607072A1 (de) * 1995-02-28 1996-08-29 Gen Electric Kompakte medizinische Röntgenröhre mit einem Fluid-gekühlten thermischen Strahlungsrezeptor
EP0780876A3 (de) * 1995-12-23 1997-12-10 Philips Patentverwaltung GmbH Antriebsvorrichtung für eine Drehanode einer Röntgenröhre
US5887629A (en) * 1996-03-28 1999-03-30 Grob & Co. Aktiengesellschaft Corner connection for a heddle shaft
DE10318194A1 (de) * 2003-04-22 2004-11-25 Siemens Ag Röntgenröhre mit Flüssigmetall-Gleitlager

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185774A (en) * 1990-11-23 1993-02-09 Pxt Technology, Inc. X-ray tube construction
US5596622A (en) * 1993-07-13 1997-01-21 David V. Habif, Jr. Method and system for extending the service life of an x-ray tube
US5440608A (en) * 1993-07-13 1995-08-08 David V. Habif, Jr. Method and system for extending the service life of an x-ray tube
US5732123A (en) * 1993-07-13 1998-03-24 David V. Habif, Jr. Method and system for extending the service life of an x-ray tube
US6154521A (en) * 1998-10-26 2000-11-28 Picker International, Inc. Gyrating anode x-ray tube
US6254272B1 (en) 1999-02-05 2001-07-03 Maurice D. Dilick Method and apparatus for extending the life of an x-ray tube
DE19914825A1 (de) * 1999-03-31 2000-06-29 Siemens Ag Vakuumgehäuse für eine Elektronenröhre
JP4357094B2 (ja) * 1999-08-10 2009-11-04 株式会社東芝 回転陽極型x線管及びそれを内蔵したx線管装置
US6377659B1 (en) * 2000-12-29 2002-04-23 Ge Medical Systems Global Technology Company, Llc X-ray tubes and x-ray systems having a thermal gradient device
EP1432005A4 (de) * 2001-08-29 2006-06-21 Toshiba Kk Röntgenröhre des dreh-positivpoltyps
US7164751B2 (en) * 2002-02-11 2007-01-16 Koninklijke Philips Electronics, N.V. Device for generating X-rays
JP3836855B2 (ja) * 2004-07-15 2006-10-25 株式会社リガク 回転対陰極x線管及びx線発生装置
FR2879810B1 (fr) * 2004-12-21 2007-02-16 Gen Electric Tube a rayons x bien refroidi

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546511A (en) * 1967-07-31 1970-12-08 Rigaku Denki Co Ltd Cooling system for a rotating anode of an x-ray tube
DE2748069A1 (de) * 1977-10-26 1979-05-03 Braun M Gmbh Drehanodenkonstruktion in einem roentgengenerator
DE3429799A1 (de) * 1984-08-13 1986-02-20 Siemens Ag Drehanoden-roentgenroehre

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105146A (ja) * 1983-11-09 1985-06-10 Hitachi Ltd 回転陽極エツクス線管装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546511A (en) * 1967-07-31 1970-12-08 Rigaku Denki Co Ltd Cooling system for a rotating anode of an x-ray tube
DE2748069A1 (de) * 1977-10-26 1979-05-03 Braun M Gmbh Drehanodenkonstruktion in einem roentgengenerator
DE3429799A1 (de) * 1984-08-13 1986-02-20 Siemens Ag Drehanoden-roentgenroehre

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 255 >(E-349)[1978], 12. Oktober 1985; & JP-A-60 105 146 (HITACHI SEISAKUSHO K.K.) 10-06-1985 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19607072A1 (de) * 1995-02-28 1996-08-29 Gen Electric Kompakte medizinische Röntgenröhre mit einem Fluid-gekühlten thermischen Strahlungsrezeptor
EP0780876A3 (de) * 1995-12-23 1997-12-10 Philips Patentverwaltung GmbH Antriebsvorrichtung für eine Drehanode einer Röntgenröhre
US5887629A (en) * 1996-03-28 1999-03-30 Grob & Co. Aktiengesellschaft Corner connection for a heddle shaft
DE10318194A1 (de) * 2003-04-22 2004-11-25 Siemens Ag Röntgenröhre mit Flüssigmetall-Gleitlager

Also Published As

Publication number Publication date
DE8801941U1 (de) 1989-06-15
EP0328951B1 (de) 1993-04-21
DE58904093D1 (de) 1993-05-27
US4949369A (en) 1990-08-14

Similar Documents

Publication Publication Date Title
EP0328951B1 (de) Röntgenröhre
DE4432205C1 (de) Hochspannungsstecker für eine Röntgenröhre
EP1891725B1 (de) Permanentmagneterregte elektrische maschine mit rotorkühlung
DE10318194A1 (de) Röntgenröhre mit Flüssigmetall-Gleitlager
WO2001039557A1 (de) Röntgenstrahler mit zwangsgekühlter drehanode
DE2455974C3 (de) Drehanodenröntgenröhre
DE19851853C1 (de) Drehkolbenstrahler
EP2993767A1 (de) Generator für ein Kraftwerk
DE102013224504A1 (de) Antriebsanordnung zum Antrieb eines Fahrzeugs, Fahrzeug mit einer Antriebsanordnung
DE19956918A1 (de) Elektrische Maschine
DE19929655B4 (de) Röntgenstrahler
DE102009025841B4 (de) Vorrichtung für einen kompakten Hochspannungsisolator für eine Röntgen- und Vakuumröhre und Verfahren zur Montage derselben
WO2019110275A1 (de) Elektrische maschine, insbesondere für ein fahrzeug
EP0225463B1 (de) Röntgenstrahler
DE3043046A1 (de) Drehanoden-roentgenroehre
EP0589187B1 (de) Oberflächengekühlte, geschlossene elektrische Maschine
CH673069A5 (de)
DE102013215673B4 (de) Einpoliger Röntgenstrahler
EP0585644B1 (de) Oberflächengekühlte, geschlossene elektrische Maschine
DE2610660A1 (de) Drehanoden-roentgenroehre
DE102008034568A1 (de) Röntgenröhre
DE2901681A1 (de) Roentgenroehre
DE10322156A1 (de) Rotationsanode für Röntgenröhren unter Verwendung einer Übermaßpassung
DE2753460A1 (de) Elektrische maschine mit kryogenkuehlung
DE3721100C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR LI

17P Request for examination filed

Effective date: 19890925

17Q First examination report despatched

Effective date: 19920717

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI

REF Corresponds to:

Ref document number: 58904093

Country of ref document: DE

Date of ref document: 19930527

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940224

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940419

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940517

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950228

Ref country code: CH

Effective date: 19950228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST