EP0326005B1 - Verfahren und Vorrichtungen zur Wärmebehandlung von Kohlenstoffstahldrähten, um so ein feines perlitisches Gefüge zu bekommen - Google Patents

Verfahren und Vorrichtungen zur Wärmebehandlung von Kohlenstoffstahldrähten, um so ein feines perlitisches Gefüge zu bekommen Download PDF

Info

Publication number
EP0326005B1
EP0326005B1 EP89100781A EP89100781A EP0326005B1 EP 0326005 B1 EP0326005 B1 EP 0326005B1 EP 89100781 A EP89100781 A EP 89100781A EP 89100781 A EP89100781 A EP 89100781A EP 0326005 B1 EP0326005 B1 EP 0326005B1
Authority
EP
European Patent Office
Prior art keywords
wire
temperature
tube
heat
pearlitisation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89100781A
Other languages
English (en)
French (fr)
Other versions
EP0326005A1 (de
Inventor
André Reiniche
Philippe Sauvage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Priority to AT89100781T priority Critical patent/ATE87667T1/de
Publication of EP0326005A1 publication Critical patent/EP0326005A1/de
Application granted granted Critical
Publication of EP0326005B1 publication Critical patent/EP0326005B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/64Patenting furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods

Definitions

  • the invention relates to methods and devices for heat treating carbon steel wires so as to obtain a fine pearlitic structure. These threads are used in particular to reinforce rubber and / or plastic articles, for example tire casings.
  • One of the most used processes is a so-called "patenting" heat treatment which consists of austenitization of the wire at a temperature of 900 to 1000 ° C. followed by immersion in a bath of lead or of molten salts maintained at a temperature of 450 to 600 ° C.
  • Patenting unfortunately results in high cost prices because the handling of liquid metals or molten salts leads to heavy technologies and the need to clean the wire after patenting. On the other hand, lead is very toxic and the hygiene problems it poses lead to significant expenses.
  • European patent application no. EP-A-0 270 860 describes a process for thermally treating a carbon steel wire so as to obtain a fine pearlitic structure by regulating the temperature of the wire during the transformation of austenite into pearlite so that it does not differ not more than 10 ° C, by excess or by default, of a given temperature lower than the transformation temperature AC1 and higher than the temperature of the pearlitic nose, this adjustment being obtained by passing an electric current through the wire during a time greater than the pearlitization time and by performing a modulated ventilation during part of this time.
  • This process makes it possible to avoid the use of metals or of molten salts, and it therefore eliminates the problems of hygiene and cleaning of the abovementioned wires, while leading to simpler installations and more flexible operation.
  • this process requires the use of compressors or turbines to obtain modulated ventilation, which can lead to relatively high investment and operating costs.
  • this process can only be used on an industrial scale for wires of relatively small diameter, for example at most equal to 3 mm.
  • Application DE-A-2 111 631 describes a process for thermally treating a steel wire so as to obtain a pearlitic structure.
  • the wire is passed through a tube containing a reducing or inert gas which may be practically immobile.
  • This document gives no general relationship to be respected between the characteristics of the tube, the wire and the gas for this cooling.
  • the object of the invention is to make it possible to carry out a heat treatment for the transformation of austenite into perlite which avoids the use of metals or molten salts, as well as the use of forced ventilation, while making it possible to treat wires whose diameter can vary within wide limits.
  • the invention also relates to the methods and complete installations for heat treatment of carbon steel wires using the methods or devices described above.
  • FIG. 1 represents the curve ⁇ showing the evolution of the temperature of a steel wire as a function of time, when this wire is subjected to a pearlitization treatment.
  • This figure also represents the curve X1 corresponding to the start of the transformation of metastable austenite into perlite and the curve X2 corresponding to the end of the transformation of metastable austenite into perlite, for the steel of this wire.
  • the abscissa axis corresponds to time T and the ordinate axis corresponds to temperature ⁇ .
  • the wire Prior to the pearlitization treatment, the wire was heated and maintained at a temperature higher than the transformation temperature AC3 so as to obtain a homogeneous austenite, this temperature ⁇ A , for example between 900 ° C and 1000 ° C, corresponding to the point A in FIG. 1.
  • the point called "pearlitic nose” corresponds to the minimum time T m of the curve X1, the temperature of this pearlitic nose being referenced ⁇ p .
  • the origin O of times T corresponds to point A.
  • the wire is cooled until it reaches a temperature below the transformation temperature AC1, the state of the wire after this cooling corresponding to point B, the temperature obtained at this point B at the end of time T B being referenced ⁇ B.
  • This temperature ⁇ B has been shown in FIG. 1 as being greater than the temperature ⁇ p of the pearlitic nose, which is the most frequent in practice, without being absolutely necessary.
  • This cooling of the wire between points A and B there is transformation of stable austenite into metastable austenite, as soon as the temperature of the wire drops below the transformation point AC3, and "seeds" appear at the grain boundaries of the metastable austenite.
  • the area between the curves X1, X2 is referenced ⁇ .
  • Perlitization consists in passing the thread from the state represented by point B, to the left of zone ⁇ , to a state represented by point C, to the right of zone ⁇ .
  • This transformation of the wire is for example shown diagrammatically by the straight line segment BC which intersects the curve X1 at B x and the curve X2 at C x , but the invention also applies to cases where the variation in temperature of the wire between the points B and C is not linear.
