EP0493424B1 - Verfahren und vorrichtung zum kontinuierlichen wärmebehandeln metallischer drähte auf rotierenden trommeln - Google Patents

Verfahren und vorrichtung zum kontinuierlichen wärmebehandeln metallischer drähte auf rotierenden trommeln Download PDF

Info

Publication number
EP0493424B1
EP0493424B1 EP90913487A EP90913487A EP0493424B1 EP 0493424 B1 EP0493424 B1 EP 0493424B1 EP 90913487 A EP90913487 A EP 90913487A EP 90913487 A EP90913487 A EP 90913487A EP 0493424 B1 EP0493424 B1 EP 0493424B1
Authority
EP
European Patent Office
Prior art keywords
capstans
wire
gas
capstan
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90913487A
Other languages
English (en)
French (fr)
Other versions
EP0493424A1 (de
Inventor
André Reiniche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Compagnie Generale des Etablissements Michelin SCA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale des Etablissements Michelin SCA filed Critical Compagnie Generale des Etablissements Michelin SCA
Publication of EP0493424A1 publication Critical patent/EP0493424A1/de
Application granted granted Critical
Publication of EP0493424B1 publication Critical patent/EP0493424B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/64Patenting furnaces

Definitions

  • the invention relates to methods and devices for heat treating metal wires.
  • Such methods and devices allow for example the pearlitization of steel wires so as to obtain a fine pearlitic structure, at a high speed, for example at least equal to 15 m / s.
  • Application EP-A-275 864 describes a process for thermally treating metallic wires by passing them over discs having grooves, inside an enclosure where there is a protective gas, the heating of the wires being obtained directly by irradiation.
  • the patent US-A-2 965 368 describes a process for thermally treating metal wires by passing them through the capstan grooves which are heated internally, the wires being crossed on these capstans in contact with a protective gas.
  • the object of the invention is to provide a method and a device for heat treating a metal wire by passing the wire over capstans, so as to have at the same time a high speed of travel of the wire and good heat exchange between the wire and the capstan.
  • the invention also relates to installations for the thermal treatment of metal wires comprising at least one device according to the invention.
  • Figures 1 and 2 show a device 1 according to the invention implementing the method according to the invention.
  • This device 1 comprises two capstans 2,3 on which the wire 4 to be treated is wound.
  • the capstans 2,3 heat conductors are made for example with metallic materials.
  • the axis of rotation of the capstan 2 is referenced xx 'and the axis of the capstan 3 is referenced yy'.
  • the axes xx 'and yy' are parallel to each other and located for example in the same vertical plane.
  • Figure 1 is a section of the device 1 along the vertical plane passing through the axes xx 'and yy';
  • Figure 2 is a section of the device 1 along a vertical plane perpendicular to the axes xx 'and yy';
  • Figure 3 is a front view of the capstans 2 and 3, with the wire 4 mouflé on these capstans and
  • Figure 4 is a side view of these capstans 2 and 3 with the wire 4 mouflé on these capstans the other parts of the device 1 being assumed removed in these Figures 3 and 4.
  • the section of Figure 1 is shown schematically by the straight line segments II in Figure 2, and the section of Figure 2 is shown schematically by the straight line segments II-II in the FIG. 1.
  • the axis xx ' is represented by the letter x in FIGS. 2 and 3 and the axis yy' is represented by the letter y in FIGS. 2 and 3.
  • the wire 4 arrives, in the direction of the arrow Fa, at point 5 of the lower capstan 2 ( Figure 3).
  • the capstan 2 is actuated in rotation about the axis xx 'by a motor not shown in the drawing for the purpose of simplification, the rotation of the capstan 2 being shown diagrammatically by the arrow F2.
  • the wire 4 is driven by the capstan 2 to point 6 where it leaves the capstan 2 and goes in the direction of the arrow F2 ⁇ 3 towards the upper capstan 3 non-motorized. It makes contact at point 7 with the capstan 3 which supports it up to point 8, the rotation of the capstan 3 around the axis yy 'being shown diagrammatically by the arrow F3.
  • the wire 4 then leaves the capstan 3 and moves in the direction of the arrow F3 ⁇ 2 to the capstan 2 which it contacts at point 9.
  • the capstan 2 then drives the wire 4 once again in its rotation towards the capstan 3.
  • the hauling of the wire 4 on the capstans 2 and 3 is crossed, that is to say that the rotation F3 of the capstan 3, driven by the wire 4, is in the opposite direction to the rotation F2 of the capstan 2, the directions F2 ⁇ 3 and F3 ⁇ 2 crossing, without there being any contact between the successive portions of the wire 4 between the capstans 2 and 3.
  • This path is repeated several times, the wire 4 thus carrying out several courses in shape of eight on the two capstans 2 and 3.
  • the wire 4 finally leaves the pair of capstans 2,3 at point 10 of the lower capstan 2, in the direction of the arrow Fs (FIG. 3).
  • FIG. 5 is a section through a portion of the capstan 2, along a plane passing through the axis xx ′ of this capstan, this section being shown diagrammatically by the segments of straight lines V-V in FIG. 3.
  • This section has grooves 11, one of which is shown enlarged in Figure 6, with the wire 4 disposed in this groove, the section of Figure 6 being made along the same plane as Figure 5.
  • the capstan 2 comprises for example seven grooves 11, each of these grooves having as axis the axis xx 'of the capstan 2.
  • the width J of the groove 11 is slightly greater than the diameter D f of the wire 4, the groove 11 having a bottom 110 whose shape is a semicircle of diameter J at the Figure 6. All the grooves 11 of the capstans 2 and 3 have the same shape and the same width J.
  • the radial clearance (JD f ) / 2 and the spacing p between the grooves 11 (not the grooves) must be large enough so that the wire 4 can go from the groove 11 of a capstan to the corresponding groove 11 of the another capstan, without there being friction of the wire 4 on itself at the places where the portions of the wire 4 cross, between the capstans 2,3 (fig. 5 and 6), these values being able to be chosen by l skilled in the art depending on the application.
  • the grooves 11 of the capstan 3 not driven are located on rings 12 of axis yy '.
  • These rings which conduct heat and are made for example of metallic material are mechanically separated from the body 13 of the capstan 3 ( Figure 1).
  • the body 13 rotates freely around the axis yy 'and the rings 12 can rotate freely around the axis yy', independently of the body 13, these rings 12 sliding on the cylindrical surface 14 of the body 13.
  • the 12 rings can rotate freely with respect to each other. This arrangement improves the contact between the wire 4 and the capstan 3 and improves the tension of the wire 4 between the capstans 2, 3.
  • the heating or cooling of the capstans 2,3 is carried out by a heat conducting part, for example a metal plate 15 with two walls 16, 17 between which a heat transfer fluid 18, for example a liquid, in particular liquid, flows. water, the wall 16 being disposed on the side of the capstans 2, 3.
  • the means allowing the circulation of the fluid 18 between the walls 16, 17 are known means, comprising for example a pump, and they are not shown in the drawing in a goal of simplification.
  • the fluid 18 arrives by the tubing 19, it circulates between the walls 16, 17 then leaves the plate 15 by the tubing 20, the flow of the fluid 18 being shown diagrammatically by the arrows F18.
  • the capstans 2,3 are mounted on shafts 21 rotating in bearings 22, 23.
  • the shafts 21 pass through the walls 16, 17 and they are sealed from the fluid 18 (FIG. 1).
  • the bearings 22 are each surrounded by a sleeve 24 in which circulates a cooling fluid 25, the circulation of this fluid 25 not being shown for the purpose of simplification.
  • the fluid 25 can be the fluid 18, which is then itself a cooling fluid, the sleeve 24 then communicating with the interior of the plate 15 where the fluid 18 circulates.
  • the capstans 2,3 are placed in an enclosure 26 containing a gas 27 preferably non-oxidizing, for example hydrogen or a mixture of hydrogen and nitrogen.
  • a gas 27 preferably non-oxidizing, for example hydrogen or a mixture of hydrogen and nitrogen.
  • the heat exchanges between the capstans 2,3 and the heat transfer fluid 18 are effected by means of the gas 27 forming a layer 28, of thickness H, situated between the substantially flat face 160 of the wall 16 of a part, and each face 130, substantially planar, of the capstans 2, 3 on the other hand.
  • the faces 130 are arranged substantially in the same plane which is perpendicular to the axes xx ', yy' and substantially parallel to the face 160 which therefore partly limits the enclosure 26, the gas 27 being in contact with the capstans 2,3 and the face 160.
  • the fluid 18, if it is used is a heating fluid, the heat going from the fluid 18 to the gas 27, then from the gas 27 to the capstans 2, 3, finally from these capstans to the wire 4.
  • the fluid 18 is a cooling fluid, and the heat flows in the opposite direction, from the wire 4 to the fluid 18.
  • the gas 27 in direct contact with the plate 15 and the capstans 2,3 allows this heat exchange, the plate 15 being produced with a material conducting the heat, for example a metallic material.
  • the threaded elements 29 make it possible to vary the distance H, by moving the capstans 2,3 along their respective axes xx 'and yy'.
  • the threaded elements 29 are screwed into the female threads 30, in fixed parts 31 of the device 1.
  • the modification of the thickness H of the layer 28 of the gas 27 of thermal coupling is obtained by acting on the lever 32 which rotates the threaded elements 29, which causes an axial displacement of these threaded elements 29, this axial displacement being transmitted to the shafts 21 via the shoulders 33 machined on the shafts 21.
  • the lever 32 makes it possible to actuate simultaneously the two shafts 21 of the capstans 2,3 by known means 34, shown diagrammatically by dotted lines in FIG. 1, these means being for example a toothed belt or a chain.
  • the heat exchanges take place between the wire 4 and the capstans 2 or 3 on the one hand by direct contact along the line 35 of contact between the wire and the capstans, on the bottom 110 of the groove 11 and on the other leaves by passing through the gas 27 which is in the grooves 11 in contact with the wire 4 and the capstans 2,3, this heat flow being shown diagrammatically by the arrows F27 (FIG. 6) in the case of a cooling of the wire 4 Similarly, it would be possible to use several parts 15 in the device 1, but it is preferable to use only one, for the purpose of simplification.
  • the gas 27 When the heat treatment consists in rapidly cooling a wire of large diameter, the gas 27 must be a good conductor heat because without it, the thickness H of the layer 28 of gas 27, between the plate 15 and the capstans 2,3 could be of the same order as the dilations of the materials constituting the installation.
  • We preferably have 1 mm ⁇ H ⁇ 200 mm.
  • the gas 27 in the enclosure 26, and therefore in the layer 28, undergoes practically no other movements than those which are due to the rotation of the capstans 2,3.
  • the capstans 2,3 are placed in an enclosure 36 isolated externally by an element 37.
  • the enclosure 36 is for example equipped with electric heating elements 38 regularly distributed around its perimeter.
  • the heating elements 38 for example resistors, then make it possible to heat the capstans 2,3 when the device 1 is started and thus to obtain very rapid revivals.
  • the shafts 21 are thermally protected by heat shields 39. These elements 38 can also be used for example when the heat treatment is a heating treatment, the fluid 18 then being able not to be used.