  • the formation of the germs continues in the part of the segment BC situated to the left of the zone ⁇ , that is to say in the segment BBx.
  • the part of the segment BC crossing the zone ⁇ that is to say in the segment B x C x .
  • the pearlitization time is likely to vary from one steel to another, so the treatment represented by the segment C x C aims to avoid applying premature cooling to the wire in case the pearlitization is not completed.
  • residual metastable austenite which would undergo rapid cooling would transform into bainite which is not a structure favorable to wire drawing after heat treatment, nor to the use value and the mechanical properties of the final product.
  • the wire is cooled, for example to room temperature, this cooling, preferably rapid, being shown schematically for example by the curved line segment CD, the temperature at D being referenced ⁇ D.
  • FIGS 2 and 3 show a device 100 according to the invention.
  • This device 100 is a heat exchanger comprising an enclosure 3 in the form of a tube with an internal diameter D ti and an external diameter D te in which the wire 1 to be treated runs along arrow F, the diameter of the wire 1 being referenced D f , this wire 1 being a carbon steel wire.
  • Figure 2 is a section taken along the axis xx 'of the wire 1 which is also the axis of the device 100
  • Figure 3 is a section made perpendicular to this axis xx', the section of Figure 3 being shown schematically by the straight line segments III-III, in Figure 2, the axis xx 'being shown schematically by the letter "x" in Figure 3.
  • the drive means of the wire 1 are known means not shown in these Figures 2 and 3 for the purpose of simplification, these means comprising for example a winder actuated by a motor, for winding the wire after treatment.
  • the space 6 between the wire 1 and the tube 3 is filled with a gas 12 which is directly in contact with the wire 1 and the inner wall 30 of the tube 3.
  • the gas 12 remains in the space 6 during the treatment of the wire 1, the device 100 being devoid of means capable of allowing forced ventilation of the gas 12, that is to say that the gas 12 without forced ventilation is possibly set in motion in space 6 only by the displacement of the wire 1 according to arrow F.
  • is the conductivity of the gas 12 determined at 600 ° C. This conductivity is expressed in watts.m ⁇ 1. 0 K ⁇ 1.
  • the wire 1 is guided by two wire guides 2 made for example of ceramic or tungsten carbide, these guides 2 being located one at the inlet, the other at the outlet of the wire 1 in the tube 3.
  • the tube 3 is cooled externally by a heat transfer fluid 9, for example water circulating in an annular sleeve 4 which surrounds the tube 3.
  • This sleeve 4 has a length L m , an internal diameter D mi , an external diameter D me .
  • the sleeve 4 is supplied with water 9 through the tubing 8, the water 9 leaves the sleeve 4 through the tubing 10, the flow of water 9 along the tube 3 thus taking place in the opposite direction to the direction F
  • the seal between the zone 7 containing water 9 (internal volume of the sleeve 4) and the space 6 containing the gas 12 is obtained using seals 5 made for example of elastomers.
  • the length of the tube 3 in contact with the fluid 9 is referenced L t in FIG. 2.
  • the exchanger 100 can in itself constitute a device according to the invention. It is also possible to assemble several exchangers 100, along the axis xx ′, by means of the flanges 11 constituting the ends of the sleeve 4, the wire 1 then passing through several exchangers 100 arranged in series along the axis xx ′.
  • These devices allow the thermal treatment of the wire 1 represented by the part of the curve ⁇ located between the points A and C, that is to say the treatment comprising a cooling followed by a pearlitization. These devices can also be used to cool the wire 1 after pearlitization, if desired, this cooling corresponding to the part CD of the curve ⁇ .
  • the gas 12 is for example hydrogen, nitrogen, helium, a mixture of hydrogen and nitrogen, hydrogen and methane, nitrogen and methane, helium and methane, d 'hydrogen, nitrogen and methane.
  • the ratio R between the internal diameter D ti and the diameter D f of the wire is close to 1, and the use of a very conductive gas 12, for example hydrogen, becomes necessary .
  • Figures 4 and 5 show another device 200 according to the invention with an axis yy ′, Figure 4 being a section along this axis and Figure 5 being a section perpendicular to this axis, the section of Figure 5 being shown schematically by the straight line segments VV in FIG. 4, the axis xx ′, being shown diagrammatically by the letter "x” and the axis yy ′ being shown diagrammatically by the letter "y”, in FIG. 5.
  • This exchanger 200 is similar to the exchanger 100 previously described with the difference that it comprises six tubes 3 surrounded by the cylindrical sleeve 4, a wire 1 being disposed along the axis xx ′ of each of these tubes, this axis xx ′ therefore also being the axis of the wire 1 placed in this tube 3.
  • Each of these tubes 3 is filled with gas 12, as for the exchanger 100, and the volume 7 inside the sleeve 4, outside the tubes 3 is the seat of a circulation of heat transfer fluid, for example water.
  • the exchanger 200 can alone constitute a device according to the invention, or be assembled coaxially with other exchangers 200 by means of flanges 11 constituting the ends of the sleeves 4, the wires 1 thus passing through several 200 exchangers arranged in series.
  • the steps of transformation of the wire shown diagrammatically by the line BC in FIG. 1 are carried out at a temperature which varies as little as possible, the temperature of wire 1 , for example, not differing by more than 10 ° C by excess or by default of the temperature ⁇ B obtained after the cooling shown diagrammatically by the line AB.
  • This limitation of the variation in temperature is therefore carried out for a time greater than the pearlitization time, this pearlitization time corresponding to the BxCx segment.