  • FIG. 5 shows an arrangement corresponding to cooling of the wire 4 during its passage over the capstan 2, the diameter D e being greater than the diameter D s . In the case of a heating, the arrangement would be opposite with in this case D e ⁇ D s .
  • the distance E between the axes xx 'and yy' of the capstans 2,3 is as small as possible, taking into account the size of these capstans, and avoiding contact between the various portions of the wire 4 between these capstans 2.3.
  • the capstans 2,3 and the plate 15 conductors of the heat are made for example of bronze steel or cast iron.
  • FIG. 7 represents a complete installation 100 in accordance with the invention making it possible to heat treat a steel wire 4 to subject it to an austenitization treatment followed by a pearlitization treatment.
  • This complete installation 100 comprises a device 50 and six pairs of capstans referenced P1 to P6 identical to the device 1 according to the invention described above.
  • the devices P1 to P6 in accordance with the invention make it possible to cool the wire 4 or to maintain it at a practically constant temperature, the heat transfer fluid 18 being for example water.
  • the heat transfer fluid 18 being for example water.
  • FIG. 8 represents the evolution of the temperature of the wire 4 and the capstans 2,3 during a pearlitization heat treatment, the wire 4 being made of steel, the temperature T corresponding to the ordinate axis and the time "t "on the x-axis.
  • the wire 4 enters the device 50 where it undergoes an austenitization treatment.
  • This device 50 comprises two capstans 51, 52 on which the wire 4 is mouflaged, and an alternating magnetic flux is passed through the loops of wire 4 thus formed, this flux being produced by the inductor 53.
  • the wire 4 which leaves the installation 50 then arrives on the capstan 2 of the pair of capstan P1.
  • the capstans 2,3 of the pair P1 are maintained at a temperature Tc1 of the order of 450 to 650 ° C.
  • the origin 0 of the times corresponds to the arrival of the wire 4 on the pair P1.
  • the wire 4 After a time t1 of less than 4 seconds the wire 4 reaches a temperature Tf2 close to that of the capstans of the pair P1. This rapid cooling therefore allows the transformation of stable austenite into metastable austenite.
  • the wire 4 then passes successively over the four pairs P2 to P5 whose role is to maintain the wire 4 at a temperature which does not vary by more than 10 ° C by excess or by default of the given temperature Tf2, the temperature Tf of wire 4 then being for example in the interval Tf2 - 8 ° C, Tf2 + 8 ° C, and this throughout the duration of the transformation of metastable austenite into perlite and for approximately 1 to 3 seconds following this transformation.
  • the aim of this part of the installation is on the one hand to avoid recalescence during the period during which the peak of thermal power occurs due to the transformation of austenite into perlite (which would lead to the formation of coarse perlite) , on the other hand, to avoid premature cooling before the transformation is complete. Premature cooling before the transformation is complete could lead to a product containing bainite and therefore to a fragile wire and of a poor use value in particular as regards endurance.
  • the passage times of the wire 4 in the pairs P2 to P5 are respectively referenced t2 to t5, the temperatures of the capstans of the pairs P2 to P5 are respectively referenced Tc2 in Tc5.
  • the sum t2 + t3 + t4 + t5 is for example of the order of 4 to 10 seconds.
  • Figure 9 shows the evolution of the transformation of austenite into perlite over time.
  • the time "t" corresponds to the abscissa axis, and the% of transformation into perlite to the ordinate axis.
  • the transformation during the time t2 is slow, the perlitization starting only towards the end of this time t2, the power to be exchanged is therefore low and the temperature Tc2 of the second pair P2 is slightly lower than the target temperature for the transformation (Tf2 ).
  • the transformation during the time t3 is very rapid, the power to be exchanged is therefore greater, and the temperature Tc3 of the third pair P3 is significantly lower than the temperature Tc2 of the second pair P2.
  • the transformation during time t4 occurs at a speed substantially identical to that of time t2, the temperature Tc4 of the fourth pair P4 is therefore very close to Tc2.
  • the temperature Tc paire of the fifth pair P5 is therefore substantially equal to Tf2.
  • the purpose of this temperature maintenance during the time t5 being to ensure that the transformation into perlite is completed before the cooling corresponding to the time t6.
  • K1 L1 / (JxD f - Df2)
  • K2 From / E (6)
  • K3 100 (De / Ds - 1)
  • K4 (VxD f 2xH) / (L2 xDe2) (8)
  • L1 is the thermal conductivity of the gas which is in the grooves 11 in contact with the wire 4 and the capstans 2
  • L2 is the thermal conductivity of the gas constituting the layer 28 of gas 27, these conductivities L1 and L2 being determined at 600 ° C and expressed in watts.m ⁇ 1.
  • L1 and L2 are identical, and represented by L; D f is the diameter of the wire expressed in millimeters; J is the width of the grooves 11 expressed in millimeters; E is the distance between the capstans expressed in millimeters; D e is the winding diameter of the wire 4 at the entry of any capstan 2,3; D s is the winding diameter of the wire 4 at the outlet of the same capstan, D e and D s being expressed in millimeters; V is the wire running speed expressed in meters per second; H is the thickness of the layer 28 of the gas 27, expressed in millimeters.
  • the following relationships are furthermore verified in at least one of the pairs P2 to P4 K1 ⁇ 0.3 (11) 0.5x10 ⁇ 3 ⁇ K4 ⁇ 9x10 ⁇ 3 (12).
  • the isothermicity obtained during phases t2 to t5 can only be improved if the number of elements used is greater than 4 but this leads to a higher investment which is not necessary to obtain on the one hand an isothermicity at ⁇ 8 ° C, on the other hand the quality of the advertised wire.
  • the final cooling section allows the cooling of the wire from a temperature Tf2 of the order of 450 to 650 ° C to a temperature Tf3 of the order of 100 to 200 ° C in a time t6 of the order of 3 to 6 seconds, it includes a pair of crossed hauled capstans, the lower capstan 2 is motorized, the upper capstan 3 is not, the winding diameter D e on the first groove of the lower capstan is greater than the diameter Ds of the last groove of the lower capstan, the capstans are maintained at a temperature Tc6 of the order of 50 to 150 ° C.
  • the composition of the steels used is given in Table 1 TABLE 1 Type VS Mn Yes S P Al It Cr Or 1 0.70 0.61 0.22 0.028 0.018 0.084 0.048 0.061 0.016 2 0.82 0.69 0.20 0.026 0.019 0.082 0.043 0.058 0.015 ( Figures correspond to% by weight)
  • the characteristics of this steel are as follows: Thermal conductivity at 500 ° C: 19 wm ⁇ 1. ° K ⁇ 1 Thermal expansion at 400 ° C: 17.10 ⁇ 6m.m ⁇ 1.
  • the recovery rate T r is the ratio between the length of wire in contact with the groove bottoms and the total length of wire located between the first point of contact 5 on arrival on the heat transfer element and the last point 10 at the outlet, that is to say between points 5 and 10 previously defined ( Figure 3).
  • the incubation time is the time necessary for 1% of metastable austenite to transform into perlite, this time being counted from the beginning of the cooling (arrival of the wire 4 on the pair P1).
  • the transformation time is the time necessary to go from 1% to 99% of perlite.
  • Residence time: t3 1.26 seconds Number of turns: 3 The wire temperature was maintained at 580 ⁇ 6 ° C.
  • the capstans were kept at a temperature of: 417 ° C using a water flow at 25 ° C of: 0.7 m3 / h.
  • the capstans were kept at a temperature of: 585 ⁇ 5 ° C thanks to the electrical resistances 38, the water circulation was cut off.
  • This example is identical to the previous one except that a type 2 steel is used instead of a type 1 steel.
  • the incubation time and the transformation time are substantially the same as in previous example.
  • the wire After heat treatment, the wire has a tensile strength of 1350 MPa.
  • This wire is then brass plated and then drawn in a known manner to obtain a final diameter of 0.17 mm.
  • the capstans were kept at a temperature of: 585 ⁇ 5 ° C thanks to the electrical resistances 38, the water circulation was cut off.
  • This wire is then brass plated and then drawn in a known manner to obtain a final diameter of 0.28 mm.
  • This example is identical to the previous one except that a type 2 steel is used instead of a type 1 steel.
  • the incubation time and the transformation time are substantially the same as in previous example.
  • the wire After heat treatment, the wire has a tensile breaking strength of 1345 MPa.
  • This wire is then brass plated and then drawn in a known manner to obtain a final diameter of 0.28 mm.
  • This wire is then brass plated and then drawn in a known manner to obtain a final diameter of 0.35 mm.
  • This example is identical to the previous one except that a type 2 steel is used instead of a type 1 steel.
  • the incubation time and the transformation time are substantially the same as in previous example.
  • the wire After heat treatment, the wire has a tensile strength of 1355 MPa.
  • This wire is then brass plated and then drawn in a known manner to obtain a final diameter of 0.35 mm.
  • Example 2 This example is identical to Example 1 with the exception that a type 1 steel is used from the composition point of view but with an incubation time of 3.8 seconds and a transformation time of 3, 8 seconds at 580 ° C.
  • the installation is identical to that used for Example 1 except for the number of turns which went from 7 to 8 on the first pair P1 of capstans, from 3 to 4 on the third pair P3 of capstans.
  • Example 6 This example is identical to Example 6 except that a type 2 steel is used from the composition point of view but with an incubation time of 4.4 seconds and a transformation time of 6 seconds. at 580 ° C.
  • the installation is identical to that of Example 6 except for the number of turns which went from 4 to 5 on the first P1 pair of capstans, from 2 to 3 on the third P3 pair of capstans.
  • Example 2 is identical to Example 2 except for the fact that a type 2 steel is used from the composition point of view but with an incubation time of 4 seconds and a transformation time of 3 seconds at 580 ° C.
  • the automatic regulation put the second pair P2 of capstans in heating mode, that is to say that the cooling water circulation was cut off and the electric heating resistors 38 were put into service. so as to avoid the cooling of the wire which would have occurred on the second pair of capstans between the arrival of the wire and the moment when it is the seat of a release of heat due to the transformation of the austenite into perlite .
  • the tensile strengths after heat treatment and after wire drawing decreased by less than 2% compared to those of Example 2, which is due to the fact of a slightly poorer isothermicity.
  • the adaptability can be improved by improving the isothermicity, that is to say by increasing the number of pairs of capstans, but the small gain in resistance of the wire which one can expect from it does not generally justify the expense. performed.
  • the wire 4 treated in accordance with the invention in the installation 100 has the same structure as that obtained by the known lead patenting process, that is to say a fine pearlitic structure.
  • This structure includes cementite lamellae separated by ferrite lamellae.
  • FIG. 10 represents in section a portion 70 of such a fine pearlitic structure.
  • This portion 70 comprises two substantially parallel cementite strips 71, separated by a ferrite strip 72.
  • the thickness of the cementite strips 71 is represented by "i” and the thickness of the ferrite strips 72 is represented by "e” .
  • the pearlitic structure is fine, that is to say that the average value of the sum i + e is at most equal to 1000 ⁇ , with a standard deviation of 250 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Ropes Or Cables (AREA)