  • the temperature of the wire 1 does not differ by more than 5 ° C by excess or by default of the temperature ⁇ B on this line BC.
  • Figure 1 shows for example the ideal case where the temperature is constant and equal to ⁇ B during the steps schematized by the line BC which is therefore a line segment parallel to the abscissa axis.
  • This modulation can preferably be carried out by varying either the internal diameter of the tubes 3 through which the wire passes, or the length of the various tubes 3 through which the wire passes.
  • the lengths of elements, referenced Lm1 to Lm7, are constant for elements 100-1 to 100-7, as well as the lengths of tube 3 in contact with water, referenced L t1 to L t7 .
  • the 100-4 heat exchanger with the highest cooling power therefore corresponds to the zone where the pearlitization speed is greatest.
  • the device 400 shown in FIG. 7 has the same structure as the device 300 previously described, with seven exchangers referenced 100-1 to 100-7 connected in series by their flange 11.
  • the difference with the device 300 comes from the fact that the exchangers 100 of this device 400 all have the same internal diameter D ti for the tubes 3, and that the length L t , measured parallel to the wire 1, of the tubes 3 in contact with the fluid 9 is varied, without making vary the diameter D ti and this for an element length 100 which can be constant for all these elements, the element lengths, referenced Lm1 to Lm7 in FIG. 7 therefore having for example the same value, for the device 400.
  • the lengths of tubes 3 are referenced L t1 to L t7 for the exchangers 100-1 to 100-7 of the device 400.
  • the exchangers 100-2 to 100-4 have lengths of tubes L t2 to L t4 increasing in the direction of arrow F, so that there is an increase in the average cooling power, reported per meter of wire, from exchanger 100-2 to exchanger 100-4.
  • the lengths L t4 to L t6 decrease in the direction of arrow F, so that there is a decrease in the average cooling power, compared to the meter of wire, from the exchanger 100-4 to '' at exchanger 100-6.
  • relations (3) and (4) need only be checked for exchangers 100-4 where the pearlitization speed is the fastest.
  • exchangers 100-1 and 100-7 lead to small heat exchanges per unit of length, either because the corresponding diameter D ti is high, in the case of device 300, or because the length L ti corresponding is small, in the case of the device 400 and it is possible that these exchangers 100-1 and 100-7 do not verify any of the relations (1) to (4).
  • These exchangers 100-1 and 100-7 correspond to the practically isothermal maintenance of the wire 1 before and after pearlitization, that is to say for the parts BBx and CxC of the segment BC situated outside the zone ⁇ (FIG. 1 ) the temperature is therefore practically constant on the BC segment.
  • the CxC segment corresponds to a practically isothermal maintenance after pearlitization, to avoid applying to the wire 1 premature cooling for the case where the pearlitization is not finished, since the pearlitization time is likely to vary from steel to steel. other as said before.
  • the invention covers cases where both the diameter D ti and the length L t are varied in the same device.
  • exchangers 200 connected in series could be used, so as to treat several wires simultaneously.
  • FIG. 8 represents the diagram of a complete installation for treating a wire 1, this installation according to the invention using at least one of the devices described above.
  • This installation 500 comprises five zones referenced Z1 to Z5.
  • the wire 1 coming from the coil 13 is heated in the zone Z1, in a known manner, for example by means of a gas or muffle furnace up to a temperature of 900 to 1000 ° C to obtain a homogeneous austenite corresponding to point A in FIG. 1, this temperature being higher than the transformation temperature AC3.
  • the wire 1 is then cooled in the zone Z2 to a temperature of 500 to 600 ° C., so as to obtain a metastable austenite corresponding to point B in FIG. 1.
  • the wire 1 then passes through the zone Z3 where it undergoes the treatments corresponding to the segment BC of FIG. 1.
  • the wire then passes through the zone Z4 where it is cooled to a temperature for example of around 300 ° C.
  • the wire then enters the zone Z5 where it is brought to a temperature close to room temperature, for example from 20 to 50 ° C, by immersion in water.
  • the cooling effected in zones Z4 and Z5 corresponds to the segment CD in FIG. 1.
  • the wire 1 leaving the bath Z5 is then wound on the coil 14.
  • the zones Z2 to Z4 can for example use exchangers of the same type as the exchangers 100, 200 previously described with optionally for the zone Z3 a device with modulation 300 or 400.
  • the wires treated in these examples are made of steel, the composition of this steel being given in Table 1, according to the examples, as well as the transformation temperatures AC1 and AC3.
  • the duration of the cooling time in the zone Z2 is less than 5 seconds, this cooling corresponding to the portion AB of the curve ⁇ ( Figure 1).
  • Example 2 This example is carried out under the same conditions as Example 1, further varying the diameter D f of the wire and the composition of the hydrogen / nitrogen mixture.
  • the exchangers of zones Z2 and Z4 check the relations (1), (2) and the exchanger 100-4 where the pearlitization speed is maximum, in the device 300 of zone Z3, checks the relations (3 ) and (4).
  • Table 3 gives the values of D f , R and K for the exchangers of zones Z2, Z4 and for the exchanger 100-4 of device 300, the volumetric% of hydrogen in the gas mixtures, as well as the values of ⁇ at 600 ° C.
  • the values of R and K for the zones Z2 and Z4 are referenced respectively R M , K M
  • the values of R and K for the exchanger 100-4 are referenced respectively R m and K m .
  • the exchangers of zones Z2 and Z4 verify relations (1) and (2).
  • the following table 4 gives, for the exchangers 100-1 to 100-7, of the device 300 the values of R and K as well as the relationships (1) to (4) possibly verified.
  • TABLE 4 n ° of exchangers R K Relations (1) to (4) possibly verified 100-1 and 100-7 12.5 24.05 (1) 100-2 and 100-6 1.75 5.33 (1) to (4) 100-3 and 100-5 1.50 3.86 (1), (3), (4) 100-4 1.40 3.20 (1), (3), (4)
  • the wire 1 After heat treatment, the wire 1 has a tensile breaking strength equal to 1340 MPa. After brass plating and drawing in a known manner to obtain a diameter of 0.3 mm, the tensile breaking strength is 3450 MPa, the section ratio being 44.44.
  • This example is produced with an installation using exchangers 200 for zones Z les, Z3, Z4, so as to treat six wires 1 simultaneously.
  • the wire 1 After heat treatment, the wire 1 has a tensile breaking strength of 1350 MPa. After brass plating and wire drawing carried out in a known manner to have a diameter of 0.3 mm the tensile breaking strength is 3500 MPa for a section ratio of 44.44.
  • Example 4 The conditions are identical to those of Example 4 by varying the diameter D f of the wires as well as the composition of the gas (mixture of hydrogen and nitrogen).
  • the exchangers of zones Z2 and Z4 check the relations (1) and (2), and the exchanger 100-4 where the pearlitization speed is maximum, in the device 300 of zone Zricif, checks the relations (3) and (4).
  • Table 5 gives the values of D f , of R and K for the exchangers of zones Z2, Z4 and for the exchanger 100-4 of device 300, the volumetric% of hydrogen in the gas mixtures, as well as the values from ⁇ to 600 ° C.
  • R M , K M and the values of R and K for the exchanger 100-4 are referenced respectively R m and K m .
  • Example 2 This example is carried out under the same conditions as Example 1, but the cracked ammonia which is a decarburizing gas has been replaced by a gas maintaining the thermodynamic equilibrium with respect to the carbon of the steel at 800 ° C. .
  • the values of R and K as well as the relationships that are verified are identical to what is shown in Table 2.
  • the figures concerning the drawing and the resistance of the wire are identical to within 2% of those obtained for Example 1.
  • Example 2 This example is carried out under the same conditions as Example 1, but the cracked ammonia has been replaced by a fuel gas making it possible to correct a decarburization which has occurred in the treatments prior to the heat treatment according to the invention.
  • the wire After heat treatment, the wire has a breaking tensile strength of 1320 MPa. After brass plating and wire drawing carried out in a known manner to have a diameter of 0.2 mm, the section ratio being 42.25, the tensile breaking strength is 3450 MPa.
  • the wire After heat treatment, the wire has a tensile breaking strength equal to 1310 MPa. After brass plating and drawing in a known manner to have a diameter of 0.84 mm, the section ratio being 42.87, the wire has a tensile breaking strength equal to 3350 MPa.
  • the wire 1 treated according to the invention has the same structure as that obtained by the known lead patenting process, that is to say a fine pearlitic structure.
  • This structure includes cementite lamellae separated by ferrite lamellae.
  • FIG. 9 represents in section a portion 50 of such a fine pearlitic structure.
  • This portion 50 comprises two substantially parallel cementite lamellae 51 separated by a ferrite lamella 52.
  • the thickness of the cementite lamellae 51 is represented by "i” and the thickness of the ferrite lamellae 52 is represented by "e”.
  • the pearlitic structure is fine, that is to say that the average value i + e is at most equal to 100 nanometers (1000 ⁇ ), with a standard deviation of 25 nm (250 ⁇ ).
  • the two examples 10 and 11 which follow are not in accordance with the invention.
  • These two comparative examples are produced with an installation similar to the installation 500 previously described comprising the zones Z1 to Z5.
  • the length of the installation is 18 m (zones Z2 to Z4).
  • the heat conducting gas 12 is cracked ammonia comprising 75% hydrogen and 25% nitrogen (% by volume).
  • the conductivity ⁇ at 600 ° C is equal to 0.28 watt.m ⁇ 1.
  • the steel contains 0.7% carbon, it is identical to that used for the previous examples 4, 5, 6 (Table 1).
  • Temperature of the wire leaving the zone Z1 975 ° C.
  • the cooling time corresponding to zone Z2 is 6.7 sec, the wire leaving this zone Z2 having a temperature of approximately 600 ° C.
  • zone Z3 The passage time in zone Z3 is 4, 6 sec, the perlitization being completed at the exit of this zone Z3.
  • the recalescence is significant, the temperature difference between the minimum temperature and the maximum temperature of the wire, during the transformation of the austenite into perlite (zone Z3) being 80 ° C.
  • the wire After the heat treatment described, the wire has a tensile breaking strength equal to 1100 MPa.
  • the wire is then brass plated and then drawn in a known manner up to a diameter of 0.23 mm and it then has a tensile breaking strength equal to 2765 MPa for a section ratio of 31.95.
  • This example not in accordance with the invention therefore results in excessive recalescence, and low breaking strength values, before and after drawing.
  • Diameter of the treated wire 2.8 mm, speed of progression of the wire: 0.5 m / sec.
  • the temperature of the wire leaving the zone Z1 is 975 ° C as in the previous example.
  • zone Z2 The passage time in zone Z2 is 11.5 sec, the wire, at the exit of this zone Z2, having a temperature of approximately 630 ° C.
  • zone Z3 The passage time in zone Z3 is 8.5 sec, the perlitization being completed at the exit from this zone Z3.
  • the temperature difference between the minimum temperature and the maximum temperature of the wire is 60 ° C., that is to say that the recalescence is less significant than in Example 10 above. , by following a low pearlitization speed in the zone Z3, which is due to a higher transformation temperature.
  • the wire After heat treatment, the wire has a tensile breaking strength of 1010 MPa.
  • the wire is then brass plated then drawn in a known manner up to a diameter of 0.42 mm and it then has a tensile breaking strength equal to 2500 MPa for a section ratio of 44.44.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)
  • Reinforcement Elements For Buildings (AREA)