Claims (20)

  1. Verfahren zur Wärmebehandlung wenigstens eines metallischen Drahts mit Hilfe von Trommeln, bei dem der Draht auf wenigstens zwei wärmeleitenden, Rillen aufweisenden Trommeln in diesen Rillen flaschenzugartig gekreuzt geführt wird, wobei die Breite der Rillen geringfügig größer als die des Drahtes ist, und ein Gas in den Rillen in Kontakt mit dem Draht und den Trommeln ist;
    gekennzeichnet durch die folgenden Punkte:
    a) Erhitzen oder Abkühlen der Trommeln mit Hilfe des gleichfalls zwischen den Trommeln und wenigstens einem Teil angeordneten Gases, welches Gas in Kontakt mit den Trommeln und dem Teil ist, wobei dieses die Wärme leitende Teil außerhalb der Trommeln angeordnet ist, indem ein anderes Wärmetragerfluid als das Gas in Kontakt mit dem Teil in Umlauf gebracht wird, so daß Wärmeaustäusche einerseits zwischen dem Gas und dem Teil und andererseits zwischen dem Teil und dem Fluid stattfinden;
    b) Regeln der Dicke der Gasschicht zwischen den Trommeln und dem Teil in Abhängigkeit von der durchzuführenden Wärmebehandlung.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Gasschicht zwischen den Trommeln und dem Teil zwischen einer im wesentlichen ebenen Oberfläche des Teils und im wesentlichen ebenen Oberflächen der Trommeln angeordnet ist, wobei diese Oberflächen der Trommeln im wesentlichen in ein und derselben Ebene angeordnet sind, die senkrecht zu den Rotationsachsen der Trommeln und im wesentlichen parallel zur Oberfläche des Teils ist.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das zwischen den Trommeln und dem Teil angeordnete Gas praktisch keine anderen Bewegungen erfährt als die aufgrund der Umdrehung der Trommeln.
  4. Verfahren nach einem der Ansprüche 1 bis 3 zur Wärmebehandlung wenigstens eines Kohlenstoffstahldrahts zur Herstellung einer feinen perlitischen Struktur, welches Verfahren eine Austenitisierungsbehandlung, bei der der Draht auf eine Temperatur über der Transformationstemperatur AC3 erhitzt wird, um eine homogene Austenitstruktur zu erhalten, und eine Perlitisierungsbehandlung umfaßt, bei der anschließend der Draht abgekühlt wird, um eine metastabile Austenitstruktur zu erhalten, die in Perlit transformiert wird.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß wenigstens ein Trommelpaar bei der Abkühlung benutzt wird, um eine metastabile Austenitstruktur zu erhalten, so daß die folgenden Beziehungen eingehalten werden:

    K₁ ≧ 0,3   (1)
    Figure imgb0063


    K₂ ≧ 0,85   (2)
    Figure imgb0064


    0,5 ≦ K₃ ≦ 1,5   (3)
    Figure imgb0065


    2 x 10⁻⁴ ≦ K₄ ≦ 6 x 10⁻⁴   (4)
    Figure imgb0066


    mit den Definitionen:

    K₁ = L/(J x D f - Df²)   (5)
    Figure imgb0067


    K₂ = De/E   (6)
    Figure imgb0068


    K₃ = 100 (De/Ds - 1)   (7)
    Figure imgb0069


    K₄ = (V x D f ² x H)/(L x De²)   (8),
    Figure imgb0070


    wobei L die Wärmeleitfähigkeit des in den Rillen und zwischen den Trommeln und dem Teil befindlichen Gases bezeichnet, gemessen bei 600 °C und ausgedrückt in Watt · m⁻¹ · K⁻¹; Df den Drahtdurchmesser in Millimetern, J die Rillenbreite, ausgedrückt in Millimetern, E den Achsabstand der zwei Trommeln, ausgedrückt in Millimetern, De den Aufwickeldurchmesser des Drahts am Eingang einer beliebigen Trommel, Ds den Aufwickeldurchmesser des Drahts am Ausgang derselben Trommel, beide ausgedrückt in Millimetern bezeichnet; V die Durchlaufgeschwindigkeit des Drahts, ausgedrückt in Metern pro Sekunde, H die Dicke der Gasschicht zwischen den Trommeln und dem Teil, ausgedrückt in Millimetern, bezeichnet, wobei dieses Gas praktisch keine anderen Bewegungen erfährt als die aufgrund der Umdrehung der Trommeln.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß zusätzlich wenigstens ein Trommelpaar bei der Transformation des Austenits in Perlit verwendet wird, derart, daß die Temperatur des Drahts um nicht mehr als 10 °C nach oben oder unten von einer gegebenen, nach der eine metastabile Austenitstruktur ergebenden Abkühlung erreichten Temperatur abweicht, während eines längeren Zeitraums als der Perlitisierungsdauer, wobei für wenigstens ein Trommelpaar die folgenden Beziehungen eingehalten werden:

    K₂ ≧ 0,85   (9)
    Figure imgb0071


    K₃ = 0   (10),
    Figure imgb0072


    wobei das Gas zwischen den Trommeln und dem Teil bei diesem Paar praktisch keine anderen Bewegungen erfährt als die aufgrund der Umdrehung der Trommeln.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die folgenden Beziehungen bei wenigstens einem Trommelpaar während der Transformation des Austenits in Perlit eingehalten werden:

    K₁ ≧ 0,3   (11)
    Figure imgb0073


    0,5 x 10⁻³ ≦ K₄ ≦ 9 x 10⁻³   (12)
    Figure imgb0074


    wobei das Gas zwischen den Trommeln und dem Teil bei diesem Paar praktisch keine anderen Bewegungen erfährt als die aufgrund der Umdrehung der Trommeln.
  8. Verfahren nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß wenigstens ein Trommelpaar benutzt wird, um den Draht nach der Perlitisierungsbehandlung abzukühlen.
  9. Vorrichtung zur Wärmebehandlung wenigstens eines metallischen Drahts mit Hilfe von Trommeln, welche Vorrichtung wenigstens zwei wärmeleitende, Rillen aufweisende Trommeln sowie Einrichtungen zum Durchlaufenlassen des Drahtes in den Rillen der Trommeln umfaßt, wobei der Draht in den Rillen flaschenzugartig gekreuzt geführt ist, wobei die Breite der Rillen geringfügig größer als die des Drahts ist und ein Gas in den Rillen in Kontakt mit dem Draht und den Trommeln ist;
    gekennzeichnet durch
    a) Einrichtungen zum Erhitzen oder Abkühlen der Trommeln mit :
    - wenigstens einem wärmeleitenden, außerhalb der Trommeln angeordneten Teil;
    - Einrichtungen zum Inumlaufbringen eines anderen Wärmeträgerfluids als dem Gas in Kontakt mit dem Teil;
    - dem ebenfalls zwischen den Trommeln und dem Teil in Kontakt mit den Trommeln und dem Teil angeordneten Gas;
    welche Einrichtungen betätigt werden, damit Wärmeaustäusche einerseits zwischen dem Gas und dem Teil und andererseits zwischen dem Teil und dem Fluid stattfinden;
    b) Einrichtungen zum Regeln der Dicke der Gasschicht zwischen den Trommeln und dem Teil in Abhängigkeit von der durchzuführenden Wärmebehandlung.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die Gasschicht zwischen den Trommeln und dem Teil zwischen einer im wesentlichen ebenen Oberfläche des Teils und im wesentlichen ebenen Oberflächen der Trommeln liegt, wobei die Oberflächen der Trommeln im wesentlichen in ein und derselben Ebene angeordnet sind, die zu den Drehachsen der Trommeln senkrecht und im wesentlichen parallel zur Oberfläche des Teils ist.
  11. Vorrichtung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß das zwischen den Trommeln und dem Teil angeordnete Gas praktisch keine anderen Bewegungen erfährt als die aufgrund der Umdrehung der Trommeln.
  12. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß an jeder Trommel die Achse der Rillen auch die Trommelachse ist.
  13. Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß eine der Trommeln sich durch den Draht gezogen frei um die Achse dreht, und daß die Rillen dieser Trommel auf wärmeleitenden Ringen angeordnet sind, welche auf dem Trommelkörper angeordnet sind und sich um die Trommelachse unabhängig vom Körper drehen können.
  14. Vorrichtung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß wenigstens an einer Trommel der Aufwickeldurchmesser des Drahts sich vom Eingang zum Ausgang der Trommel verändert.
  15. Anlage zur Behandlung wenigstens eines metallischen Drahts, mit wenigstens einer Vorrichtung gemäß einem der Ansprüche 9 bis 14.
  16. Anlage nach Anspruch 15, dadurch gekennzeichnet, daß sie bestimmt ist für die Wärmebehandlung wenigstens eines Kohlenstoffstahldrahtes, um eine feine perlitische Struktur durch eine Austenitisierungsbehandlung, bei der der Draht auf eine Temperatur über der Transformationstemperatur AC3 erhitzt wird, um eine homogene Austenitstruktur zu erhalten, und eine Perlitisierungsbehandlung, bei der anschließend der Draht abgekühlt wird, um eine metastabile Austenitstruktur zu erhalten, die in Perlit umgewandelt wird, zu erhalten, wobei wenigstens eine Vorrichtung für die Perlitisierungsbehandlung bestimmt ist.
  17. Anlage nach Anspruch 16, dadurch gekennzeichnet, daß wenigstens eine Vorrichtung bestimmt ist zum Abkühlen des Drahts, um eine metastabile Austenitstruktur zu erhalten, wobei diese Vorrichtung folgende Beziehungen erfüllt:

    K₁ ≧ 0,3   (1)
    Figure imgb0075


    K₂ ≧ 0,85   (2)
    Figure imgb0076


    0,5 ≦ K₃ ≦ 1,5   (3)
    Figure imgb0077


    2 x 10⁻⁴ ≦ K₄ ≦ 6 x 10⁻⁴   (4)
    Figure imgb0078


    mit den Definitionen:

    K₁ = L/(J x D f - Df²)   (5)
    Figure imgb0079


    K₂ = De/E   (6)
    Figure imgb0080


    K₃ = 100 (De/Ds - 1)   (7)
    Figure imgb0081


    K₄ = (V x D f ² x H)/(L x De²)   (8),
    Figure imgb0082


    wobei L die Wärmeleitfähigkeit des in den Rillen und zwischen den Trommeln und dem Teil befindlichen Gases bezeichnet, gemessen bei 600 °C und ausgedrückt in Watt · m⁻¹ · K⁻¹; Df den Drahtdurchmesser, ausgedrückt in Millimetern, J die Rillenbreite, ausgedrückt in Millimetern, E den Achsabstand der zwei Trommeln, ausgedrückt in Millimetern, De den Aufwickeldurchmesser des Drahts am Eingang einer beliebigen Trommel, Ds den Aufwickeldurchmesser des Drahts am Ausgang derselben Trommel, beide ausgedrückt in Millimetern bezeichnet; V die Durchlaufgeschwindigkeit des Drahts, ausgedrückt in Metern pro Sekunde, H die Dicke der Gasschicht zwischen den Trommeln und dem Teil, ausgedrückt in Millimetern, bezeichnet, wobei dieses Gas praktisch keine anderen Bewegungen erfährt als die aufgrund der Umdrehung der Trommeln.
  18. Anlage nach Anspruch 17, dadurch gekennzeichnet, daß wenigstens eine Vorrichtung bestimmt ist, um die Transformation des metastabilen Austenits in Perlit zu ermöglichen, derart, daß die Temperatur des Drahts um nicht mehr als 10 °C nach oben oder unten von einer gegebenen, nach der eine metastabile Austenitstruktur ergebenden Abkühlung erreichten Temperatur abweicht, während eines längeren Zeitraums als der Perlitisierungsdauer, wobei die folgenden Beziehungen bei wenigstens einer Vorrichtung eingehalten werden:

    K₂ ≧ 0,85   (9)
    Figure imgb0083


    K₃ = 0   (10),
    Figure imgb0084


    wobei das Gas zwischen den Trommeln und dem Teil bei dieser Vorrichtung praktisch keine anderen Bewegungen erfährt als die aufgrund der Umdrehung der Trommeln.
  19. Anlage nach Anspruch 18, dadurch gekennzeichnet, daß wenigstens eine, zum Ermöglichen der Transformation des metastabilen Austenits in Perlit bestimmte Vorrichtung die folgenden Beziehungen einhält:

    K₁ ≧ 0,3   (11)
    Figure imgb0085


    0,5 x 10⁻³ ≦ K₄ ≦ 9 x 10⁻³   (12)
    Figure imgb0086


    wobei das Gas zwischen den Trommeln und dem Teil bei dieser Vorrichtung praktisch keine anderen Bewegungen erfährt als die aufgrund der Umdrehung der Trommeln.
  20. Anlage nach einem der Ansprüche 16 bis 19, dadurch gekennzeichnet, daß wenigstens eine Vorrichtung zur Abkühlung des Drahtes nach der Perlitisierung bestimmt ist.
EP90913487A 1989-09-19 1990-09-07 Verfahren und vorrichtung zum kontinuierlichen wärmebehandeln metallischer drähte auf rotierenden trommeln Expired - Lifetime EP0493424B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR8912384A FR2652094B1 (fr) 1989-09-19 1989-09-19 Procedes et dispositifs permettant de traiter thermiquement des fils metalliques en les faisant passer sur des cabestans.
FR8912384 1989-09-19
PCT/FR1990/000592 WO1991004345A1 (fr) 1989-09-19 1990-09-07 Procedes et dispositifs permettant de traiter thermiquement des fils metalliques en les faisant passer sur des cabestans

Publications (2)

Publication Number Publication Date
EP0493424A1 EP0493424A1 (de) 1992-07-08
EP0493424B1 true EP0493424B1 (de) 1994-07-27

Family

ID=9385715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90913487A Expired - Lifetime EP0493424B1 (de) 1989-09-19 1990-09-07 Verfahren und vorrichtung zum kontinuierlichen wärmebehandeln metallischer drähte auf rotierenden trommeln

Country Status (9)

Country Link
US (1) US5251881A (de)
EP (1) EP0493424B1 (de)
JP (1) JP2895223B2 (de)
AU (1) AU6400090A (de)
BR (1) BR9007663A (de)
CA (1) CA2065316A1 (de)
DE (1) DE69011126T2 (de)
FR (1) FR2652094B1 (de)
WO (1) WO1991004345A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2650296B1 (fr) * 1989-07-26 1991-10-11 Michelin & Cie Procede et dispositif pour traiter thermiquement au moins un fil metallique avec des plaques de transfert thermique
US6629361B1 (en) * 1999-07-30 2003-10-07 Electrovations Method of producing a high temperature electrical conductor
US7832250B2 (en) * 2008-04-18 2010-11-16 L&P Property Management Company Method and apparatus for automating production of sinuous springs