Claims (11)

  1. Verfahren zur Wärmebehandlung mindestens eines Kohlenstoffstahldrahts zum Erhalt eines feinen perlitischen Gefüges, wobei der Draht vor dieser Behandlung zum Erhalt eines homogenen Austenits auf einer über der Umwandlungstemperatur AC3 liegenden Temperatur gehalten wurde; dieses Verfahren umfaßt folgende Punkte :
    a) der Draht wird während weniger als 5 Sekunden von einer über der Umwandlungstemperatur AC3 liegenden Temperatur auf eine unter der Umwandlungstemperatur AC1 liegende Temperatur herabgekühlt;
    b) anschließend wird die Perlitisierungsbehandlung auf einer unter der Umwandlungstemperatur AC1 liegenden Temperatur vorgenommen;
    c) diese Kühl- und Perlitisierungsbehandlung wird durchgeführt, indem man den Draht in mindestens ein Rohr führt, das ein Gas enthält, das praktisch keiner Zwangsbelüftung ausgesetzt ist; das Rohr ist von einem Wärme bzw. Kälte transportierendes Fluid umgeben, so daß von dem Draht durch das Gas und das Rohr hindurch eine Wärmeübertragung auf das Wärme bzw. Kälte transportierendes Fluid stattfindet;
    wobei dieses verfahren dadurch gekennzeichnet ist, daß:
    d) die Eigenschaften des Rohrs, des Drahts und des Gases so gewählt sind, daß folgende Gleichungen verifiziert werden, zumindest während des Abkühlens vor der Perlitisierung:

    1,05 ≦ R < 15   (1)
    Figure imgb0048

    5 ≦ K ≦ 10   (2)
    Figure imgb0049


    wobei, per definitionem:

    R = D ti /D f
    Figure imgb0050

    K = [Log (D ti /D f )]xD f ²/λ
    Figure imgb0051


    wobei
    Dti der in Millimetern ausgedrückte Innendurchmesser des Rohrs und Df der in Millimetern ausgedrückte Durchmesser des Drahts ist, wobei dieser Durchmesser höchstens gleich 6 mm ist, λ die bei 600°C bestimmte Leitfähigkeit des Gases ist, wobei diese Leitfähigkeit in Watt.m⁻¹.°K⁻¹ ausgedrückt wird, und Log der Neperlogarithmus ist.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Draht nach seiner Abkühlung von einer über der Umwandlungstemperatur AC3 liegenden Temperatur auf eine gegebene, unter der Umwandlungstemperatur AC1 liegende Temperatur auf einer Temperatur gehalten wird, die um nicht mehr als 10°C nach oben oder unten von dieser gegebenen Temperatur abweicht, und zwar über eine Zeitspanne, die länger ist als die Perlitisierungszeit, indem man die Wärmeaustausche moduliert, wobei die folgenden Gleichungen in der oder den Zonen des Rohrs oder der Rohre verifiziert werden, in denen die Perlitisierungsgeschwindigkeit am höchsten ist:

    1,05 ≦ R ≦ 8   (3)
    Figure imgb0052

    3 ≦ K ≦ 8   (4).
    Figure imgb0053
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Draht auf einer Temperatur gehalten wird, die um nicht mehr als 5°C nach oben oder unten von dieser gegebenen Temperatur abweicht.
  4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß die Modulierung durch Veränderung des Innendurchmessers des oder mindestens eines Rohrs erreicht wird.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Modulierung durch den Einsatz mehrerer Rohre erreicht wird, deren Länge unterschiedlich ist.
  6. Verfahren zur Wärmebehandlung mindestens eines Kohlenstoffstahldrahts, gekennzeichnet durch folgende Punkte:
    - man erhitzt den Draht auf eine über der Umwandlungstemperatur AC3 liegende Temperatur, um einen homogenen Austenit zu erhalten;
    - man nimmt anschließend eine den Ansprüchen 1 bis 5 konforme Behandlung vor;
    - man kühlt anschließend den Draht ab.
  7. Vorrichtung zur Wärmebehandlung mindestens eines Kohlenstoffstahldrahts zum Erhalt eines feinen perlitischen Gefüges, wobei der Draht zum Erhalt eines homogenen Austenits vor dieser Behandlung auf einer über der Umwandlungstemperatur AC3 liegenden Temperatur gehalten wurde ; diese Vorrichtung umfaßt:
    a) Mittel zum Abkühlen des Drahts von einer über der Umwandlungstemperatur AC3 liegenden Temperatur auf eine unter der Umwandlungstemperatur AC1 liegende Temperatur während weniger als 5 Sekunden;
    b) Mittel zur Perlitisierungsbehandlung bei einer unter der Umwandlungstemperatur AC1 liegenden Temperatur;
    c) diese Mittel zum Kühlen und Perlitisieren umfassen mindestens ein Rohr und Mittel , mit denen der Draht in das Rohr geführt wird; dieses Rohr enthält ein Gas, das praktisch keiner Zwangsbelüftung ausgesetzt ist, und ist von einem Wärme bzw. Kälte transportierendes Fluid umgeben, so daß von dem Draht durch das Gas und das Rohr hindurch Wärme auf das Wärme bzw. Kälte transportierendes Fluid übertragen wird;
    wobei diese Vorrichtung dadurch gekennzeichnet ist, daß
    d) die Eigenschaften mindestens eines solchen Rohrs, des Drahts und des Gases so gewählt sind, daß folgende Gleichungen verifiziert werden, zumindest während der Abkühlungsphase, die der Perlitisierung vorangeht:

    1,05 ≦ R < 15   (1)
    Figure imgb0054

    5 ≦ K ≦ 10   (2)
    Figure imgb0055


    wobei, per definitionem:

    R = D ti /D f
    Figure imgb0056

    K = [Log (D ti /D f )]xD f ²/λ
    Figure imgb0057


    wobei
    Dti der in Millimetern ausgedrückte Innendurchmesser des Rohrs und Df der in Millimetern ausgedrückte Durchmesser des Drahts ist, der höchstens gleich 6 mm ist, λ die bei 600°C bestimmte Leitfähigkeit des Gases ist und in Watt.m⁻¹.°K⁻¹ ausgedrückt wird und Log der Neperlogarithmus ist;
    e) eines oder mehrere solcher Rohre so vorgesehen sind, daß sie nach Abkühlung des Drahts von einer über der Umwandlungstemperatur AC3 liegenden Temperatur auf eine gegebene, unter der Umwandlungstemperatur AC1 liegende Temperatur den Draht auf einer Temperatur halten können, die um nicht mehr als 10°C nach oben oder unten von dieser gegebenen Temperatur abweicht, und zwar während einer Zeit, die länger ist als die Perlitisierungszeit, indem man die Wärmeaustausche moduliert, wobei dieses oder diese Rohr(e) mehrere Rohrzonen bilden, die die besagte Modulierung ermöglichen, wobei die folgenden Gleichungen in der oder den Rohrzonen, in denen die Perlitisierungsgeschwindigkeit am höchsten ist, verifiziert werden:

    1,05 ≦ R ≦ 8   (3)
    Figure imgb0058

    3 ≦ K ≦ 8   (4).
    Figure imgb0059
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß dieses oder diese Rohr(e) so angeordnet sind, daß die Temperatur des Drahts um nicht mehr als 5°C nach oben oder unten von dieser gegebenen Temperatur abweicht.
  9. Vorrichtung nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß der Innendurchmesser des oder mindestens eines Rohrs abweichend ist.
  10. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß sie mehrere Rohre mit unterschiedlicher Länge umfaßt.
  11. Anlage zur Wärmebehandlung mindestens eines Kohlenstoffstahldrahts, umfassend mindestens eine Vorrichtung, die einem der Ansprüche 7 bis 10 entspricht, wobei diese Anlage außerdem Mittel aufweist, mit denen der Draht vor der Perlitisierung auf eine über der Umwandlungstemperatur AC3 liegende Temperatur gebracht werden kann, sowie Mittel , mit denen der Draht nach der Perlitisierung abgekühlt werden kann.
EP89100781A 1988-01-25 1989-01-18 Verfahren und Vorrichtungen zur Wärmebehandlung von Kohlenstoffstahldrähten, um so ein feines perlitisches Gefüge zu bekommen Expired - Lifetime EP0326005B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89100781T ATE87667T1 (de) 1988-01-25 1989-01-18 Verfahren und vorrichtungen zur waermebehandlung von kohlenstoffstahldraehten, um so ein feines perlitisches gefuege zu bekommen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8800904 1988-01-25
FR8800904A FR2626290B1 (fr) 1988-01-25 1988-01-25 Procedes et dispositifs permettant de traiter thermiquement des fils d'acier au carbone de facon a obtenir une structure perlitique fine

Publications (2)

Publication Number Publication Date
EP0326005A1 EP0326005A1 (de) 1989-08-02
EP0326005B1 true EP0326005B1 (de) 1993-03-31

Family

ID=9362671

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100781A Expired - Lifetime EP0326005B1 (de) 1988-01-25 1989-01-18 Verfahren und Vorrichtungen zur Wärmebehandlung von Kohlenstoffstahldrähten, um so ein feines perlitisches Gefüge zu bekommen

Country Status (16)

Country Link
US (1) US4983227A (de)
EP (1) EP0326005B1 (de)
JP (1) JP2812696B2 (de)
KR (1) KR970008163B1 (de)
CN (1) CN1022050C (de)
AT (1) ATE87667T1 (de)
AU (1) AU614811B2 (de)
BR (1) BR8900292A (de)
CA (1) CA1333249C (de)
DE (1) DE68905618T2 (de)
ES (1) ES2039708T3 (de)
FR (1) FR2626290B1 (de)
IE (1) IE64032B1 (de)
OA (1) OA08978A (de)
TR (1) TR23543A (de)
ZA (1) ZA89575B (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632973B1 (fr) * 1988-06-21 1993-01-15 Michelin & Cie Procedes et dispositifs pour obtenir une structure d'austenite homogene
FR2650295B1 (fr) * 1989-07-26 1994-04-01 Michelin Et Cie Procede et dispositif permettant de traiter thermiquement des feuillards metalliques
FR2650296B1 (fr) * 1989-07-26 1991-10-11 Michelin & Cie Procede et dispositif pour traiter thermiquement au moins un fil metallique avec des plaques de transfert thermique
JPH03240919A (ja) * 1990-02-15 1991-10-28 Sumitomo Metal Ind Ltd 伸線用鋼線材の製造方法
JPH0755331B2 (ja) * 1991-11-19 1995-06-14 修司 西浦 超高強度極細高炭素鋼線の製造方法
US5462613A (en) * 1994-06-07 1995-10-31 Gs Technologies Corporation Method and apparatus for producing steel rods with a desired tensile strength and model for simulating same
US5843583A (en) * 1996-02-15 1998-12-01 N.V. Bekaert S.A. Cord with high non-structural elongation
DE19940845C1 (de) * 1999-08-27 2000-12-21 Graf & Co Ag Verfahren und Vorrichtung zum Herstellen von Feindraht
US6875943B2 (en) * 2000-05-24 2005-04-05 N.V. Bekaert S.A. Electric discharge machining wire
US7055244B2 (en) * 2002-03-14 2006-06-06 Anand Waman Bhagwat Method of manufacturing flat wire coil springs to improve fatigue life and avoid blue brittleness
KR100871757B1 (ko) * 2007-02-22 2008-12-05 엘에스전선 주식회사 초극세선용 인 라인 어닐링 장치
KR100823960B1 (ko) 2007-03-21 2008-04-22 배윤수 전선제조용 동선의 가공방법
ES2365462B1 (es) 2010-03-24 2012-08-10 Automat Industrial S.L. Procedimiento y dispositivo para el patentado de alambre por transferencia de calor por radiación-convección.
CN102766736A (zh) * 2012-06-17 2012-11-07 淮北宇光纺织器材有限公司 针布退火保温装置
CN102719651A (zh) * 2012-06-27 2012-10-10 贵州大学 一种快速感应加热钢丝风冷热处理工艺
CN103215430A (zh) * 2013-04-23 2013-07-24 冯伟年 钢丝等温热处理的新技术
DE102013009767A1 (de) * 2013-06-11 2014-12-11 Heinrich Stamm Gmbh Drahtelektrode zum funkenerosiven Schneiden von Gegenständen
CN103397170B (zh) * 2013-08-22 2014-09-17 西北有色金属研究院 管、线材用气氛保护高频感应加热连续退火方法及装置
FR3017880B1 (fr) * 2014-02-21 2018-07-20 Compagnie Generale Des Etablissements Michelin Procede de traitement thermique a refroidissement continu d'un element de renfort en acier pour pneumatique
FR3017882B1 (fr) * 2014-02-21 2016-03-11 Michelin & Cie Procede de traitement thermique d'un element de renfort en acier pour pneumatique
CN106251982B (zh) * 2016-10-17 2018-03-13 六安维奥智能科技有限公司 一种线缆退火的冷却装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE712842C (de) * 1938-05-05 1941-10-27 Siemens Schuckertwerke Akt Ges Vorrichtung zum Gluehen und Abschrecken von metallischen Werkstoffen unter Verwendung eines roehrenfoermigen Ofens
DE2111631A1 (de) * 1970-03-13 1972-03-30 Pirelli Vorrichtung zum Haerten von Stahldraht
FR2300810A1 (fr) * 1975-02-14 1976-09-10 Four Ind Belge Procede et dispositif de patentage de fils d'acier
JPS5214507A (en) * 1975-07-24 1977-02-03 Nippon Steel Corp Process for quenching a hot rolled wire
JPS5247508A (en) * 1975-10-13 1977-04-15 Chugai Ro Kogyo Kaisha Ltd Cooling equipment of cooling tube type
JPS5413406A (en) * 1977-07-01 1979-01-31 Shinko Wire Co Ltd Wire quenching method using forced air cooling process
US4581512A (en) * 1984-07-10 1986-04-08 Mg Industries, Inc. Method and apparatus for cooling induction heated material
JPS6160816A (ja) * 1984-08-30 1986-03-28 Rozai Kogyo Kk 加熱冷却装置
JPS61170520A (ja) * 1985-01-25 1986-08-01 Kobe Steel Ltd 徐冷設備
US4786338A (en) * 1985-10-31 1988-11-22 Norio Anzawa Method for cooling rolled steels
FR2607519B1 (fr) * 1986-11-27 1989-02-17 Michelin & Cie Procede et dispositif pour traiter thermiquement un fil d'acier
FR2650296B1 (fr) * 1989-07-26 1991-10-11 Michelin & Cie Procede et dispositif pour traiter thermiquement au moins un fil metallique avec des plaques de transfert thermique