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE34829C (de) * A. SCHRÄDER, Regierungs - Maschinenbauführer in Telgte i. Westph Kraftsammelnde Bremse
US2965368A (en) * 1953-08-14 1960-12-20 Vaughn Machinery Co Wire treating apparatus
US3021128A (en) * 1955-12-06 1962-02-13 Svenska Metallverken Ab Method and means for continuously annealing metal strips, wire and the like
US4012028A (en) * 1975-05-08 1977-03-15 Vladimir Izrailevich Dunaevsky Furnace of a continuous metal strip heat-treatment plant
DE2701828A1 (de) * 1976-01-19 1977-07-21 Melfo Vorrichtung zum direktgluehen von metalldraht
JPS5799760A (en) * 1980-12-11 1982-06-21 Matsushita Electric Ind Co Ltd Resin sealing type electronic part
SU1224347A1 (ru) * 1981-12-29 1986-04-15 Гомельский Государственный Университет Способ патентировани стальной проволоки
AT389322B (de) * 1987-01-09 1989-11-27 Evg Entwicklung Verwert Ges Vorrichtung zum waermebehandeln eines kontinuierlich fortbewegten metalldrahtes
JPH06124976A (ja) * 1992-10-13 1994-05-06 Nec Corp 抜穴付tab ic

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, vol. 12, no 37 (C-473) (2884), 04.02.88, & JP,A,62185835 (KOA KAGAKU KOGYO K.K.) 14.08.87 *
Patent Abstracts of Japan, vol.8, no 67 (C-216) (1504), 29.03.84, & JP,A, 58217640 (SHINKOU KOUSEN KOGYO K.K.) 17.12.83 *

Also Published As

Publication number Publication date
FR2652094A1 (fr) 1991-03-22
FR2652094B1 (fr) 1993-07-30
DE69011126D1 (de) 1994-09-01
JP2895223B2 (ja) 1999-05-24
DE69011126T2 (de) 1994-12-01
CA2065316A1 (fr) 1991-03-20
BR9007663A (pt) 1992-09-01
WO1991004345A1 (fr) 1991-04-04
US5251881A (en) 1993-10-12
AU6400090A (en) 1991-04-18
EP0493424A1 (de) 1992-07-08
JPH05502058A (ja) 1993-04-15

Similar Documents

Publication Publication Date Title
EP0326005B1 (de) Verfahren und Vorrichtungen zur Wärmebehandlung von Kohlenstoffstahldrähten, um so ein feines perlitisches Gefüge zu bekommen
FR2746112A1 (fr) Procede de traitement thermique en continu de bandes metalliques dans des atmospheres de nature differente
EP0493424B1 (de) Verfahren und vorrichtung zum kontinuierlichen wärmebehandeln metallischer drähte auf rotierenden trommeln
EP0765942A1 (de) Verfahren zum Wärmebehandeln von Stahlschienen
EP0410300B1 (de) Verfahren und Vorrichtung zur Wärmebehandlung mindestens eines Metalldrahtes mittels Wärmeaustauschplatten
EP0270860B1 (de) Verfahren und Vorrichtung zur Wärmebehandlung von Stahldraht
EP1457580A1 (de) Verfahren für die Oxidationskontrolle der Stahlbänder vor der Feurergalvanisierung und Galvanisierunglinie
US2797177A (en) Method of and apparatus for annealing strip steel
US3562031A (en) Continuous small diameter ferrous tube manufacture
CA1333250C (fr) Procedes et dispositifs pour obtenir une structure d'austenite homogene
FR2673198A1 (fr) Procede de fabrication d'une bande ou tole en zircaloy 2 ou 4 et produit obtenu.
EP0410294A1 (de) Verfahren und Vorrichtung zur Wärmebehandlung von Metallband
EP0193422A1 (de) Verfahren und Vorrichtung zum Behandeln von metallischen Leitungsdrähten
EP0245174B1 (de) Herstellung von polymetallischem Verbundband
BE1004285A6 (fr) Procede et dispositif de refroidissement continu d'un fil d'acier trefile.
FR2462647A1 (fr) Procede de fabrication de tubes, tubes obtenus par ce procede et leur utilisation comme conduites d'eau
FR3017880A1 (fr) Procede de traitement thermique a refroidissement continu d'un element de renfort en acier pour pneumatique
EP0418166A1 (de) Kühlvorrichtung mit Kontaktrollen zum kontinuierlichen Abschrecken von vorgewärmtem Stahlband
US4943036A (en) Method and apparatus for isothermal holding of wire when a wire is heat-treated in-line
FR2571384A1 (fr) Procede de trempe au defile de toles d'un metal tel que l'acier et installation pour sa mise en oeuvre
EP0293286A1 (de) Verfahren und Vorrichtung zum Herstellen von Gegenständen für magnetische Verwendung
JPS56114504A (en) Method and apparatus for continuously manufacturing heat treated tapered wire rod
FR2582579A1 (fr) Procede de revetement d'une tige-noyau en acier avec un autre metal
BE449144A (fr) Perfectionnements aux procédés et dispositifs pour le revêtement d'objets en métal par des couches protectrices d'un métal différent
JPH02135680A (ja) 線材のインライン熱処理装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI

17Q First examination report despatched

Effective date: 19921214

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 69011126

Country of ref document: DE

Date of ref document: 19940901

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19941019

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980717

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980727

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980803

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980820

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980901

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

BERE Be: lapsed

Owner name: CIE GENERALE DES ETS MICHELIN - MICHELIN & CIE

Effective date: 19990930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990907

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050907