Also Published As

Publication number Publication date
FR2626290B1 (fr) 1990-06-01
CA1333249C (fr) 1994-11-29
ES2039708T3 (es) 1993-10-01
CN1035528A (zh) 1989-09-13
FR2626290A1 (fr) 1989-07-28
ATE87667T1 (de) 1993-04-15
AU614811B2 (en) 1991-09-12
BR8900292A (pt) 1989-09-19
JPH01222025A (ja) 1989-09-05
IE64032B1 (en) 1995-06-28
CN1022050C (zh) 1993-09-08
AU2876489A (en) 1989-07-27
KR890012012A (ko) 1989-08-23
TR23543A (tr) 1990-03-22
OA08978A (fr) 1990-11-30
US4983227A (en) 1991-01-08
KR970008163B1 (ko) 1997-05-21
JP2812696B2 (ja) 1998-10-22
EP0326005A1 (de) 1989-08-02
IE890212L (en) 1989-07-25
DE68905618T2 (de) 1993-07-08
ZA89575B (en) 1989-09-27
DE68905618D1 (de) 1993-05-06

Similar Documents

Publication Publication Date Title
EP0326005B1 (de) Verfahren und Vorrichtungen zur Wärmebehandlung von Kohlenstoffstahldrähten, um so ein feines perlitisches Gefüge zu bekommen
EP0813613B1 (de) Verfahren zur herstellung von stahldrähten, verstärkungsdrähte und verwendung in biegsamen rohrleitungen
EP0478771A1 (de) Verfahren zum herstellen von strahldraht für biegsame leitungen, nach diesem verfahren hergestellter draht und mit diesem draht verstärkte biegsame leitungen.
CA1303946C (fr) Procede et dispositif pour traiter thermiquement un fil d&#39;acier
EP0347699B1 (de) Verfahren und Vorrichtung zum Einstellen eines homogenen austenitischen Gefüges
EP0410300B1 (de) Verfahren und Vorrichtung zur Wärmebehandlung mindestens eines Metalldrahtes mittels Wärmeaustauschplatten
EP3108022B1 (de) Verfahren zur wärmebehandlung mittels kontinuierlichen abkühlens eines stahlarmierungselements für reifen
EP3108021B1 (de) Verfahren zur wärmebehandlung eines stahlverstärkungselements für reifen
EP0493424B1 (de) Verfahren und vorrichtung zum kontinuierlichen wärmebehandeln metallischer drähte auf rotierenden trommeln
FR2576323A1 (fr) Procede de traitement de profils conducteurs, notamment metalliques, installation pour sa mise en oeuvre et profils traites ainsi obtenus
FR2711147A1 (fr) Procédé de fabrication d&#39;un produit plat en alliage de zirconium comprenant un réchauffage dans le domaine béta par infrarouges.
EP0410294A1 (de) Verfahren und Vorrichtung zur Wärmebehandlung von Metallband
CA2214012C (fr) Procede de fabrication de fils en acier - fils de forme et application a une conduite flexible
WO1991000368A1 (fr) Procede et dispositif de refroidissement continu d&#39;un fil d&#39;acier trefile
FR2488279A1 (fr) Traitement par refroidissement accelere de barres en acier dans la chaude de laminage
BE1005034A6 (fr) Procede de fabrication de fil d&#39;acier dur.
FR2586257A1 (fr) Procede et appareil pour recuire en continu un acier en teneur extra-basse en carbone pour emboutissage profond
BE704139A (de)
LU86467A1 (fr) Procede continu de fabrication de fil d&#39;acier
FR2760465A1 (fr) Four tubulaire a radiation a tres haute resistance au fluage pour la decomposition thermique d&#39;hydrocarbures en presence de vapeur d&#39;eau
WO2015124653A1 (fr) Installation et procédé de traitement thermique à haute vitesse d&#39;un élément de renfort en acier pour pneumatique
EP0885975A1 (de) Verfahren zur Durchlaufwärmebehandlung metallischer Drähte und Bänder
BE344193A (de)
BE642745A (de)
BE825565A (fr) Procede et dispositif de patentage de fils d&#39;acier.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19910412

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930331

Ref country code: NL

Effective date: 19930331

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19930331

REF Corresponds to:

Ref document number: 87667

Country of ref document: AT

Date of ref document: 19930415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 68905618

Country of ref document: DE

Date of ref document: 19930506

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19930520

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2039708

Country of ref document: ES

Kind code of ref document: T3

EPTA Lu: last paid annual fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950105

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19981218

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990217

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000118

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20021230

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030110

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030122

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030123

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

BERE Be: lapsed

Owner name: CIE GENERALE DES ETS *MICHELIN-MICHELIN & CIE

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050118

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040119